@inproceedings{gui-etal-2025-aider,
title = "{AIDER}: a Robust and Topic-Independent Framework for Detecting {AI}-Generated Text",
author = "Gui, Jiayi and
Cui, Baitong and
Guo, Xiaolian and
Yu, Ke and
Wu, Xiaofei",
editor = "Rambow, Owen and
Wanner, Leo and
Apidianaki, Marianna and
Al-Khalifa, Hend and
Eugenio, Barbara Di and
Schockaert, Steven",
booktitle = "Proceedings of the 31st International Conference on Computational Linguistics",
month = jan,
year = "2025",
address = "Abu Dhabi, UAE",
publisher = "Association for Computational Linguistics",
url = "https://aclanthology.org/2025.coling-main.625/",
pages = "9299--9310",
abstract = "The human-level fluency achieved by large language models in text generation has intensified the challenge of distinguishing between human-written and AI-generated texts. While current fine-tuned detectors exist, they often lack robustness against adversarial attacks and struggle with out-of-distribution topics, limiting their practical applicability. This study introduces AIDER, a robust and topic-independent AI-generated text detection framework. AIDER leverages the ALBERT model for topic content disentanglement, enhancing transferability to unseen topics. It incorporates an augmentor that generates robust adversarial data for training, coupled with contrastive learning techniques to boost resilience. Comprehensive experiments demonstrate AIDER`s significant superiority over state-of-the-art methods, exhibiting exceptional robustness against adversarial attacks with minimal performance degradation. AIDER consistently achieves high accuracy in non-augmented scenarios and demonstrates remarkable generalizability to unseen topics. These attributes establish AIDER as a powerful and versatile tool for LLM-generated text detection across diverse real-world applications, addressing critical challenges in the evolving landscape of AI-generated content."
}
<?xml version="1.0" encoding="UTF-8"?>
<modsCollection xmlns="http://www.loc.gov/mods/v3">
<mods ID="gui-etal-2025-aider">
<titleInfo>
<title>AIDER: a Robust and Topic-Independent Framework for Detecting AI-Generated Text</title>
</titleInfo>
<name type="personal">
<namePart type="given">Jiayi</namePart>
<namePart type="family">Gui</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Baitong</namePart>
<namePart type="family">Cui</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Xiaolian</namePart>
<namePart type="family">Guo</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Ke</namePart>
<namePart type="family">Yu</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Xiaofei</namePart>
<namePart type="family">Wu</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<originInfo>
<dateIssued>2025-01</dateIssued>
</originInfo>
<typeOfResource>text</typeOfResource>
<relatedItem type="host">
<titleInfo>
<title>Proceedings of the 31st International Conference on Computational Linguistics</title>
</titleInfo>
<name type="personal">
<namePart type="given">Owen</namePart>
<namePart type="family">Rambow</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Leo</namePart>
<namePart type="family">Wanner</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Marianna</namePart>
<namePart type="family">Apidianaki</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Hend</namePart>
<namePart type="family">Al-Khalifa</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Barbara</namePart>
<namePart type="given">Di</namePart>
<namePart type="family">Eugenio</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Steven</namePart>
<namePart type="family">Schockaert</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<originInfo>
<publisher>Association for Computational Linguistics</publisher>
<place>
<placeTerm type="text">Abu Dhabi, UAE</placeTerm>
</place>
</originInfo>
<genre authority="marcgt">conference publication</genre>
</relatedItem>
<abstract>The human-level fluency achieved by large language models in text generation has intensified the challenge of distinguishing between human-written and AI-generated texts. While current fine-tuned detectors exist, they often lack robustness against adversarial attacks and struggle with out-of-distribution topics, limiting their practical applicability. This study introduces AIDER, a robust and topic-independent AI-generated text detection framework. AIDER leverages the ALBERT model for topic content disentanglement, enhancing transferability to unseen topics. It incorporates an augmentor that generates robust adversarial data for training, coupled with contrastive learning techniques to boost resilience. Comprehensive experiments demonstrate AIDER‘s significant superiority over state-of-the-art methods, exhibiting exceptional robustness against adversarial attacks with minimal performance degradation. AIDER consistently achieves high accuracy in non-augmented scenarios and demonstrates remarkable generalizability to unseen topics. These attributes establish AIDER as a powerful and versatile tool for LLM-generated text detection across diverse real-world applications, addressing critical challenges in the evolving landscape of AI-generated content.</abstract>
<identifier type="citekey">gui-etal-2025-aider</identifier>
<location>
<url>https://aclanthology.org/2025.coling-main.625/</url>
</location>
<part>
<date>2025-01</date>
<extent unit="page">
<start>9299</start>
<end>9310</end>
</extent>
</part>
</mods>
</modsCollection>
%0 Conference Proceedings
%T AIDER: a Robust and Topic-Independent Framework for Detecting AI-Generated Text
%A Gui, Jiayi
%A Cui, Baitong
%A Guo, Xiaolian
%A Yu, Ke
%A Wu, Xiaofei
%Y Rambow, Owen
%Y Wanner, Leo
%Y Apidianaki, Marianna
%Y Al-Khalifa, Hend
%Y Eugenio, Barbara Di
%Y Schockaert, Steven
%S Proceedings of the 31st International Conference on Computational Linguistics
%D 2025
%8 January
%I Association for Computational Linguistics
%C Abu Dhabi, UAE
%F gui-etal-2025-aider
%X The human-level fluency achieved by large language models in text generation has intensified the challenge of distinguishing between human-written and AI-generated texts. While current fine-tuned detectors exist, they often lack robustness against adversarial attacks and struggle with out-of-distribution topics, limiting their practical applicability. This study introduces AIDER, a robust and topic-independent AI-generated text detection framework. AIDER leverages the ALBERT model for topic content disentanglement, enhancing transferability to unseen topics. It incorporates an augmentor that generates robust adversarial data for training, coupled with contrastive learning techniques to boost resilience. Comprehensive experiments demonstrate AIDER‘s significant superiority over state-of-the-art methods, exhibiting exceptional robustness against adversarial attacks with minimal performance degradation. AIDER consistently achieves high accuracy in non-augmented scenarios and demonstrates remarkable generalizability to unseen topics. These attributes establish AIDER as a powerful and versatile tool for LLM-generated text detection across diverse real-world applications, addressing critical challenges in the evolving landscape of AI-generated content.
%U https://aclanthology.org/2025.coling-main.625/
%P 9299-9310
Markdown (Informal)
[AIDER: a Robust and Topic-Independent Framework for Detecting AI-Generated Text](https://aclanthology.org/2025.coling-main.625/) (Gui et al., COLING 2025)
ACL