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Abstract

Large Language Models (LLMs) have rapidly
advanced, with domain-specific expert mod-
els emerging to handle specialized tasks across
various fields. However, the predominant focus
on English-centric models demands extensive
data, making it challenging to develop com-
parable models for middle and low-resource
languages. To address this limitation, we intro-
duce MIGRATE, a novel method that leverages
open-source static embedding models and up
to 3 million tokens of code-switching data to
facilitate the seamless transfer of embeddings
to target languages. MIGRATE enables effec-
tive cross-lingual adaptation without requiring
large-scale domain-specific corpora in the tar-
get language, promoting the accessibility of ex-
pert LLMs to a diverse range of linguistic com-
munities. Our experimental results demonstrate
that MIGRATE significantly enhances model
performance in target languages, outperform-
ing baseline and existing cross-lingual transfer
methods. This approach provides a practical
and efficient solution for extending the capabil-
ities of domain-specific expert models.

1 Introduction

Large Language Models (LLMs) have advanced
natural language processing by demonstrating re-
markable capabilities across various tasks and do-
mains (OpenAI et al., 2024; Rozière et al., 2024).
The development of domain-specific expert mod-
els has further expanded the potential of LLMs,
enabling them to handle specialized terminology
and complex concepts in fields such as science
and mathematics (Azerbayev et al., 2024; Zhang
et al., 2024; Taylor et al., 2022). However, these
advancements have largely been centered around
high-resource languages, particularly English, pre-
senting significant challenges for middle and low-
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resource languages, which often lack the extensive
domain-specific corpora required to train compara-
ble models effectively (Nguyen et al., 2022). Con-
sequently, speakers of these languages have limited
access to powerful language technologies tailored
to their linguistic and domain-specific needs.

Developing domain-specific expert models for
underrepresented languages is difficult due to the
scarcity of large-scale, high-quality datasets and
the substantial computational resources required
for training large models. Cross-lingual approaches,
such as multilingual pre-training (Chi et al., 2021)
or few-shot (Cahyawijaya et al., 2024), often do
not capture the nuanced semantics and special-
ized terminology essential for expertise in specific
domains, especially when dealing with languages
with limited resources (Wu et al., 2022).

To address these challenges, we introduce MI-
GRATE, an effective method for migrating domain-
specific expert models to target languages by en-
hancing monolingual static embeddings with code-
switched data generated from the expert model’s
training corpus. Our approach facilitates embed-
ding transfer without requiring large-scale target
language corpora or significant computational re-
sources, making it suitable for middle and low-
resource languages. Specifically, we generate code-
switched data by translating key nouns that often
carry crucial domain-specific meanings and special-
ized terminology from the expert model’s training
corpus into the target language. By focusing on
these nouns, we ensure that important vocabulary
is represented in the target language, enriching the
embedding space with cross-lingual lexical seman-
tics. The code-switched data serves as a bridge
between the source and target languages, and we
transfer the enhanced embeddings to initialize the
token embeddings of the target language in the ex-
pert model. This alignment of monolingual embed-
dings into a shared cross-lingual space enables the
expert model to better understand and generate text
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in the target language without extensive retraining
or the need for large target language datasets.

We validate our method through extensive ex-
periments in the science and mathematics domains,
transferring expert models to Arabic, Bengali, Ger-
man, Spanish, and Vietnamese. Our results demon-
strate that MIGRATE significantly improves model
performance in the target languages, outperform-
ing baseline models and existing approaches. By
integrating code-switched data during embedding
enhancement, we enhance the model’s multilin-
gual capabilities and ensure that specialist terms
and concepts are accurately represented in the tar-
get language. This targeted approach addresses the
challenges of aligning domain-specific vocabulary
across languages, enabling effective cross-lingual
transfer.

In summary, MIGRATE provides a practical and
resource-efficient solution for extending domain-
specific expert models to underrepresented lan-
guages. By leveraging minimal code-switched data
and existing resources, we promote inclusivity and
enable the broader application of AI technologies
across diverse linguistic landscapes. This work con-
tributes to the democratization of AI, ensuring that
advancements in language modeling are accessible
to speakers of all languages, regardless of resource
availability.

2 Related Work

Transferring language models to low-resource lan-
guages has been addressed through cross-lingual
vocabulary transfer and embedding initialization
strategies. Minixhofer et al. (2022) adapt pretrained
models to target languages by replacing the tok-
enizer and initializing new token embeddings using
multilingual static word embeddings, effectively
transferring semantic knowledge without retaining
source language capabilities. Dobler and de Melo
(2023) build upon this by representing new target
language tokens as combinations of overlapping
source language tokens based on semantic similar-
ity in an auxiliary embedding space, eliminating
the need for bilingual dictionaries.

Remy et al. (2024) initialize target language
embeddings using weighted averages of seman-
tically similar source language embeddings, lever-
aging translation resources to adapt models to low-
resource languages without extensive data. Addi-
tionally, Yamaguchi et al. (2024) explored vocabu-
lary expansion with minimal target language text,

emphasizing tailored strategies for low-resource
settings, while Chirkova and Nikoulina (2024) in-
vestigated zero-shot cross-lingual transfer in in-
struction tuning, highlighting challenges such as
reduced factual accuracy in target languages.

Our work introduces MIGRATE, which enhances
monolingual embeddings with code-switched data
generated from the expert model’s corpus by trans-
lating key domain-specific nouns into the target
language. This creates a code-switched corpus
that accurately represents specialized terminology,
facilitating effective cross-lingual transfer with-
out large target language corpora or significant
computational resources. Unlike previous methods,
MIGRATE specifically addresses domain-specific
vocabulary transfer, offering a practical solution
for underrepresented languages in specialized do-
mains.

3 Methods

To migrate a domain-specific expert model to the
target language, we propose a simple and effective
method, MIGRATE that leverages cross-lingual em-
bedding transfer enhanced through code-switching.
This approach involves two main stages: Enhancing
static embeddings through code-switched data and
Embedding transfer using cross-lingual static em-
bedding. These stages aim to improve cross-lingual
performance by systematically aligning monolin-
gual embeddings into a shared cross-lingual space.

3.1 Enhancing Static Embeddings through
Code-Switching

This stage comprises data preparation and model
training processes to create enriched static embed-
dings for domain-specific cross-lingual transfer.

Data Preparation To enhance the cross-lingual
performance of static embeddings, we generate a
code-switched dataset from the training data used
for the expert model. Let the training dataset be
D = {d1, d2, . . . , dN}, where each document di is
tokenized into sentences Si = {si1, si2, . . . , siMi},
and Mi denotes the number of sentences in docu-
ment di:

Si = sentence_tokenize(di), ∀i ∈ [1, N ] (1)

We perform part-of-speech (POS) tagging on
each sentence to identify all nouns:

Tij = pos_tag(sij), ∀j ∈ [1,Mi] (2)
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Here, Tij is the set of tuples (w, pos) represent-
ing words w and their POS tags in sentence sij . We
extract all nouns1 and denote the set of noun POS
tags as NN. We then define Nij as the set of nouns
extracted from Tij :

Nij = {n | (n, pos) ∈ Tij and pos in NN} (3)

We translate each noun n ∈ Nij into the target
language and replace the original nouns with their
translations to generate code-switched sentences:

s′ij = sij [n → translate(n) | n ∈ Nij ] (4)

Our emphasis on nouns stems from their role
as primary carriers of significant semantic infor-
mation in domain-specific contexts. By focusing
on nouns, which frequently embody the core ter-
minology of a domain, we can facilitate effective
cross-lingual alignment and preserve the semantic
coherence of specialized vocabulary. For example,
the English sentence “It is the question of unique-
ness of empirical stratifications” transforms into the
code-switched sentence “It is the câu hỏi of độc
đáo of empirical phân tầng”, where the nouns have
been replaced with their Vietnamese translations.
The final code-switched dataset is:

D′ = {s′ij | i ∈ [1, N ], j ∈ [1,Mi]} (5)

Continual Pre-Training Static Embedding We
utilize fastText2 to continual pre-train static em-
beddings from the code-switched data. fastText is
capable of processing at the character n-gram level,
allowing it to capture subword information and
handle unseen words, which makes it suitable for
processing code-switched text. We train the target
language monolingual static embeddings E to ob-
tain cross-lingual static embeddings Ẽ using the
code-switched dataset D′.

Ẽ = Train(E,D′) (6)

This step allows the model to better capture
the semantics of the domain-specific vocabulary
present in the code-switched data, enhancing the
quality of the cross-lingual embeddings.

1Including singular nouns (’NN’), plural nouns (’NNS’),
proper nouns (’NNP’), and plural proper nouns (’NNPS’).

2We use the pre-trained fastText models: https://
fasttext.cc/docs/en/crawl-vectors.html. Each model
is trained monolingually for the respective languages.

3.2 Embedding Transfer Using Cross-lingual
Static Embedding

Drawing inspiration from FOCUS (Dobler and
de Melo, 2023), we describe a robust methodol-
ogy to migrate expert models to another language
utilizing cross-lingual static embeddings. Our ap-
proach leverages the inherent structural properties
of target language tokenizers and employs a rig-
orous process to initialize embeddings for target
language tokens. The goal is to preserve linguistic
information and achieve semantically meaningful
embeddings.

First, we denote our source tokenizer as S and
the target language tokenizer as T . The tokenizer
S has a predefined vocabulary VS , while the target
tokenizer T operates with a vocabulary VT . For
tokens in VT that overlap with VS , we adopt a di-
rect transfer strategy where their embeddings are
copied from ES to ET . This ensures consistency
and preserves the linguistic knowledge embedded
in the source embeddings.

For tokens in VT that do not exist in VS , a more
nuanced approach is required to initialize new to-
ken embeddings. Specifically, the process of ob-
taining an initial embedding for each target token
ti absent from the source vocabulary is as follows:

Weights = Sparsemax(Similarity(ti, VO))

ET (ti) =
∑

tj∈VO

Weights(tj) ·ES(tj) (7)

Here, VO = VS ∩ VT . Similarity(ti, VO) rep-
resents the cosine similarity between the cross-
lingual static embedding Ẽ(ti) of the target token
ti and all embeddings Ẽ(VO) in the overlapping
vocabulary VO. These cosine similarities are then
processed through the SPARSEMAX (Martins and
Astudillo, 2016) function, converting the similarity
scores into a probability distribution while ensur-
ing sparsity. This highlights the most relevant to-
kens in VO. Finally, using the SPARSEMAX-derived
weights, we compute the weighted mean of embed-
dings from VO to initialize the embedding for ti.

By leveraging cross-lingual static embeddings,
we effectively address the challenges of aligning
domain-specific vocabulary across multiple lan-
guages. Specialist terms and concepts often lack
direct equivalents in other languages, leading to po-
tential loss of nuance and precision. Our approach
ensures better alignment by preserving these nu-
ances through datasets trained on domain-specific

https://fasttext.cc/docs/en/crawl-vectors.html
https://fasttext.cc/docs/en/crawl-vectors.html


9187

data, thus providing a more accurate cross-lingual
transfer.

In summary, our methodology provides a sys-
tematic approach for transferring domain-specific
expert models to the target language by leveraging
cross-lingual embedding transfer enhanced through
code-switching. This ensures that the migrated
models retain their specialized performance and
effectively adapt to new linguistic contexts.

4 Experimental Setup

In this section, we describe the details for migrating
domain-specific expert models from English to tar-
get languages in our experiments. We focus on two
domains: science and mathematics. To be specific,
we transfer English-trained expert language models
to the target languages: Arabic (AR), Bengali (BN),
German (DE), Spanish (ES), and Vietnamese (VI).

4.1 Models
Domain Specific Models For the science do-
main, we utilize the galactica-1.3b model (Taylor
et al., 2022). This model is trained on 106 billion
tokens of open-access scientific text and data, en-
compassing a wide range of sources such as papers,
textbooks, scientific websites, encyclopedias, refer-
ence material, and knowledge bases. For the math-
ematics domain, we employ the rho-math-7b-v0.1
model (Lin et al., 2024). The Rho-1 base models
utilize Selective Language Modeling (SLM) for
pretraining, selectively training on clean and rele-
vant tokens that align with the desired distribution.
The model is continually pre-trained on a 15 billion
token mathematics corpus.

Neural Machine Translation To translate words
into each target language, we use the nllb-200-
distilled-1.3B (Team et al., 2022). This model is
capable of single-sentence translation between 200
languages and is particularly effective for low-
resource languages.

Target Language Tokenizer For tokenizing the
target languages in our experiments, we employed
language-specific tokenizers optimized for each
language. Specifically, we used the tokenizer pro-
posed by Cañete et al. (2020) for Spanish, the tok-
enizer developed by Nguyen Quang Duc (2024) for
Vietnamese, and the tokenizers introduced by db-
mdz (2021), Zehady (2024), and riotu lab (2024)
for German, Bengali, and Arabic, respectively. De-
tailed descriptions and implementation specifics of
each tokenizer are provided in the appendix C.

4.2 Dataset
Train Dataset The data used to train each ex-
pert language model is also utilized for contin-
ual pre-training of static embeddings. For the
science domain experiments, we use the scien-
tific_papers (Cohan et al., 2018). This dataset
includes long and structured documents from
ArXiv and PubMed OpenAccess repositories. For
the mathematics domain, we use the open-web-
math (Paster et al., 2023), which contains high-
quality mathematical texts sourced from Common
Crawl.

Test Dataset To evaluate the performance of each
language and domain-specific model, we adopt
the Eleuther AI Language Model Evaluation Har-
ness framework and utilize a multilingual bench-
mark dataset from Lai et al. (2023). This bench-
mark dataset includes translations of ARC (Clark
et al., 2018), TruthfulQA (Lin et al., 2022), and
MMLU (Hendrycks et al., 2021) in 26 languages.
The target languages (AR, BN, DE, ES, VI) are
included in these translations. Specifically, ARC
and TruthfulQA are used to evaluate the scientific
domain models, while specific categories within
MMLU are used to evaluate the mathematical mod-
els. Detailed categories of MMLU used for math
model evaluation can be found in Appendix B.

5 Results

In this section, we present the experimental re-
sults of our proposed methods across various do-
mains and languages. Our experiments evaluate the
performance of our approach in the science and
mathematics domains for languages such as Arabic
(AR), Bengali (BN), German (DE), Spanish (ES),
and Vietnamese (VI). We analyze the effectiveness
of our methods including the impact of varying
amounts of code-switched data in enhancing cross-
lingual transfer and improving model performance.
Additionally, we conduct ablation studies to exam-
ine the effects of different code-switching strategies
and the inclusion of this data during training.

5.1 Performance Evaluation Across Domains
by Transfer Methods

Tables 1 and 2 present the performance of our mod-
els on the science and mathematics datasets, respec-
tively. The Baseline model, trained primarily on En-
glish data, exhibits limited accuracy across target
languages due to insufficient cross-lingual gener-
alization. The FOCUS method enhances language-
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Methods
ARC TruthfulQA

AR BN DE ES VI Avg AR BN DE ES VI Avg

Baseline 0.2207 0.2352 0.2293 0.2333 0.2282 0.2293 0.2303 0.2087 0.2234 0.2395 0.2293 0.2262

FOCUS 0.2301 0.2558 0.2609 0.2590 0.2239 0.2459 0.2135 0.2215 0.2170 0.2294 0.2038 0.2170

MIGRATE1M 0.2267 0.2583 0.2626 0.2709 0.2145 0.2466 0.2160 0.2254 0.2195 0.2383 0.2089 0.2216
- half 0.2258 0.2583 0.2601 0.2726 0.2179 0.2464 0.2160 0.2254 0.2170 0.2357 0.2000 0.2188

MIGRATE3M 0.2284 0.2660 0.2618 0.2641 0.2137 0.2468 0.2173 0.2254 0.2195 0.2319 0.2089 0.2206
- half 0.2344 0.2592 0.2609 0.2735 0.2282 0.2512 0.2147 0.2279 0.2170 0.2345 0.2038 0.2196

Table 1: Performance evaluation of transfer methods across languages on the ARC and TruthfulQA in the science do-
main. Each value represents the accuracy for the respective language, and bold values indicate the best performance.
Labeld with “half” denotes that only half of the extracted nouns are translated at random.

Methods
MMLUMATH

AR BN DE ES VI Avg

Baseline 0.2288 0.2000 0.2386 0.2464 0.2582 0.2344

FOCUS 0.2395 0.2335 0.2139 0.2617 0.2309 0.2359

MIGRATE1M 0.2376 0.2294 0.2167 0.2703 0.2658 0.2440
- half 0.2395 0.2406 0.2148 0.2674 0.2611 0.2447

MIGRATE3M 0.2425 0.2284 0.2272 0.2483 0.2498 0.2392
- half 0.2425 0.2274 0.2291 0.2464 0.2432 0.2377

Table 2: Performance evaluation of transfer methods
across languages on the MMLU in the mathematics
domain. Each value represents the accuracy for the re-
spective language, and bold values indicate the best
performance. Labeld with “half” denotes that only half
of the extracted nouns are translated at random.

specific embeddings within the monolingual space,
leading to notable improvements over the Base-
line. For example, in ARC, Bengali accuracy in-
creases from 0.2352 to 0.2558, and German from
0.2293 to 0.2609. This demonstrates that optimiz-
ing monolingual embeddings can positively impact
performance even without explicit cross-lingual
training. Introducing cross-lingual features through
code-switched data, the MIGRATE1M method in-
corporates 1 million tokens into the static em-
bedding training. This results in further perfor-
mance enhancements across most languages. In
ARC, German achieves an accuracy of 0.2626, the
highest among methods utilizing 1 million tokens.
The average accuracies in both ARC and Truth-
fulQA improve compared to FOCUS, indicating
that code-switched data enables the model to bet-
ter capture lexical semantics of target languages,
thus enhancing cross-lingual transfer. By increas-
ing the amount of code-switched data to 3 mil-
lion tokens, the MIGRATE3M method evaluates
the impact of larger datasets. Certain languages,

such as Arabic and Vietnamese, exhibit signifi-
cant gains; Vietnamese accuracy in ARC reaches
0.2282. While some languages show marginal im-
provements, the overall trend suggests that larger
volumes of code-switched data contribute to better
performance. In the mathematics domain (Table 2),
a similar pattern emerges. The Baseline model’s
limited performance improves slightly with FO-
CUS, but our methods yield more substantial gains.
Notably, Migrate1M achieves the highest average
accuracy of 0.2440. These results across both do-
mains confirm that incorporating code-switched
data into static embedding training effectively en-
hances the model’s cross-lingual lexical semantic
understanding, leading to improved performance
in target languages after embedding transfer.

Methods AR BN VI avg

ARC

FOCUS 0.2524 0.2549 0.2325 0.2466

MIGRATE1M 0.2566 0.2596 0.2385 0.2516

MIGRATE3M 0.2618 0.2601 0.2419 0.2546
TruthfulQA

FOCUS 0.2250 0.2305 0.2038 0.2198

MIGRATE1M 0.2251 0.2330 0.2125 0.2235

MIGRATE3M 0.2354 0.2382 0.2280 0.2339

Table 3: Performance evaluation of transfer methods
followed by Language Adaptation Pre-Training (LAPT)
using Wikipedia dataset (Foundation) 1 Billion tokens
on FOCUS and half model. Each value represents the
accuracy for the respective language (Arabic, Bengali,
Vietnamese), and bold values indicate the best perfor-
mance.
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5.2 Impact of Language Adaptation
Pre-Training

Table 3 presents the performance of our science do-
main expert models after applying Language Adap-
tation Pre-Training (LAPT) (Chau et al., 2020) in
AR, BN and VI. LAPT serves to further align the
initialized embeddings with the model’s weights,
enhancing the model’s capacity for language acqui-
sition and adaptation to the target languages.

In the ARC dataset, FOCUS achieves an av-
erage accuracy of 0.2466. With LAPT, the MI-
GRATE1M method increases this to 0.2516, and the
MIGRATE3M method further elevates it to 0.2546.
Similarly, in TruthfulQA, the average accuracy
improves from 0.2198 with FOCUS to 0.2235
with MIGRATE1M and reaches 0.2339 with MI-
GRATE3M , which represents an approximate 7%
improvement over FOCUS.

These results reveal that the substantial perfor-
mance gains from LAPT are closely tied to the
quality of the initialized embeddings. The embed-
dings transferred with code-switched data provide a
strong foundation that can be effectively enhanced
by LAPT. This underscores the importance of both
effective initialization and the additional adaptation
phase provided by LAPT in maximizing the po-
tential of multilingual language models. Thus, the
improvements observed after applying LAPT high-
light not just its own effectiveness, but also the crit-
ical role of proper initialization. A well-initialized
model allows LAPT to better align the embeddings
with the model’s weights, significantly boosting
language acquisition capabilities in low-resource
languages. For detailed experimental procedures,
please refer to Appendix D.

5.3 Ablation Study

To understand the contributions of different compo-
nents in our approach, we conduct ablation studies
focusing on the amount of code-switched words
and the presence of code-switching in the training
data.

Impact of Translated Noun Quantity We eval-
uate the impact of the quantity of translated nouns
on model performance, as presented in Tables 1
and 2. Specifically, we compare two scenarios: one
where all extracted nouns are translated and another
where only half are translated at random, denoted
as “half” in the tables.

Specifically, in the TruthfulQA, comparing
MIGRATE1M with MIGRATE1M - half, we observe

that the performance is higher when all nouns are
translated. For example, in German (DE), the ac-
curacy of all translated nouns is 0.2195, whereas it
drops to 0.2170 when using only half of the nouns.
Similarly, ES and VI also show better performance
when all nouns are translated.

A similar trend is observed in the mathe-
matics domain. Comparing MIGRATE1M with
MIGRATE1M - half, we observe that the perfor-
mance is higher when all nouns are translated. For
instance, in BN, the MIGRATE1M achieves an accu-
racy of 0.2447, while it decreases to 0.2440 when
only half of the nouns are translated.

Additionally, for the MIGRATE3M , translating
all nouns generally leads to improved performance
across domains, although the improvement in the
ARC dataset is less pronounced.

These results suggest that the number of code-
switched words plays a crucial role in cross-lingual
transfer performance. As the extent of translation
increases, the model performance improves, indi-
cating that translating all nouns is more effective.
Therefore, translating the full set of extracted nouns
is confirmed to be more beneficial for enhancing
model performance.

Methods
MMLUMATH

AR BN DE ES VI Avg

FOCUS 0.2395 0.2335 0.2139 0.2617 0.2309 0.2359

MIGRATE1M 0.2376 0.2294 0.2167 0.2703 0.2658 0.2440
w/o C.S 0.2356 0.2294 0.2196 0.2674 0.2554 0.2415

MIGRATE3M 0.2425 0.2284 0.2272 0.2483 0.2498 0.2392
w/o C.S 0.2393 0.2325 0.2158 0.2455 0.2554 0.2377

Table 4: Performance comparison with and without
code-switching on the MMLU across different lan-
guages in math domain. “w/o C.S” denotes models
trained without code-switching. Each value represents
the accuracy for the respective language, and bold val-
ues indicate the highest performance.

Advantages of Code Switching We investigate
the role of code-switching in our approach by
comparing static embeddings learned from code-
switched data with those learned from the origi-
nal English domain data without code-switching.
Specifically, our experiments focus on the mathe-
matics domain. Table 4 presents the performance
results for models trained with and without code-
switched data in the static embedding phase.

The results show that incorporating code-
switched data for static embedding training signif-
icantly enhances model performance across most
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languages. For the MIGRATE1M , the average accu-
racy decreases from 0.2440 to 0.2415 when only
the original English data is used. Similarly, the
average accuracy of MIGRATE3M reduces from
0.2392 to 0.2377 without code-switching. Notably,
the largest performance drops are observed in AR
and VI, indicating that code-switching plays a vital
role in improving performance.

Additionally, training with domain-related En-
glish data alone provides moderate performance
improvements, even without incorporating code-
switching. These findings underscore that inte-
grating code-switched data during static embed-
ding training is essential for maximizing the
model’s multilingual capabilities. While training
with domain-related English data provides some
benefits over the baseline, the models trained with
code-switched data consistently outperform those
without it. This highlights the crucial role of code-
switching in enhancing cross-lingual lexical align-
ment and embedding transfer.

6 Conclusion

We address the challenge of migrating English-
centric expert models to other languages without
the need for domain-specific corpora in those lan-
guages. We enhance monolingual static embed-
dings through further training with code-switching
data to create cross-lingual embeddings. These en-
riched embeddings are then used to initialize the
token embeddings of the target languages, facilitat-
ing effective embedding transfer.

Furthermore, we highlight the critical impor-
tance of proper embedding initialization. By using
these enriched cross-lingual embeddings, we estab-
lish a strong foundation that, when combined with
LAPT, leads to significant performance gains. This
underscores the necessity of both effective initial-
ization and the adaptation phase provided by LAPT
in maximizing the potential of expert models.

Our experiments across various languages and
domains represent simple and effective strategies
for enhancing cross-lingual transfer in English-
centric expert models. Future work could explore
extending this approach to other expert domains
and languages.

Limitations

This study presents several limitations. We conduct
experiments on a limited set of languages, includ-
ing Arabic, Bengali, German, Spanish, and Viet-

namese. While these languages provide a diverse
range of linguistic characteristics for evaluation,
there are many other languages with unique scripts
and linguistic features that we do not test. Due
to constraints in computational resources and data
availability, we are unable to experiment with all
possible languages. Therefore, we cannot assert
that our method will exhibit similar performance
improvements for other low-resource languages or
those with distinct scripts, and further investigation
is needed to substantiate the generalizability of our
approach.

Additionally, limitations in GPU resources lead
us to employ Parameter-Efficient Fine-Tuning
(PEFT) techniques during LAPT phase. While
PEFT allows for efficient model adaptation, it may
not fully capture all the potential benefits that could
be achieved through full fine-tuning. This may
restrict the optimal performance of our method,
and future work should explore the effects of full
fine-tuning using more extensive computational re-
sources to fully realize the advantages of LAPT.

Finally, our experiments are confined to two spe-
cific domains: science and mathematics. Although
we demonstrate the effectiveness of our approach
within these domains, it remains uncertain whether
similar benefits would be observed in other do-
mains. Each domain possesses unique linguistic
patterns and specialized terminologies that could
affect the performance of our method differently.
Additional research is necessary to assess the appli-
cability and effectiveness of our approach across a
broader range of domains.

Ethical Considerations

In this study, we utilize code-switched data to trans-
fer English-centric expert models to target lan-
guages, aiming to enhance access to expert knowl-
edge in fields like science and mathematics for
speakers of low-resource languages. Our research
makes use of publicly available data, ensuring that
all data are used under appropriate licenses.

We recognize that biases present in the origi-
nal English data may be transferred to the target
languages during the model transfer process. Such
biases could lead to unequal performance or un-
intended consequences for certain languages or
groups. Additionally, the code-switching process
may not fully capture cultural contexts or linguistic
nuances of the target languages, potentially result-
ing in inappropriate expressions or misunderstand-
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ings among target language users. It is important
for users of our models to exercise caution and
consider local cultural and linguistic characteristics
when applying them.
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high_school_statistics. This dataset encompasses a
wide range of mathematical concepts and problem-
solving skills, from elementary to college-level
mathematics, including areas like abstract algebra
and statistics. It provides a comprehensive bench-
mark to assess the model’s mathematical under-
standing and performance in each language.

C Tokenizer Details

In our experiments, we carefully select tokeniz-
ers and appropriate vocabulary sizes to effectively
capture the linguistic characteristics of each target
language, grouping common features to minimize
redundancy.

For both Arabic (riotu lab, 2024) and Ger-
man (dbmdz, 2021), Byte Pair Encoding (BPE)
tokenizers tailored to these languages are used. The
Arabic tokenizer is modified to accommodate the
rich morphology of the Arabic script, resulting in
a vocabulary size of 64,002 tokens. This adjust-
ment ensures better tokenization of inflected forms
and improves overall language representation. Sim-
ilarly, a German tokenizer trained on a German
corpus is used, employing byte-level BPE with a
vocabulary size of 50,265 tokens. This tokenizer
effectively captures German orthography and com-
pound word formation, which are characteristic of
the language.

For Bengali (Zehady, 2024) and Viet-
namese (Nguyen Quang Duc, 2024), Sen-
tencePiece (Kudo and Richardson, 2018) is
adopted, which is effective for languages with
complex scripts and lack of clear word boundaries.
The Bengali tokenizer enhances the base vocab-
ulary by adding 16,000 Bengali-specific tokens,
increasing the total vocabulary size to 50,437
tokens. This expansion improves the representation
of Bengali script and phonetics, allowing for
more accurate tokenization of native words. In
the case of Vietnamese, a SentencePiece without
prior word segmentation is used to create 20,000
Vietnamese tokens. By merging this with the
original vocabulary and removing duplicate tokens,
a total vocabulary size of 46,303 tokens is achieved.
This significantly improved tokenization efficiency
for Vietnamese text, reducing the number of tokens
required compared to previous versions.

For Spanish (Cañete et al., 2020), a Sentence-
Piece employing BPE subwords, trained on a large
Spanish corpus, is utilized. The vocabulary consists
of approximately 31,002 tokens, effectively han-

dling Spanish morphology and syntax, including
accented characters and conjugations, which are
prevalent in the language.

D Experimental Setting in LAPT

After completing the embedding transfer, we per-
form Language Adaptation Pre-Training (LAPT)
on the models to further adapt them to the
target languages. Given computational resource
constraints, we employ Parameter-Efficient Fine-
Tuning (PEFT) techniques, specifically using
Low-Rank Adaptation of Large Language Mod-
els(LoRA) (Hu et al., 2021). This approach allows
us to efficiently fine-tune the models without updat-
ing all of the parameters, thereby reducing compu-
tational demands while maintaining model perfor-
mance. For training data, we utilize the Wikipedia
dataset for each target language, which provides a
substantial amount of monolingual text suitable for
language adaptation3.

LoRA Configuration We configure LoRA with
a rank (r) of 64 for the low-rank adaptation matri-
ces and set the scaling factor (α) to 16. A dropout
probability of 0.1 is applied to the LoRA layers to
prevent overfitting. No bias terms are included in
the LoRA layers, simplifying the adaptation pro-
cess. LoRA is applied to the transformer modules
associated with the attention mechanisms, specifi-
cally the query, key, value, and output projections.

Hyperparameters We set the batch size to 32.
The models are trained for 1 epoch using the
AdamW optimizer with a learning rate of 1e-4.
The maximum sequence length is set to 2048 to-
kens, and we apply a warmup ratio of 8% using
the WarmupDecayLR scheduler. Mixed-precision
training using the bfloat16 format is enabled to
reduce memory usage and accelerate computation.

Hardware We use 4 NVIDIA A6000 GPUs,
each with 48GB of memory capacity, along with
AMD EPYC 7513 processors featuring 32 cores, to
train the LLMs. For inference, we employ a single
accelerator.

3https://huggingface.co/datasets/wikimedia/
wikipedia

https://huggingface.co/datasets/wikimedia/wikipedia
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