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Abstract
The human-level fluency achieved by large
language models in text generation has in-
tensified the challenge of distinguishing be-
tween human-written and AI-generated texts.
While current fine-tuned detectors exist, they
often lack robustness against adversarial at-
tacks and struggle with out-of-distribution top-
ics, limiting their practical applicability. This
study introduces AIDER, a robust and topic-
independent AI-generated text detection frame-
work. AIDER leverages the ALBERT model
for topic content disentanglement, enhancing
transferability to unseen topics. It incorporates
an augmentor that generates robust adversarial
data for training, coupled with contrastive learn-
ing techniques to boost resilience. Comprehen-
sive experiments demonstrate AIDER’s signifi-
cant superiority over state-of-the-art methods,
exhibiting exceptional robustness against adver-
sarial attacks with minimal performance degra-
dation. AIDER consistently achieves high ac-
curacy in non-augmented scenarios and demon-
strates remarkable generalizability to unseen
topics. These attributes establish AIDER as a
powerful and versatile tool for LLM-generated
text detection across diverse real-world appli-
cations, addressing critical challenges in the
evolving landscape of AI-generated content.

1 Introduction

AI-generated text detection is the task of distin-
guishing AI-generated from human-written text.
The rapid advancement of large language models
(LLMs) like GPT(Achiam et al., 2023; Floridi and
Chiriatti, 2020), Claude(Anthropic, 2023), Mis-
tral(Jiang et al., 2023), GLM(GLM et al., 2024;
Zeng et al., 2022), and Llama(Touvron et al., 2023)
has made this task increasingly challenging. This
raises concerns in academic integrity, journalistic
authenticity, social media distortion, and legal cred-
ibility.

Developing effective methods for AI-generated
text detection has become a crucial research area,
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Figure 1: Overview of the AIDER framework. AIDER
is designed to detect texts generated by various AI gener-
ators and across diverse topics. The framework consists
of three main steps: In Step 1, AI-generated texts are
augmented in the Augmentor module. In Step 2, a large
corpus of human-written and AI-generated texts is used
to train the model based on ALBERT in the first stage of
the Detector module. In Step 3, paired human-written,
AI-generated, and AI-augmented texts go through fur-
ther training with ALBERT in the second stage of the
Detector module to predict the final class.

with researchers exploring various approaches in-
cluding: watermarking(Christ et al., 2024; Kirchen-
bauer et al., 2023), zero-shot detectors(Mitchell
et al., 2023; Bhattacharjee and Liu, 2024), and fine-
tuned classifiers(Hu et al., 2023; Guo et al., 2023).

However, existing detectors face significant chal-
lenges on two fronts. Firstly, they are highly vulner-
able to various attack techniques, including para-
phrasing (Krishna et al., 2024), adversarial (Hu
et al., 2023), and prompt (Wu et al., 2023) attacks.
These methods can drastically reduce detection
accuracy by altering text structure or exploiting
model weaknesses while preserving content mean-
ing, leading to an arms race between detectors and
evasion techniques. Secondly, these detectors strug-
gle with transferability to unseen topics (Li et al.,
2024). These vulnerabilities arise from different
sources: attack techniques exploit the detectors’
lack of exposure to adversarial samples, while topic
transferability issues stem from limited general-
ization across diverse content domains. Ideally,
the intrinsic style of expressing the same content
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should distinguish AI from human texts. However,
semantic variations introduce significant random-
ness in real-world scenarios, making it imperative
to extract latent characteristics beyond mere se-
mantics. Together, these challenges significantly
hinder the effectiveness of AI-generated text detec-
tion in real-world scenarios, potentially leading to
widespread undetected AI-generated content across
various fields.

To address the limitations of existing AI-
generated text detectors, we propose AIDER, a
robust and topic-independent framework for detect-
ing AI-generated content. The workflow of AIDER
are illustrated in Figure 1. AIDER is designed
to overcome vulnerabilities to various attack tech-
niques and enhance generalization across diverse
topics, ensuring broad practical applicability. To
implement this comprehensive approach, AIDER’s
architecture consists of two key components: a de-
tector and an augmentor. The detector, built on
the lightweight ALBERT(Lan et al., 2019) model,
employs a two-stage training paradigm. The first
stage discerns fundamental differences between
human-written and AI-generated texts, while the
second stage introduces a contrastive label predic-
tion module with triplet loss. A topic disentangle-
ment module is incorporated to focus on generation-
specific features, enhancing detection accuracy
across varied topics. The augmentor, powered
by large language models (LLMs), generates chal-
lenging samples that are fed into the detector’s
second-stage training. This synergistic process en-
hances the detector’s robustness against a wide
spectrum of evasion methods. By continuously
exposing the detector to these challenging samples,
the detector strengthens its resilience to various
attack techniques, ensuring maintained accuracy
in real-world scenarios. To support the develop-
ment and evaluation of AIDER, we introduce the
AIGen dataset, comprising approximately 24,000
human-written, AI-generated, and AI-augmented
triplets. This comprehensive dataset ensures thor-
ough training and evaluation across diverse topics
and generation models.

2 Related Works

AI-Generated Text Detectors Contemporary
methodologies for post-hoc AI-generated text de-
tection can be broadly classified into three cat-
egories: watermark-based detectors, zero-shot-
based detectors, and fine-tuned detectors(Ghosal

et al., 2023). Watermark-based detectors (Kirchen-
bauer et al., 2023; Christ et al., 2024; Zhao et al.,
2023) require access to the language model to em-
bed signals in generated text, limiting their effec-
tiveness when the text source is unknown; Zero-
shot-based detectors like DetectGPT (Mitchell
et al., 2023) and GLTR (Gehrmann et al., 2019) use
statistical features to differentiate between human
and AI-generated text. However, they require ac-
cess to model prediction distributions and show per-
formance inconsistencies across models (Ghosal
et al., 2023). LLM-based zero-shot detectors like
OUTFOX (Koike et al., 2024; Bhattacharjee and
Liu, 2024) face instability and bias issues; Fine-
tuned detectors (Solaiman et al., 2019; Guo et al.,
2023; Hu et al., 2023) are classifiers trained on la-
beled datasets. They encounter challenges in data
collection and reduced effectiveness with larger
models (Gambini et al., 2022). This study employs
a fine-tuned approach for detection under black-
box settings, where target generator sources and
parameters are unknown, mirroring real-world sce-
narios where detectors must operate without prior
knowledge of the text’s origin or the specific AI
models used in its generation.

Attacking and Defense against AI-Generated
Text Detectors A significant challenge for all de-
tectors is the effectiveness of paraphrasing attacks,
which can significantly impair their performance
(Christ et al., 2024; Krishna et al., 2024). For exam-
ple, Krishna et al. (2024) introduced the DIPPER
paraphraser, which decreased detection accuracy by
up to 90% compared to its accuracy in the absence
of attacks. Consequently, various attack techniques
have been developed, including adversarial attacks
and prompt attacks (Ghosal et al., 2023; Wu et al.,
2023). As a defense, research has increasingly fo-
cused on enhancing robustness against such attacks
(Krishna et al., 2024; Hu et al., 2023; Koike et al.,
2024). Despite advancements in adversarial de-
fense, challenges persist in robustness, vulnerabil-
ity to recursive attacks, and cost-efficiency. AIDER
addresses these issues through a novel augmenta-
tion framework that generates samples encompass-
ing multiple attack types and simulates recursive
attacks via cyclical settings. This approach en-
hances the robustness of the fine-tuned detector
component. Moreover, AIDER offers improved
cost-effectiveness in both training and inference by
eliminating the need for LLM interaction during
the training phase.
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Figure 2: The architecture of the proposed detector of AIDER, highlighting the topic disentagnlement module and
the contrastive label prediction module.

Transferability on Unseen Topics Most detec-
tors mentioned above are tailored to specific top-
ics, such as news(Hanley and Durumeric, 2024;
Zellers et al., 2019), scientific content(He et al.,
2023; Liang et al., 2024) and academic texts(Koike
et al., 2024; Yu et al., 2023). Their ability to trans-
fer detection capabilities to out-of-distribution top-
ics remains uncertain, posing a significant practical
challenge(Li et al., 2024). To address these issues,
we proposes a novel topic-disentanglement mod-
ule in the detector of AIDER designed to enhance
transferability to unseen topics. This approach is
bolstered by the diverse range of topics included
in our AIGen dataset. Prior to this study, no re-
search has specifically focused on incorporating
topic-disentanglement to improve detector transfer-
ability across various domains.

3 The Detector of AIDER

3.1 Holistic Architecture of Detector

The AI-generated text detector employs a two-
stage training paradigm. It comprises two crucial
modules: the contrastive label prediction mod-
ule and the topic disentanglement module, as
illustrated in Figure 2. The detector is built upon
ALBERT(Lan et al., 2019), a lightweight variant
of BERT(Devlin et al., 2018) that reduces model
complexity while maintaining high performance.

In the first stage, ALBERT is pretrained on
an aggregated dataset of approximately 500,000
unpaired human-AI texts sourced from publicly
available datasets: Deepfake(Li et al., 2024),
CHEAT(Yu et al., 2023) and MGTBench(He et al.,
2023). These data undergo rigorous pre-processing
and self-checking procedures to eliminate dupli-

cates and remove extraneous information. The pri-
mary objective of this stage is to classify text as
either human-written or AI-generated, enabling the
model to discern fundamental differences between
the two. This classification objective is achieved
using cross entropy loss Lce. The weights of the fi-
nal layer are preserved for fine-tuning in the second
stage of training.

The second stage leverages the ALBERT model
from the first stage utilizing the AIGen dataset in-
troduced in Section 5. Given a triplet of input texts
(xhi , x

a
i , x

a+
i ), where xhi represents human-written

text, xai denotes AI-generated text, and xa+i is an
augmented version of the AI-generated text, the
triplet is processed through the ALBERT model to
obtain respective representations ehi , eai , and ea+i .
These embeddings are subsequently fed into the
topic disentanglement module and the contrastive
label prediction module. The topic label in topic
disentanglement module is determined using a zero-
shot classification method1 based on BART(Lewis
et al., 2019), utilizing 12 predefined categories.
This label encapsulates the topic of the triplet, aim-
ing to facilitate the learning of features unrelated
to the topic. This approach is particularly valuable
given that the classified texts (whether generated
by humans or AI) exhibit a wide variety of topics,
which are independent of the text’s origin.

3.2 Topic Disentanglement Module

The topic disentanglement module is engineered
to disentangle topic-related information from the
embeddings. This is achieved by processing the
embeddings ehi , eai , and ea+i through two parallel

1https://huggingface.co/facebook/bart-large-mnli
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Figure 3: Workflow of the augmentor in AIDER framework, showcasing the auto generation of instruction and the
augmentation process.

pathways: a Gradient Reversal Layer (GRL)(Ganin
et al., 2016) and a Variational Information Bottle-
neck (VIB)(Alemi et al., 2022) as demonstrated in
Figure 2.

In the GRL pathway, the embeddings ehi , eai , and
ea+i traverse the GRL before being fed into a multi-
layer perceptron (MLP) for topic label prediction
of the input triplets. This process yields outputs
ghi , gai , and ga+i . The GRL functions as an identity
transform during forward propagation but inverts
the gradient direction during backpropagation:

∂Lt

∂emi
= −λ

∂Lt

∂gmi
, m ∈ h, a, a+ (1)

where Lt is the topic classification loss which
is computed using the cross-entropy loss function
based on the output of the MLP, and λ represents a
scaling factor.

Concurrently, in the VIB pathway, embeddings
are processed to derive a latent representation z.
This representation is optimized to maximize mu-
tual information with task-relevant information (hu-
man or AI) while minimizing mutual information
with the input. The VIB loss LIB, reparameteri-
zation output of VIB zi and total loss of the first
pathway Ltotal, are formulated as:

LIB = −0.5
N∑
i=1

(1 + log σ2
i − µ2

i − σ2
i ) (2)

zmi = µm
i +σm

i ⊙ ϵmi ,

ϵmi ∼ N (0, I), m ∈ h, a, a+
(3)

Ltotal = Lc + βLIB (4)

Here, LIB calculation employs Kullback-Leibler
divergence(Kullback and Leibler, 1951) where N

denotes embeddings e dimensionality, σ2
i and µi

represent variance and mean of the i-th dimen-
sion, respectively. zmi signifies post-VIB latent
embeddings for triplet texts, with ϵi sampled from
a standard normal distribution and ⊙ indicating
element-wise multiplication. Lc refers to Equa-
tion 7, while β balances information preservation
of classification-related features and compression
of topic-related features in the first pathway.

The synergistic application of GRL and VIB fa-
cilitates the model’s learning of features that are
both insensitive to topic labels (via GRL) and pri-
marily relevant to the AI/human generation task
(via VIB). This disentanglement process enables
the contrastive label prediction module to learn
robust representations that are topic-invariant and
transferable across the triplet texts. Consequently,
the detector’s ability to generalize to unseen top-
ics and effectively identify AI-generated texts is
significantly enhanced.

3.3 Contrastive Label Prediction Module

The contrastive label prediction module plays
a crucial role in enhancing the detector’s discrim-
inative power through contrastive learning. This
module incorporates three loss components: triplet
loss Ltri, cross-entropy loss Lce, and balance loss
Lb. The triplet loss, serving as the core compo-
nent, ensures that embeddings of the same class
(AI-generated and AI-augmented) are proximal,
while those of different classes (human-written and
AI-generated) are well-separated:

Ltri = max(0, d(zhi , z
a
i )− d(zai , z

a+
i ) + α) (5)

where d(·, ·) denotes the Euclidean distance be-
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Dataset AI Size Domains Attack Types
IMDB(Maas et al., 2011) × 1,000 Movies Review ×
SemEval(Xu et al., 2014) × 1,000 Social Media Posts ×
SubjQA(Bjerva et al., 2020) × 2,000 Books, Electronics, Grocery,

Movies, Restaurants, TripAdvisor ×
Writing-Prompts(Fan et al., 2018) × 2,000 Stories ×
OUTFOX(Koike et al., 2024) ✓ 1,000 Argumentative Essays ×
HC3(Guo et al., 2023) ✓ 1,000 Reddit, Open_QA, Wiki,

Finance, Medicine ×

Daigt-v22 ✓ 1,000 Essays, Academic Papers ×

AIGen (ours) ✓ 24,000

Society, Science, Technology,
Education, Politics, Sports,
Finance, Entertainment, Books,
Relationships, World, Health

prompt,
paraphrase,
adversarial

Table 1: AIGen datasets and details of its sources. AI marks if the dataset is a human-AI paired dataset or not

tween two embeddings and α is a margin parame-
ter.

Complementing the triplet loss, the cross-
entropy loss Lce predicts the class labels (human or
AI) of the input texts. To address the class imbal-
ance inherent in the triplet structure of the training
data, a novel balance loss Lb is introduced. This
loss penalizes the model for predicting all samples
as a single class within a batch:

Lb =

∣∣∣∣∣ 1B
B∑
i=1

ŷi − 0.5

∣∣∣∣∣ (6)

where B denotes the batch size, and ŷi repre-
sents the predicted probability of the text being
AI-generated. By minimizing Lb, the model is en-
couraged to make balanced predictions, avoiding
a bias towards one class over the other. This ap-
proach prevents the model from becoming trapped
in local optima.

The overall loss for the module is computed as a
weighted sum of these three components:

Lc = λ1Ltri + λ2Lce + λ3Lb (7)

where λ1, λ2, and λ3 are hyperparameters that
control the relative importance of each loss compo-
nent, allowing for fine-tuning of the model’s learn-
ing focus.

4 The Augmentor of AIDER

The AIDER’s augmentor presents an innovative ap-
proach to addressing robustness challenges through
LLM-driven data augmentation. As illustrated
in Figure 3, this comprehensive technique gener-
ates diverse adversarial scenarios. The framework
efficiently processes AI-generated texts into aug-
mented versions, simulating attacks (Ghosal et al.,

2023) while expanding the dataset. Users can fine-
tune parameters to produce high-quality, varied
attack prompts, with control over data quantity,
attack type distribution, and recursive attack fre-
quency. The system also incorporates mechanisms
to ensure dataset diversity and effectiveness.

The main process of the augmentor is made of
three parts as shown in Figure 3: 1)Attacker: This
component utilizes an LLM as its core. The frame-
work is designed to accommodate various LLMs,
including both open-source and proprietary mod-
els, which can be seamlessly integrated. Notably,
it supports configurable recursive attacks on the
same AI-generated text, allowing for multiple lay-
ers of augmentation. 2)Restrictions: These are
essential guidelines implemented to mitigate the
inherent instability of LLMs and to align the aug-
mentation process more closely with specific re-
quirements. These restrictions serve as guardrails
to ensure the generated attacks remain relevant and
controlled. Further details can be found in Ap-
pendix B. 3)Prompt of Instructions: The augmen-
tor employs a seed instruction set of approximately
30 attack instructions, encompassing a wide range
of attack types. To expand this set, the study imple-
ments the self-instruct(Wang et al., 2023) method.
Each newly generated instruction undergoes a filter-
ing process based on diversity φd and effectiveness
φe metrics:

φd = 1− 1

N

N∑
i=1

I (d(Inew, Ii) < T ) (8)

φe =
1

M

M∑
j=1

I(f(xaug
j ) > θ) (9)

where d(Inew, Ii) is the Euclidean distance between
newly generated instruction and the i-th instruction
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Generator Detector Metrics(%)↑
AvgRec Recall F1

FLAN-T5-
XXL

log p(x) 49.8 97.6 66.0
Rank 57.5 86.2 67.0
LogRank 51.3 90.6 65.0
Entropy 59.9 80.4 66.7
DetectGPT 50.8 71.6 59.3
DIPPER 85.6* 72.0 83.3*
OUTFOX 85.2 73.4 83.2
AIDER(ours) 86.7 86.8* 86.6

ChatGPT

RoBERTa-base 93.0 92.2 92.9
RoBERTa-large 90.8 90.0 90.7
HC3 detector 74.9 70.6 73.8
DIPPER 93.5* 87.8 93.1
OUTFOX 95.1 92.4* 95.0
AIDER(ours) 92.7 98.0 93.2*

GPT-3.5

RoBERTa-base 92.9 92.0 92.8
RoBERTa-large 92.3 92.0 92.3
HC3 detector 82.1 85.0 82.6
DIPPER 95.6* 92.4 95.5*
OUTFOX 96.9 96.2 96.9
AIDER(ours) 91.6 95.9* 92.2

Table 2: Comparison of methods on OUTFOX(non-
augmented) dataset using different generators. Bold
marks the model ranking first, * marks the model rank-
ing second.

in the existing pool, N is the total number of in-
structions in the pool. M is the number of samples
in the GPT-generated test set, xaug

j is the j-th aug-
mented sample using the new instruction, f() is the
ZeroGPT API3 that outputs a probability of being
human-generated. T and θ are predefined thresh-
olds for diversity and effectiveness respectively. A
higher φd and φe value indicates higher diversity
and effectiveness.

Filtered instructions are added to the seed set,
forming a pool from which instructions are se-
lected for the main process of augmentation. The
selection method employs a stratified random sam-
pling approach, where instructions are randomly
selected from different attack types with approxi-
mately equal probability for each type.

5 Constructed AIGen Dataset

This study introduces the augmentation-based
AIGen dataset, encompassing diverse topical do-
mains as demonstrated in Table 1. The AIGen
dataset amalgamates data from two primary
sources: existing human-AI datasets (OUTFOX,
HC3, and Daigt-v2) and established human-written
datasets (IMDB, SemEval, SubjQA, and Writing-
Prompts). For the latter, we employed varied

3https://zerogpt.net/api-integration

Attacker Detector Metrics (%) ↑
AvgRec Recall F1

DIPPER

DIPPER 88.9 79.6* 87.8
OUTFOX 85.1* 72.4 82.9
HC3 detector 41.3 3.4 5.5
AIDER (ours) 82.8 82.9 83.2*

OUTFOX

DIPPER 59.7 20.8 34.0
OUTFOX 83.4* 69.6* 80.7*
HC3 detector 39.8 0.4 0.7
AIDER (ours) 91.3 99.9 92.1

∆Attack (%) ↓
AvgRec Recall F1

DIPPER

DIPPER 4.6 8.2 5.3
OUTFOX 10.0 10.0* 12.1
HC3 detector 33.6 67.2 68.3
AIDER (ours) 9.9* 15.1 10.0*

OUTFOX

DIPPER 33.8 67.0 59.1
OUTFOX 11.6* 22.8* 14.3*
HC3 detector 34.1 70.2 73.1
AIDER (ours) 1.4 -1.9 1.2

Table 3: Comparison of methods on OUT-
FOX(augmented) ChatGPT dataset using different
attackers. ∆Attack is the difference in metrics between
the results without the attack (shown in Table 2) and
with the attack (shown in the current table).

prompting strategies, sampling methods (temper-
ature, top-p), and LLM configurations (e.g., GPT
and GLM series) to generate diverse AI-generated
texts. All entries underwent augmentation using
AIDER’s augmentor, powered by GPT-4 Turbo, ap-
plying various attack types including prompt-based,
paraphrase-based, and adversarial approaches. To
further enhance the dataset’s complexity and robust-
ness, 20% of the augmented texts were subjected
to recursive attacks, with the number of iterations
randomly varying between 2 and 3. AIGen dataset
is a robust and diverse corpus, providing a valuable
resource for future research.

6 Experiments

6.1 Experimental Settings
Dataset and Evaluation Metrics Experiments
are conducted on the test set of OUTFOX(Koike
et al., 2024), which consists of 1,500 argumenta-
tive essays written by native English students. The
dataset includes texts generated by three widely-
used target generators: Flan-T5-XXL, ChatGPT,
and GPT-3.5. Only the texts generated by Chat-
GPT contain augmented (i.e., attacked) data pairs.
The evaluation metrics employed in these experi-
ments are F1 score, AI Recall (the recall specific to
AI-generated text), and Average Recall (AvgRec),
which is calculated as the mean of both human
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recall and AI recall.

Baselines This study conducts multiple ex-
periments on both unsupervised baselines:
GLTR(Gehrmann et al., 2019), Detect-
GPT(Mitchell et al., 2023); and supervised
baselines: HC3 Detector(Guo et al., 2023),
RoBERTa(Solaiman et al., 2019); and also two
baselines with attackers: OUTFOX(Koike et al.,
2024), DIPPER(Krishna et al., 2024) to evaluate
the performance of augmentor framework. Further
details can be found in Appendix C. In both Table 2
and Table 3, this study aligns with the OUTFOX
dataset settings. In these evaluations, statistical
approaches like GLTR are applied exclusively
to generator FLAN-T5-XML, as they require
access to model logits, which are unavailable
for ChatGPT and GPT-3.5. OUTFOX is omitted
from Table 4 because it is specifically designed
and tested on essay (education)-related data, not
addressing other topics. Similarly, DIPPER is
excluded since it is trained solely on books and
tailored for augmentation scenarios. This approach
ensures that the evaluation remains relevant and
accurate for the specific contexts and datasets each
model is designed to handle.

Implementation Details The AIGen dataset was
split into a 4:1 train-test ratio for implementation.
Random seeds of all experiments are set to 42. The
detector is trained for 20 epochs and 5 epochs for
the first stage and second stage respectively. The
learning rate was set to 2e-5, the batch size to 16
in both stages. AdamW and CosineAnnealingLR
are used as learning rate optimizer and scheduler
in both stages. The max length is set to 512 in all
ALBERT-related settings. The weights of the loss
functions are λ1 = 0.5 for the triplet loss, λ2 = 0.3
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Figure 5: t-SNE visualizations of topic-specific repre-
sentations: a comparison of AIDER and RoBERTa-base
on human-written vs. GPT-4-Turbo(AI)-generated texts.

for the cross-entropy loss, λ3 = 0.2 for the balance
loss, and β = 0.38. The thresholds in augmentor
are T = 0.75 and θ = 0.60.

6.2 Results and Analysis

Comparison with Baselines This experiment
evaluates the proposed detector’s performance
against existing methods on the non-augmented
OUTFOX dataset. As shown in Table 2, AIDER
outperforms other approaches for FLAN-T5-XXL-
generated essays, surpassing the second-best
method by 1.1% in F1-score and 3.3% in average
recall (AvgRec). AIDER’s high AvgRec of 86.7%
likely stems from its extensive pre-training on di-
verse human-written and AI-generated texts. For
ChatGPT and GPT-3.5-generated essays, AIDER
exceeds supervised classifiers but falls short of
OUTFOX and DIPPER. This performance discrep-
ancy may be attributed to the contrastive training
focusing more on augmented data than original AI-
generated texts. The augmentation effect, where
increased focus on augmented data slightly low-
ers performance on non-augmented data, explains
these differences. Our aim is to create a classi-
fier capable of handling diverse AI-generated texts,
justifying this trade-off. Statistical approaches,
while achieving high recall, tend to overclassify
human-written essays as LLM-generated, resulting
in lower AvgRec. Overall, AIDER demonstrates
robust performance in identifying non-augmented
LLM-generated essays across various generators
compared to baseline methods.
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Model Environment Internet Fashion
F1 AvgRec F1 AvgRec F1 AvgRec

RoBERTa-base 45.92 44.27 65.56 61.80 48.11 42.05
HC3 Detector 41.25 52.86 48.07 50.46 38.49 48.62
DetectGPT 43.81 50.50 51.18 59.85 42.70 54.09
AIDER (Ours) 89.36 88.92 93.28 94.07 90.55 89.32

Table 4: Performance comparison of 4 models on 3
unseen topics from AIGen dataset

Robustness against Adversarial Attacks This
experiment evaluates detector robustness by com-
paring OUTFOX, DIPPER, HC3 detector, and
AIDER on augmented OUTFOX datasets (Ta-
ble 3). AIDER achieves the highest recall
(82.9%) and second-best F1 (83.2%) on DIPPER-
augmented data, while outperforming all baselines
on OUTFOX-augmented data with significant im-
provements in F1 (+11.4%) and AvgRec (+7.9%)
compared to OUTFOX. Despite performance drops
(∆Attack) relative to the non-augmented setting
(Table 2), AIDER shows minimal degradation, par-
ticularly under OUTFOX augmentation. Interest-
ingly, AIDER’s Recall improves in the OUTFOX
augmentation scenario, possibly due to similarities
between OUTFOX’s strategy and AIDER’s GPT-
based approach. In contrast, methods like the HC3
detector exhibit substantial performance deteriora-
tion. Figure 4 further illustrates AIDER’s consis-
tent high F1 scores across varying attack rounds(k),
while other models (DetectGPT, HC3, RoBERTa-
base) experience significant declines due to their
lack of training on recursive attack samples. These
results collectively demonstrate AIDER’s superior
robustness and effectiveness in detecting LLM-
generated texts, even in challenging adversarial
scenarios.

Performance on Unseen Topics Table 4 demon-
strates AIDER’s superior performance on three
unseen topics from the AIGen dataset, consis-
tently achieving the highest F1 scores (89.36% to
93.28%) and AvgRec across all topics. In contrast,
HC3 Detector, RoBERTa-base, and DetectGPT ex-
hibit considerably lower performance, particularly
struggling with "Environment" and "Fashion" top-
ics. To further investigate this performance dis-
parity, Figure 5 presents t-SNE visualizations of
learned features from both AIDER and RoBERTa-
base on the AIGen dataset. RoBERTa-base (left col-
umn) displays well-defined clusters corresponding
to different topics, indicating a tendency to learn
topic-specific features. Conversely, AIDER (right
column) demonstrates significant overlap among

Method Non-Augmented Data
F1 Recall AvgRec

log p(x) (GLTR) 32.60 58.90 58.85
Rank (GLTR) 35.33 58.42 57.59
LogRank (GLTR) 29.27 58.45 57.90
Entropy (GLTR) 41.91 59.36 59.36
DetectGPT 47.69 57.02 57.02
HC3 Detector 36.34 56.00 63.41
RoBERTa-base 68.34* 63.00* 63.41*
AIDER w/o 1-ST 78.05 80.52 80.76
AIDER w/o TD 84.11 86.02 84.43
AIDER w/o CL 87.44 89.01 88.10
AIDER (ours) 95.30 95.26 95.26

Augmented Data
F1 Recall AvgRec

log p(x) (GLTR) 32.52 58.85* 58.08*
Rank (GLTR) 33.18 57.59 56.42
LogRank (GLTR) 27.65 57.90 54.45
Entropy (GLTR) 39.96 58.51 58.01
DetectGPT 47.14 57.02 55.57
HC3 Detector 35.04 55.93 56.37
RoBERTa-base 59.81* 56.37 56.37
AIDER w/o 1-ST 90.89 90.94 91.01
AIDER w/o TD 84.62 87.07 84.82
AIDER w/o CL 79.25 81.68 82.17
AIDER (ours) 93.39 93.33 93.00

Table 5: Comparison of methods with and without data
augmentation. 1-ST means the first stage training, TD
means the topic disentanglement module, CL means
contrastive label prediction module.

topics for both human-written and AI-generated
data, suggesting its ability to extract more topic-
invariant features. The combination of quantitative
results and qualitative visualizations clearly illus-
trates AIDER’s superior ability to learn generalized,
less topic-biased representations, enabling robust
performance across various text generation sources
and unseen topics, a crucial advantage in real-world
applications where topic diversity is prevalent.

Effectiveness of AIGen Dataset This experi-
ment evaluates various baselines on the AIGen
dataset to assess its effectiveness in challenging
LLM-generated text detection models. As shown
in Table 5, AIDER achieves state-of-the-art per-
formance, followed by the supervised classifier
RoBERTa-base. Notably, unsupervised methods
demonstrate greater robustness to distribution shifts
in augmented data compared to supervised ap-
proaches, likely due to their focus on statistical
patterns rather than reliance on specific training
data. A comparison between the OUTFOX dataset
(Table 2) and AIGen (Table 5) reveals that AIGen
presents increased difficulty for both augmented
and non-augmented data. This heightened chal-
lenge underscores the effectiveness of the AIGen
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augmentor framework in creating more complex ex-
amples for LLM-generated text detection, thereby
pushing the boundaries of model performance and
robustness.

Ablation Study The bottom part of Table 5
presents an ablation study of AIDER, examining
the impact of its key components: first stage train-
ing (1-ST), topic disentanglement module (TD),
and contrastive label prediction module (CL). The
removal of 1-ST results in a significant perfor-
mance decline on non-augmented data, indicating
its importance in distinguishing intrinsic linguis-
tic patterns and styles. Conversely, the absence of
the CL module leads to a more substantial drop
in performance on augmented data, highlighting
its role in learning complex patterns within AI-
generated texts subject to adversarial perturbations
or stylistic variations. Notably, the TD module’s
removal causes a marked decline in detecting both
non-augmented and augmented data, underscor-
ing its critical function in mitigating the influence
of topic-related features and enhancing AIDER’s
ability to discern fine-grained differences between
human-written and AI-generated texts.

7 Conclusions and Future Works

This paper presents AIDER, a novel framework for
detecting AI-generated text. By leveraging aug-
mentor and contrastive learning , AIDER enhances
robustness against adversarial attacks. By leverag-
ing topic disentanglement module, AIDER become
generalized on diverse topical contents. Experimen-
tal results highlight AIDER’s ability to outperform
state-of-the-art methods significantly under adver-
sarial and topic-varied conditions. Future research
will focus on refining data augmentation strategies
by integrating more sophisticated attack techniques,
exploring advanced attack models, and investigat-
ing cross-lingual detection capabilities.

8 Limitations

While the proposed AIDER framework demon-
strates superior performance, robustness against ad-
versarial attacks with minimal performance degra-
dation, and high generalization capability across
various topics, it has two major limitations: (1)This
study aims to incorporate different sources of tar-
get generators (i.e., GPTs, GLMs, and Claudes) to
enhance practical applicability. However, the gener-
alization capability of detecting texts generated by
out-of-distribution models has not been adequately

addressed in AIDER’s design, making it vulnera-
ble to new and unseen generators. (2)To ensure the
authenticity of human-written texts, this study em-
ploys an automatic approach, collecting data from
periods before the emergence of LLMs, rather than
utilizing human verification. This strategy intro-
duces a data shift from outdated human-written
texts to contemporary human-written texts, poten-
tially affecting the model’s performance on new
human-written texts due to temporal discrepancies.

Acknowledgments

This work is supported by the National Natural
Science Foundation of China under the Grant No.
62371057; and the 111 Project of China under the
Grant No. B08004.

References
Josh Achiam, Steven Adler, Sandhini Agarwal, Lama

Ahmad, Ilge Akkaya, Florencia Leoni Aleman,
Diogo Almeida, Janko Altenschmidt, Sam Altman,
Shyamal Anadkat, et al. 2023. Gpt-4 technical report.
arXiv preprint arXiv:2303.08774.

Alexander A Alemi, Ian Fischer, Joshua V Dillon, and
Kevin Murphy. 2022. Deep variational information
bottleneck. In International Conference on Learning
Representations.

Anthropic. 2023. Introducing claude.

Amrita Bhattacharjee and Huan Liu. 2024. Fighting fire
with fire: can chatgpt detect ai-generated text? ACM
SIGKDD Explorations Newsletter, 25(2):14–21.

Johannes Bjerva, Nikita Bhutani, Behzad Golahn, Wang-
Chiew Tan, and Isabelle Augenstein. 2020. Subjqa:
A dataset for subjectivity and review comprehension.
In Proceedings of the 2020 Conference on Empirical
Methods in Natural Language Processing. Associa-
tion for Computational Linguistics.

Miranda Christ, Sam Gunn, and Or Zamir. 2024. Un-
detectable watermarks for language models. In The
Thirty Seventh Annual Conference on Learning The-
ory, pages 1125–1139. PMLR.

Jacob Devlin, Ming-Wei Chang, Kenton Lee, and
Kristina Toutanova. 2018. Bert: Pre-training of deep
bidirectional transformers for language understand-
ing. arXiv preprint arXiv:1810.04805.

Angela Fan, Mike Lewis, and Yann Dauphin. 2018.
Hierarchical neural story generation. In Proceedings
of the 56th Annual Meeting of the Association for
Computational Linguistics (Volume 1: Long Papers),
pages 889–898.

https://www.anthropic.com/index/introducing-claude


9308

Luciano Floridi and Massimo Chiriatti. 2020. Gpt-3:
Its nature, scope, limits, and consequences. Minds
and Machines, 30:681–694.

Margherita Gambini, Tiziano Fagni, Fabrizio Falchi,
and Maurizio Tesconi. 2022. On pushing deepfake
tweet detection capabilities to the limits. In Proceed-
ings of the 14th ACM Web Science Conference 2022,
pages 154–163.

Yaroslav Ganin, Evgeniya Ustinova, Hana Ajakan, Pas-
cal Germain, Hugo Larochelle, François Laviolette,
Mario March, and Victor Lempitsky. 2016. Domain-
adversarial training of neural networks. Journal of
machine learning research, 17(59):1–35.

Sebastian Gehrmann, Hendrik Strobelt, and Alexan-
der M Rush. 2019. Gltr: Statistical detection and
visualization of generated text. In Annual Meeting of
the Association for Computational Linguistics. Asso-
ciation for Computational Linguistics (ACL).

Soumya Suvra Ghosal, Souradip Chakraborty, Jonas
Geiping, Furong Huang, Dinesh Manocha, and Am-
rit Singh Bedi. 2023. Towards possibilities & im-
possibilities of ai-generated text detection: A survey.
arXiv preprint arXiv:2310.15264.

Team GLM, :, Aohan Zeng, Bin Xu, Bowen Wang,
Chenhui Zhang, Da Yin, Diego Rojas, Guanyu Feng,
Hanlin Zhao, Hanyu Lai, Hao Yu, Hongning Wang,
Jiadai Sun, Jiajie Zhang, Jiale Cheng, Jiayi Gui, Jie
Tang, Jing Zhang, Juanzi Li, Lei Zhao, Lindong Wu,
Lucen Zhong, Mingdao Liu, Minlie Huang, Peng
Zhang, Qinkai Zheng, Rui Lu, Shuaiqi Duan, Shu-
dan Zhang, Shulin Cao, Shuxun Yang, Weng Lam
Tam, Wenyi Zhao, Xiao Liu, Xiao Xia, Xiaohan
Zhang, Xiaotao Gu, Xin Lv, Xinghan Liu, Xinyi Liu,
Xinyue Yang, Xixuan Song, Xunkai Zhang, Yifan
An, Yifan Xu, Yilin Niu, Yuantao Yang, Yueyan Li,
Yushi Bai, Yuxiao Dong, Zehan Qi, Zhaoyu Wang,
Zhen Yang, Zhengxiao Du, Zhenyu Hou, and Zihan
Wang. 2024. Chatglm: A family of large language
models from glm-130b to glm-4 all tools. Preprint,
arXiv:2406.12793.

Biyang Guo, Xin Zhang, Ziyuan Wang, Minqi Jiang,
Jinran Nie, Yuxuan Ding, Jianwei Yue, and Yupeng
Wu. 2023. How close is chatgpt to human experts?
comparison corpus, evaluation, and detection. differ-
ences, 14:18.

Hans WA Hanley and Zakir Durumeric. 2024. Machine-
made media: Monitoring the mobilization of
machine-generated articles on misinformation and
mainstream news websites. In Proceedings of the
International AAAI Conference on Web and Social
Media, volume 18, pages 542–556.

Xinlei He, Xinyue Shen, Zeyuan Chen, Michael Backes,
and Yang Zhang. 2023. MGTBench: Benchmark-
ing Machine-Generated Text Detection. CoRR
abs/2303.14822.

Xiaomeng Hu, Pin-Yu Chen, and Tsung-Yi Ho. 2023.
Radar: Robust ai-text detection via adversarial learn-
ing. Advances in Neural Information Processing
Systems, 36:15077–15095.

Albert Q Jiang, Alexandre Sablayrolles, Arthur Men-
sch, Chris Bamford, Devendra Singh Chaplot, Diego
de las Casas, Florian Bressand, Gianna Lengyel, Guil-
laume Lample, Lucile Saulnier, et al. 2023. Mistral
7b. arXiv preprint arXiv:2310.06825.

John Kirchenbauer, Jonas Geiping, Yuxin Wen,
Jonathan Katz, Ian Miers, and Tom Goldstein. 2023.
A watermark for large language models. In Inter-
national Conference on Machine Learning, pages
17061–17084. PMLR.

Ryuto Koike, Masahiro Kaneko, and Naoaki Okazaki.
2024. Outfox: Llm-generated essay detection
through in-context learning with adversarially gen-
erated examples. In Proceedings of the AAAI Con-
ference on Artificial Intelligence, volume 38, pages
21258–21266.

Kalpesh Krishna, Yixiao Song, Marzena Karpinska,
John Wieting, and Mohit Iyyer. 2024. Paraphras-
ing evades detectors of ai-generated text, but retrieval
is an effective defense. Advances in Neural Informa-
tion Processing Systems, 36.

Solomon Kullback and Richard A Leibler. 1951. On
information and sufficiency. The annals of mathe-
matical statistics, 22(1):79–86.

Zhenzhong Lan, Mingda Chen, Sebastian Goodman,
Kevin Gimpel, Piyush Sharma, and Radu Soricut.
2019. Albert: A lite bert for self-supervised learn-
ing of language representations. arXiv preprint
arXiv:1909.11942.

Mike Lewis, Yinhan Liu, Naman Goyal, Marjan
Ghazvininejad, Abdelrahman Mohamed, Omer Levy,
Ves Stoyanov, and Luke Zettlemoyer. 2019. Bart: De-
noising sequence-to-sequence pre-training for natural
language generation, translation, and comprehension.
arXiv preprint arXiv:1910.13461.

Yafu Li, Qintong Li, Leyang Cui, Wei Bi, Zhilin Wang,
Longyue Wang, Linyi Yang, Shuming Shi, and Yue
Zhang. 2024. Mage: Machine-generated text detec-
tion in the wild. In Proceedings of the 62nd Annual
Meeting of the Association for Computational Lin-
guistics (Volume 1: Long Papers), pages 36–53.

Weixin Liang, Zachary Izzo, Yaohui Zhang, Haley Lepp,
Hancheng Cao, Xuandong Zhao, Lingjiao Chen, Hao-
tian Ye, Sheng Liu, Zhi Huang, et al. 2024. Moni-
toring ai-modified content at scale: A case study on
the impact of chatgpt on ai conference peer reviews.
arXiv preprint arXiv:2403.07183.

Andrew L. Maas, Raymond E. Daly, Peter T. Pham,
Dan Huang, Andrew Y. Ng, and Christopher Potts.
2011. Learning word vectors for sentiment analysis.
In Proceedings of the 49th Annual Meeting of the
Association for Computational Linguistics: Human

https://arxiv.org/abs/2406.12793
https://arxiv.org/abs/2406.12793
http://www.aclweb.org/anthology/P11-1015


9309

Language Technologies, pages 142–150, Portland,
Oregon, USA. Association for Computational Lin-
guistics.

Eric Mitchell, Yoonho Lee, Alexander Khazatsky,
Christopher D Manning, and Chelsea Finn. 2023. De-
tectgpt: Zero-shot machine-generated text detection
using probability curvature. In International Con-
ference on Machine Learning, pages 24950–24962.
PMLR.

Irene Solaiman, Miles Brundage, Jack Clark, Amanda
Askell, Ariel Herbert-Voss, Jeff Wu, Alec Rad-
ford, Gretchen Krueger, Jong Wook Kim, Sarah
Kreps, et al. 2019. Release strategies and the so-
cial impacts of language models. arXiv preprint
arXiv:1908.09203.

Hugo Touvron, Thibaut Lavril, Gautier Izacard, Xavier
Martinet, Marie-Anne Lachaux, Timothée Lacroix,
Baptiste Rozière, Naman Goyal, Eric Hambro, Faisal
Azhar, Aurelien Rodriguez, Armand Joulin, Edouard
Grave, and Guillaume Lample. 2023. Llama: Open
and efficient foundation language models. Preprint,
arXiv:2302.13971.

Yizhong Wang, Yeganeh Kordi, Swaroop Mishra, Alisa
Liu, Noah A Smith, Daniel Khashabi, and Hannaneh
Hajishirzi. 2023. Self-instruct: Aligning language
models with self-generated instructions. In Proceed-
ings of the 61th Annual Meeting of the Association
for Computational Linguistics.

Junchao Wu, Shu Yang, Runzhe Zhan, Yulin Yuan,
Derek F Wong, and Lidia S Chao. 2023. A sur-
vey on llm-gernerated text detection: Necessity,
methods, and future directions. arXiv preprint
arXiv:2310.14724.

Wei Xu, Alan Ritter, Chris Callison-Burch, William B.
Dolan, and Yangfeng Ji. 2014. Extracting lexically
divergent paraphrases from Twitter. Transactions of
the Association for Computational Linguistics, 2:435–
448.

Peipeng Yu, Jiahan Chen, Xuan Feng, and Zhihua
Xia. 2023. Cheat: A large-scale dataset for de-
tecting chatgpt-written abstracts. arXiv preprint
arXiv:2304.12008.

Rowan Zellers, Ari Holtzman, Hannah Rashkin,
Yonatan Bisk, Ali Farhadi, Franziska Roesner, and
Yejin Choi. 2019. Defending against neural fake
news. Advances in neural information processing
systems, 32.

Aohan Zeng, Xiao Liu, Zhengxiao Du, Zihan Wang,
Hanyu Lai, Ming Ding, Zhuoyi Yang, Yifan Xu,
Wendi Zheng, Xiao Xia, et al. 2022. Glm-130b:
An open bilingual pre-trained model. arXiv preprint
arXiv:2210.02414.

Xuandong Zhao, Prabhanjan Vijendra Ananth, Lei Li,
and Yu-Xiang Wang. 2023. Provable robust water-
marking for ai-generated text. In The Twelfth Inter-
national Conference on Learning Representations.

Restrictions

1. Keep length of the output be approximately the same 

with input text(unless specified)

2. Maintain the core information unchanged

3. Please follow the [Instruction] to manipulate the texts 

below

4. Only output the manipulated texts without any markers

Take the provided passage and reword it

Introduce subtle grammatical imperfections 

to reflect authentic conversational language

Instructions Seeds

Paraphrase

Prompt

Please shuffle the word order in the text
Adversarial

Figure 6: Illustration of restrictions and different attack
types in augmentor of AIDER.

A Details of Pre-training Dataset

Table 6 contains details of data used in the first
stage of AIDER’s detector.

B Illustration of Restrictions and
Instruction Seeds in Augmentor

Figure 6 shows the restrictions used in AIDER’s
augmentor and examples of differenct attack types
in instructions seeds. For further clarification, cur-
rent attacks can be categorized into three main
types(Wu et al., 2023):

1. Paraphrase-Based Attacks. These attacks
typically involve using paraphrasing tech-
niques, such as DIPPER, to alter the distri-
bution of generated AI text.

2. Prompt-Based Attacks. These attacks lever-
age advanced prompting techniques to im-
prove the quality and effectiveness of gener-
ated text, presenting challenges to detectors
trained with simple prompt-generated text.

3. Adversarial-Based Attacks. These attacks
modify textual features through operations
such as random shuffling, deformation, word
swapping, and misspelling.

C Details of Baselines

The introduction of each of the baseline is listed:

- GLTR(Gehrmann et al., 2019): an unsuper-
vised method that utilizes four statistical mea-
sures based on token-wise log probabilities,
average token rank, token log-rank, and pre-
dictive entropy to distinguish AI-generated
text from human-written text.
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Domain Dataset Sou. Gen. H-Size AI-Size Description

News, Story,
Question, Arfgument,
Scientific Topic. . .

Deepfack(Li et al., 2024) 7 27 150,858 281,824

a comprehensive benchmark dataset
designed to assess the proficiency of
AI-generation detectors
amidst real-world scenarios

Academic Paper CHEAT(Yu et al., 2023) 1 1 15,395 46,185
large-scale ChatGPT-written
Abstract dataset

Essay, News MGTBench(He et al., 2023) 5 7 3,000 21,000
datasets of different
machine-generated text (MGT)
detection methods.

Table 6: Aggregated pretraining datasets and their details. H-Size is the size of Human-written texts; AI-Size is the
size of AI-generated texts; Gen. is the number of generators; Sou. is the number of generators’ sources.

- DetectGPT(Mitchell et al., 2023): an unsu-
pervised approach that leverages a proxy lan-
guage model to compute log probabilities of
generated tokens, hypothesizing that minor
perturbations to AI-generated text result in
negative curvature of the log-likelihood curve,
serving as a discriminative feature for classifi-
cation.

- HC3 Detector(Guo et al., 2023): a supervised
model that employs a RoBERTa-base archi-
tecture trained on a mix of full-text and split
sentences from the HC3 corpus for one epoch.

- RoBERTa(Solaiman et al., 2019): a super-
vised classifier from OpenAI that aims to de-
tect texts generated by the 1.5B-parameter
GPT-2 model, available in two versions: base
and large, with different model sizes.

- OUTFOX(Koike et al., 2024): a framework
based on LLM that improves detector robust-
ness via adversarial in-context learning be-
tween detector and attacker.

- DIPPER(Krishna et al., 2024): a document-
level paraphraser and detector that can control
output diversity in terms of vocabulary and
content re-ordering.
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