
Proceedings of the 31st International Conference on Computational Linguistics, pages 9418–9430
January 19–24, 2025. ©2025 Association for Computational Linguistics

9418

Position Information Emerges in Causal Transformers Without Positional
Encodings via Similarity of Nearby Embeddings

Chunsheng Zuo
Dept. of Computer Science
Johns Hopkins University

czuo3@jh.edu

Pavel Guerzhoy
Dept. of Mathematics

University of Hawai‘i at Mānoa
pavel@math.hawaii.edu

Michael Guerzhoy
Division of Engineering Science

University of Toronto
guerzhoy@cs.toronto.edu

Abstract

Transformers with causal attention can solve
tasks that require positional information with-
out using positional encodings. In this work,
we propose and investigate a new hypothesis
about how positional information can be stored
without using explicit positional encoding. We
observe that nearby embeddings are more sim-
ilar to each other than faraway embeddings,
allowing the transformer to potentially recon-
struct the positions of tokens. We show that this
pattern can occur in both the trained and the
randomly initialized Transformer models with
causal attention and no positional encodings
over a common range of hyperparameters.

1 Introduction

Recent results by Haviv et al. (2022), Kazemne-
jad et al. (2024), and Chi et al. (2023) suggest
that positional encodings are not necessary when
training decoder-only Transformer language mod-
els. These results motivate our investigation of how
Transformers might represent positional informa-
tion without positional encodings.

As shown in (Tsai et al., 2019; Zuo and
Guerzhoy, 2024), the non-causal attention mecha-
nism is equivariant to the permutation of the input
tokens — the prediction for input token n + 1 is
invariant to permutations of tokens 1, 2, ..., n− 1.
Therefore, without positional encodings, the causal
attention mechanism is required for the Trans-
former to consider the order of the input tokens.
Chi et al. (2023) hypothesize that causal attention
allows positional information to be stored using
the variance (taken across the indices of the em-
bedding vector — essentially the norm) of the em-
beddings, which generally decreases for tokens at
later positions. They argue that the variance will
tend to decrease because, when using causal atten-
tion, embedding n is computed using embeddings
1, 2, ..., n − 1 in the previous layer, whereas em-
bedding n + k will be computed using k more

input embeddings, leading to variance shrinkage
for embedding n+ k.

We identify a different possible way of repre-
senting positional information that also arises from
the fact that embeddings at earlier positions are
computed using fewer embeddings from the pre-
vious layer compared to those at later positions.
Specifically, we observe that embeddings at nearby
indices will tend to be more similar to each other
(in the sense of cosine similarity). This property
could, in principle, enable the reconstruction of a
token’s position.

The rest of the paper is organized as follows. We
briefly review the literature on causal attention’s
connection to storing position information in Sec-
tion 2.1. We then describe the pattern of nearby
embeddings’ being more similar to each other that
we refer to as the adjacency pattern, which we later
link to the storing of position information in the net-
work. We then present theoretical observations that
explain how and why the adjacency pattern arises
across many contexts in Section 3. We confirm
through experiments on synthetic data that the pat-
tern we report appears in a variety of configurations,
both in trained and untrained architectures that use
causal attention, in Section 4. We demonstrate a
range of synthetic tasks where the position is im-
portant in Section 4.2. In Sections 5.1, 5.2, and 5.3,
we demonstrate that the pattern of large cosine sim-
ilarity between nearby embeddings shows up in a
variety of settings, for both trained and untrained
models. In Section 5.4, we point out that Chi et al.
(2023)’s theory of the position information’s being
stored in the embedding variance is insufficient to
explain what we observe in our experiments. In
Section 5.5, we explore the extent to which posi-
tion information is stored in different Transformer
layers, and to what extent that information can be
thought of as being stored in the variance and in
the adjacency pattern. We discuss our results in
Section 6 and discuss some limitations in Section 7.

9419

0 5 10 15 20

0

5

10

15

20

Embeddings (0.39)

0 5 10 15 20

0

5

10

15

20

Init Layer 1 (0.97)

0 5 10 15 20

0

5

10

15

20

Init Layer 2 (1.0)

0 5 10 15 20

0

5

10

15

20

Init Layer 3 (1.0)

0 5 10 15 20

0

5

10

15

20

Init Layer 4 (1.0)

0 5 10 15 20

0

5

10

15

20

Init Layer 5 (1.0)

0 5 10 15 20

0

5

10

15

20

Init Layer 6 (1.0)

0 5 10 15 20

0

5

10

15

20

Embeddings (0.54)

0 5 10 15 20

0

5

10

15

20

Trained Layer 1 (0.95)

0 5 10 15 20

0

5

10

15

20

Trained Layer 2 (0.98)

0 5 10 15 20

0

5

10

15

20

Trained Layer 3 (1.0)

0 5 10 15 20

0

5

10

15

20

Trained Layer 4 (0.98)

0 5 10 15 20

0

5

10

15

20

Trained Layer 5 (0.84)

0 5 10 15 20

0

5

10

15

20

Trained Layer 6 (0.91)

0.0

0.5

1.0

0.0

0.5

1.0

0.2

0.5

0.8

1.0

0.0

0.5

1.0

0.4

0.6

0.8

1.0

0.6

0.8

1.0

0.6

0.8

1.0

0.4

0.6

0.8

1.0

0.6

0.8

1.0

0.4

0.6

0.8

1.0

0.6

0.8

1.0

0.2

0.5

0.8

1.0

0.6

0.8

1.0

0.4

0.6

0.8

1.0

Figure 1: Self-cosine-similarity matrices of randomly initialized (first row) and trained (second row) 6-layer
Transformers with causal attention and no positional encodings on the task of Reversal (22). The matrices are
produced using a testing sample of 22 tokens, "rev(8502251258017069)=", as input, showing results from the
embeddings to the output of layer 6 left to right for the initialized and trained models. The number in the bracket
represents the adjacency probability score.

2 Background

2.1 Transformers with causal attention store
position information without positional
encodings

Mechanisms analogous to modern attention in
Transformers have long been used in recurrent neu-
ral networks (Bahdanau et al., 2014; Schmidhuber,
1992). An attention mechanism is central to the
Transformer architecture (Vaswani et al., 2017).

In a Transformer with “non-causal" attention, an
output at the k-th position is agnostic to permuta-
tions in the positions of the inputs from other posi-
tions, a property known as permutation invariance
(the logits above positions 1...k are permutation-
equivariant in the input). Without positional encod-
ings, permutation equivariance prevents the output
of each layer from taking into account the posi-
tion of input tokens. In contrast, Tsai et al. (2019)
show that Transformers with causal attention are
not permutation-equivariant to the input sequence.
This implies the possibility of the success of Haviv
et al. (2022) in training causal Transformers with-
out positional encodings — “non-causal" attention
could not accomplish that.

2.2 The self-cosine-similarity matrix and the
adjacency pattern

The self-cosine-similarity matrix is a method to
visualize the similarity (in the sense of a small
angle) between all pairs of vectors within a se-
quence of embeddings. To create a self-cosine-
similarity matrix C for a sequence of n token
embeddings X ∈ Rn×d of dimension d, we de-
fine each entry Dij as the cosine similarity be-
tween the ith and jth token embeddings, namely,

Dij = similarity(Xi,Xj) = cos θ(Xi,Xj) . Since
the cosine similarity operation is commutative,
Dij = Dji, resulting in the self-cosine-similarity
matrix’s being diagonally symmetrical.

We use the term adjacency pattern to describe a
special type of self-cosine-similarity matrix that we
observe. An example of this pattern can be found in
Figure 1, where the matrix is darker (higher values)
closer to the diagonal and brighter (lower values)
further away, indicating that each embedding vec-
tor is more similar to vectors closer to it and less
similar to vectors further away from it. The key
idea in this paper is that embeddings exhibit an
adjacency pattern, meaning position information
may, in principle, be partially recoverable from
them, as embeddings corresponding to spatially
nearby positions tend to be more similar.

The self-cosine-similarity matrix is used
in (Wang and Chen, 2020) to visualize various po-
sitional encodings, some of which, such as the sinu-
soidal embeddings, demonstrate the adjacency pat-
tern. In our work, the self-cosine-similarity matrix
is applied to the causal attention’s output embed-
dings directly in order to examine their adjacency
pattern.

3 How the adjacency pattern arises

Chi et al. (2023) demonstrate that, in the first hid-
den layer of the causal Transformer, the variance
of the individual coordinate values within embed-
dings goes down with token index k. They infer
that information about the position is related the
the variance of the embedding. Chi et al. (2023)
explain the decrease in variance by observing that
embedding k is computed using a larger and larger

9420

context as k grows.
In this section, we use the observation to show

that we should expect for the adjacency pattern
to arise in the first layer after the learned token
embeddings.

3.1 Empirical evidence

Embeddings at positions k − 1, k, and
k + 1 are computed using the linear
combinations of the value vector sets
{e1, e2, . . . , ek−1}, {e1, e2, . . . , ek−1, ek}, and
{e1, e2, . . . , ek−1, ek, ek+1}, respectively, where e
are the embeddings.

We first simulate the value vectors used
in attention by a set of random normal 128-
dimensional vectors {v1, ..., vk} and the causal
attention weights at the 4th, 5th, and 6th
row by the following i.i.d. random coeffi-
cient sets {α1, α2, α3, α4}, {β1, β2, β3, β4},
{γ1, γ2, γ3, γ4 γ5 γ6}. We then mimic the attention
output embeddings at token positions 4, 5, and 6 by
the following linear combination of vectors: a =(∑4

i=1 αivj , b =
∑5

i=1 βivj , c =
∑6

i=1 γivj

)
.

Denote the cosine similarity as "sim". We want
to determine the condition for sim(a, b) to be
consistently higher than sim(a, c), as well as
for sim(c, b) to be higher than sim(c, a). We
simulate with a range of standard deviations σinit
from the set {0.001, 0.01, 0.1, 1, 10, 100}, and
for each we repeat for 10000 trials and record
sim(a, b) − sim(a, c) and sim(c, b) − sim(c, a)
for each trial. The resulting histogram is plotted in
Figure 2, where the first and second rows are for
sim(a, b)− sim(a, c) and sim(c, b)− sim(c, a),
respectively. The distribution is narrow and above
zero for only small values of σinit, corresponding
to the condition that allows sim(a, b) to be consis-
tently higher than sim(a, c) (same for sim(c, b)
and sim(c, a)). See also the experimental results
in Table 5.

3.2 The averaging effect provably arises in the
first layer

Here, we show that we can expect that, in the sec-
ond layer (i.e., the first layer after the embeddings),
the angle between embedding k+ t and embedding
k+ t+1 is smaller than the angle between embed-
ding k + t and embedding k + t+ 2, implying an
adjacency pattern.

Assume embeddings {e1, e2, ..., ek, ..., en} are
high-dimensional and normalized, and therefore

approximately orthogonal. We are computing the
next layer, with coefficients α, α′, β, and β′.

We would like to show that the angle between∑k+t
i=1 αiei and

∑k+t+1
i=1 βiei would tend to be

smaller than the angle between
∑k+t

i=1 αiei and∑k+t+2
i=1 β′

iei. The weights α, β, and β′, which cor-
respond to the attention weight in a causal architec-
ture, would all sum to 1:

∑k
i=1 αi =

∑k+t
i=1 βi =∑k+t+1

i=1 β′
i = 1.

Instead of the angles, we compute the dot prod-
ucts and show that we can expect the difference
between the dot products to be positive, namely(

k+1∑
i=1

αivi ·
k+t∑
i=1

βivi

)
−

(
k+1∑
i=1

αivi ·
k+t+1∑
i=1

β′
ivi

)
> 0.

Indeed, the difference between the left and right
sides is

k+1∑
i=1

αivi ·
k+t+1∑
j=1

(βj − β′
j)vj

≈
k+1∑
i=1

αi(βi − β′
i)vi · vi

≈ ||v||
k+1∑
i=1

αi(βi − β′
i) > 0,

where the approximate equalities follow
from the approximate orthogonality of large
n-dimensional vectors normalized to norm 1.

3.3 Semantic-level explanation
If embedding n is a summary of all information
from positions 1..n− 1, we would expect that em-
beddings n = k and n = k + 1 be similar in some
space.

4 The adjacency pattern appears in both
non-trained and trained architectures
in a variety of configurations

In this section, we explore the settings in which
the adjacency pattern in causal Transformers with
no positional encodings (“Causal-NoPE") appears.
We define the way we measure the adjacency pat-
tern, describe the tasks we are using, and provide
the experimental details.

4.1 Adjacency probability score
We propose the adjacency probability score as a
metric to quantify the “intensity" of the adjacency

9421

0.1 0.0 0.1
0

1000

2000

Init Std=0.001
(mean=0.08, std=0.00)

0.1 0.0 0.1

Init Std=0.01
(mean=0.08, std=0.00)

0.1 0.0 0.1

Init Std=0.1
(mean=0.08, std=0.02)

0.5 0.0 0.5

Init Std=1
(mean=0.06, std=0.26)

1 0 1

Init Std=10
(mean=0.04, std=0.49)

1 0 1

Init Std=100
(mean=0.04, std=0.52)

0.1 0.0 0.1
0

1000

2000

Init Std=0.001
(mean=0.07, std=0.00)

0.1 0.0 0.1

Init Std=0.01
(mean=0.07, std=0.00)

0.1 0.0 0.1

Init Std=0.1
(mean=0.07, std=0.01)

0.5 0.0 0.5

Init Std=1
(mean=0.04, std=0.23)

1 0 1

Init Std=10
(mean=0.01, std=0.47)

1 0 1

Init Std=100
(mean=0.01, std=0.49)

Difference in Cosine Similarity

Fr
eq

ue
nc

y

Figure 2: Histograms on the differences between the cosine similarity of nearby tokens and further ones. Images in
the first and the second row are for sim(a, b)− sim(a, c), and sim(c, b)− sim(c, a), respectively.

patterns. The score is constructed to correlate with
the amount of positional information that can be
inferred from the self-similarity matrix.

We compute the proportion of time that the
embeddings of tokens with closer positions have
higher cosine similarity than those farther away,
which can be derived directly from the self-cosine-
similarity matrix. Consider the kth row of a
squared matrix up to the column of the diagonal en-
try, denoted by Ck1,Ck2, . . . ,Ckk. The row-wise
adjacency probability score for this row is defined
as:

PAdjacency = P (Cki < Ckj if i < j)

=
1(
k
2

) i∑
j=0

I (Cki < Ckj)

where I(Cki < Ckj) is 1 when Cki < Ckj

and 0 otherwise. The adjacency probability score
for the entire self-cosine-similarity matrix is calcu-
lated as the average row-wise adjacency probability
score of all matrices. Notice that only the lower
triangular portion of the matrix is involved in the
calculation (see Appendix A).

4.2 Tasks

We trained Causal-NoPE Transformers for a variety
of tasks that require positional information. The
tasks were selected for being trainable from scratch
and always requiring positional information.

Addition: The Addition task involves gener-
ating the completion of strings like "123+456=".
Following Lee et al. (2024), whose code base we

also use, we train NanoGPT to generate the an-
swer in reverse order. The input length (maximum
and 90% of the time) is 9 for 3-digit addition (we
include strings like "12+45" as well).

Reversal: The Reversal task requires the model
to generate the reversed sequence. For example, for
the prompt "rev(1234)=", the model is supposed
to output "4321". The input length (maximum and
90% of the time) is 22 for reversing 16-or-less-digit
numbers.

Indexing: The Indexing task requires the model
to locate the position of the first occurrence of a
number in the sequence. For an example, for the
prompt "wherex(134504392,4)=", the model is
supposed to output "2", which is the index for the
first occurrence of "4". The input length (maxi-
mum and 90% of the time) is 20 for indexing at
most 9 digits.

Ordering: Given a sequence of numbers and its
reordered version, the Ordering task requires the
model to output the new order of the original in-
dices based on the reordered sequence. As an exam-
ple, for the prompt "order(67812,28716)=", the
model is supposed to generate the answer "42130".
The input length (maximum and 90% of the time)
is 18.

4.3 Experimental Setup

We first want to examine whether the adjacency pat-
tern persists for models trained for different tasks.
We train the baseline 6-layer NanoGPT with 10.6
million parameters on each of the tasks. By default,
all models are initialized by the normal distribution
N (0, 0.02). The training for each configuration is
repeated for 5 different random seeds. Each task

9422

has 20000 training and 20000 testing samples. Oth-
erwise, the configuration follows the work of Lee
et al. (2024), who trained the NanoGPT model to
converge on the 3-digit Addition task. All experi-
ments are conducted using an NVIDIA RTX4090
graphics card, with each trial being approximately
15 minutes.

Additionally, we want to compare the effect of
different hyperparameters, particularly the number
of layers and hidden dimensions. We choose the
task of reversal and train models with 6, 12, and 24
layers and 192, 384, and 768 hidden dimensions,
respectively, with the same train-test split. Unless
further specified, the trained models have achieved
more than 90% accuracy in the testing set.

5 Results

5.1 Transformer from random initialization
knows positions right after the first causal
attention

We computed the self-cosine-similarity matrix and
the adjacency score across settings. Figure 1 is
representative of what we observe. In Figure 1,
while there is no adjacency pattern in the matrices
of the zeroth layer (i.e., the token embeddings), the
adjacency pattern starts to appear in the output of
the first attention layer and continues in the rest of
the layers. The adjacency probability scores in the
zeroth layer (i.e., the token embeddings) — 0.39
and 0.54 for the randomly initialized and trained
models respectively — are much lower than in the
other layers (where the minimum is 0.84). In those
upper layers, the embeddings have been through at
least 1 layer of causal attention. Hence, one layer
of causal attention could be sufficient to generate
the adjacency pattern.

5.2 Adjacency pattern across different models
and datasets

The adjacency probability scores of models trained
for various tasks and with different hyperparam-
eters (the number of hidden dimensions and the
number of layers) are listed in Tables 1, 2, and
3. Each column of the table indicates the location
where the embeddings are taken to produce the self-
cosine-similarity matrices. Figure 3 presents the
adjacency probability scores for the embeddings
at each layer, averaged across different tasks. For
Table 2 and 3, the Reversal (22) task is chosen
to demonstrate the effect of hyperparameters on
the adjacency probability score. We observed that

the effect of hyperparameters is the same across
different tasks.

For most configurations, the adjacency proba-
bilities spike up from around 50% in the token
embeddings to more than 80% at the first layer,
as well as the rest of the layers. This is consis-
tent regardless of the task type, the training state
(initialized/trained), the number of layers, or the di-
mensions. As a general trend, the adjacency score
is the highest for output embeddings in the second
layer and declines gradually from there to the end.

5.3 The adjacency pattern across different
initializations

We further test different initialization schemes,
showing that the adjacency pattern is robust for
the commonly used initialization schemes. Ta-
ble 4 and Table 5 show the results for the adja-
cency probability scores obtained in models initial-
ized by Normal distribution with different means
(µinit ∈ {0, 4, 8}) and different standard devia-
tions (µinit ∈ {0.002, 0.02, 0.2}). The highlighted
adjacency probability scores indicate a lack of dis-
cernible adjacency patterns qualitatively. The ad-
jacency pattern is missing when the mean and the
standard deviation are large enough (µinit = 4 and
σinit = 0.2), which are not typical values for ini-
tialization. It can be inferred that the mean has a
smaller influence than the variance, since the first
layer for the model with µinit = 4 can still produce
the adjacency pattern. Yet, it is likely that the large
µinit only causes the variance after the first layer
to be large, which is why the adjacency pattern for
the rest of the layers is removed.

5.4 The variance alone may not be sufficient
for accurate position information

Chi et al. (2023) propose that the variance of the
output embeddings tends to decrease from earlier to
later positions, thereby serving as a signal of posi-
tion information. Hence, we applied the adjacency
probability score to the variance of the embeddings
to examine how well they are ordered, similar to
what has been done to the self-cosine-similarity
matrices. Given a sequence of embedding norms
of length n, we repeat it n times to form a matrix
and apply the same calculation in 4.1 to obtain
the adjacency probability score. We also perform
this evaluation for each task and put the results in
Table 6.

In the trained Causal-NoPE Transformers, there
is a much more severe drop in the adjacency score

9423

Tasks Embeddings Layer 1 Layer 2 Layer 3 Layer 4 Layer 5 Layer 6

Addition (9) Init 0.47 0.99 1.00 1.00 1.00 1.00 1.00

Addition (9) Trained 0.48 0.95 0.98 0.99 0.98 0.88 0.85

Reversal (22) Init 0.49 0.97 0.99 0.99 0.99 0.99 0.99

Reversal (22) Trained 0.58 0.91 0.98 0.99 0.88 0.82 0.83

Indexing (20) Init 0.49 0.98 0.99 0.99 0.99 0.99 0.99

Indexing (20) Trained 0.55 0.80 0.96 0.96 0.88 0.79 0.83

Ordering (18) Init 0.49 0.98 1.00 1.00 1.00 1.00 1.00

Ordering (18) Trained 0.56 0.89 0.98 0.96 0.77 0.80 0.76

Table 1: Averaged Layer-wise adjacency probability score for the 4 tasks, with initialization and trained results,
each averaged over 256 samples. The number in the parentheses beside each task indicates the length (maximum
and most frequent) of the equations in the task.

Embeddings Layer 1 Layer 2 Layer 3 Layer 4 Layer 5 Layer 6
0.0

0.2

0.4

0.6

0.8

1.0

A
dj

ac
en

cy
 P

ro
ba

bi
lit

y
Sc

or
e

0.48

0.98 0.99 0.99 0.99 0.99 0.99

0.54

0.89
0.97 0.98

0.88
0.82 0.82

Init
trained

Figure 3: The layer-wise adjacency probability score for randomly initialized and trained models averaged over the
4 tasks, correspond to the values presented in Table 1.

of the norms than in the self-cosine-similarity matri-
ces. Figure 7 presents a visualization of the average
results for Table 6 across the 4 tasks. Compared to
Figure 3, it is clear that the average adjacency prob-
ability scores of the norms for the trained model
are lower than for the self-cosine-similarity ma-
trix. As an example, Figure 10 and Figure 11 show
the self-cosine-similarity matrices and norms for
the initialized and trained model on the same task
(Reversal (22)) with the same input. Though the
norms tend to be monotonically decreasing at the
initialized layers, they are not necessarily ordered
in the trained layers, with the last layer even show-
ing a reversed order. Even in comparison with the
self-cosine-similarity matrices at the trained layers,
except for the first layer, the norms are generally
worse at indicating clear position information than
the adjacency matrices.

5.5 Probing for position information

We further compare variance to cosine similarity
by the effectiveness of using them as a feature to
probe the position information. For each layer of
the Causal-NoPE, the probe is trained to predict
the position of an attention output vector using one
of the following features as input: the output vec-
tor embeddings itself, its variance, and the cosine
similarity between an output vector embeddings
and the vector at the last position. The probe is
a 4-layer Multi-Layer Perception (MLP) with 3
ReLU activation functions in between. To prevent
the probe from memorizing the samples (Hewitt
and Liang, 2019), the training and testing datasets
for probing consist of random digits from 5 to 9
and 0 to 4, respectively, which are all contained in
the 4 synthetic tasks 4.2. We fix the input length to
32 and the training and testing sample size to 1600
each. The Root Mean Squared Error normalized
by the input length (NRMSE) and the Pearson-R
values are presented in Figure 4. We verify the

9424

Layers Embeddings Layer 1 Layer 2 Layer 3 Layer n-2 Layer n-1 Layer n
6 0.58 0.91 0.98 0.99 0.88 0.82 0.83
12 0.49 0.90 0.93 0.96 0.86 0.81 0.84
24 0.51 0.84 0.94 0.84 0.90 0.78 0.75

Table 2: Layer-wise adjacency probability score for models with different numbers of layers trained on the Reversal
(22) task, each averaged over 256 samples.

Dimensions Embeddings Layer 1 Layer 2 Layer 3 Layer 4 Layer 5 Layer 6
192 0.49 0.93 0.96 0.96 0.92 0.81 0.73
384 0.58 0.91 0.98 0.99 0.88 0.82 0.83
768 0.50 0.96 0.96 0.95 0.94 0.90 0.93

Table 3: Layer-wise adjacency probability score for models with different numbers of hidden dimensions trained
on the Reversal (22) task, averaged over 256 samples. The only configuration that did not achieve more than 90%
accuracy is the model with 192 dimensions, which has an accuracy of 56%. Yet, we observed that in most cases
where the model makes an error, the majority of digits are correct, with only a few being incorrect.

validity of the results, showing that when using the
output embeddings as features, the probe’s testing
performance in the setting of the untrained Causal-
NoPE Transformers embeddings is the worst (in
Appendix B Figure 8).

In almost all layers of the initialized and trained
models, using the cosine similarity values as the
input feature produces the best probing outcomes
with the lowest NRMSE and highest Pearson-R
value. In addition to the adjacency probability
score results, this probing result further demon-
strates the robustness of inter-token cosine simi-
larity as a positional indicator. In comparison, the
variance seems less informative. In trained Causal-
NoPE Transformers, from layers 2 to 6, the Cor-
relation Coefficients of probes produced from the
variance is worse than from the embeddings. This
implies that if the Causal-NoPE Transformers learn
to synthesize some absolute position information,
it should rely on some characteristics of the embed-
dings more than just the variance.

6 Discussion

6.1 Is the adjacency pattern unique to causal
attention?

Yes. We also applied a self-cosine-similarity ma-
trix to Transformers with “vanilla" attention and
confirmed that there is no adjacency pattern. An ex-
ample is shown in Figure 5, where the self-cosine-
similarity matrices look random and the adjacency
scores are low. There is a learned absolute posi-
tional encoding added to the token embeddings of
this model only to let the model converge.

7 Limitations

The claims that the paper makes are partly based
on empirical analyses of particular Transformer
architectures, and using particular datasets. The
observations would not necessarily generalize to
other architectures. While an attempt was made to
construct synthetic datasets that are interesting and
display a variety of features, we do not mathemati-
cally prove that the observations we make would
generalize to any dataset, and in fact it is likely that
there could exist datasets to which our observations
would not generalize.

8 Conclusions and future work

In Transformers with causal attention and no posi-
tional encodings, the adjacency pattern can occur
for models with a wide range of hyperparameters,
including the number of layers, hidden dimensions,
and initialization schemes. It exists in the output
embeddings of the Transformer’s first causal atten-
tion layer and persists throughout the rest of the
layers. For randomly initialized weights, the adja-
cency pattern can be observed for various initializa-
tions, especially for the ones commonly occurring
in practice. For trained models, it is typical that
the adjacency pattern in the first few layers is more
prominent than in later ones, which we consider
reasonable because knowing enough position infor-
mation in the earlier layers may allow the models
to focus on other more contextual information re-
quired by the tasks in later layers.

Neither the adjacency pattern nor the in-
embedding variance of (Chi et al., 2023) can likely
fully account for the fact that we are able to ob-

9425

µinit Embeddings Layer 1 Layer 2 Layer 3 Layer 4 Layer 5 Layer 6
0 0.52 0.97 0.99 0.99 0.99 0.99 0.99
4 0.49 0.97 0.96 0.95 0.99 0.96 0.98
8 0.47 0.97 0.56 0.53 0.57 0.63 0.65

Table 4: Layer-wise adjacency probability score for models initialized by Gaussian distribution with different means
µinit, averaged over 256 samples from the Reversal (22) tasks.

σinit Embeddings Layer 1 Layer 2 Layer 3 Layer 4 Layer 5 Layer 6
0.002 0.46 0.97 0.98 0.98 0.99 0.98 0.99
0.02 0.51 0.97 0.99 0.99 0.99 0.99 0.99
0.2 0.49 0.55 0.58 0.66 0.70 0.73 0.68

Table 5: Layer-wise adjacency probability score for models initialized by Gaussian distribution with different
standard deviation σinit, averaged over 256 samples from the Reversal (22) tasks.

tain 100% performance on position-sensitive tasks
since the probing results indicate that both are not
100% informative. Nevertheless, we believe that
the adjacency pattern provides another piece of the
puzzle.

Acknowledgments

We thank Prof. Ran Gilad-Bachrach for useful
discussion. We thank Prof. Jonathan Rose for the
conversation that initiated this investigation.

References
Dzmitry Bahdanau, Kyunghyun Cho, and Yoshua Ben-

gio. 2014. Neural machine translation by jointly
learning to align and translate. arXiv preprint
arXiv:1409.0473.

Ta-Chung Chi, Ting-Han Fan, Li-Wei Chen, Alexander
Rudnicky, and Peter Ramadge. 2023. Latent posi-
tional information is in the self-attention variance
of transformer language models without positional
embeddings. In Proceedings of the 61st Annual Meet-
ing of the Association for Computational Linguistics
(Volume 2: Short Papers), pages 1183–1193, Toronto,
Canada. Association for Computational Linguistics.

Adi Haviv, Ori Ram, Ofir Press, Peter Izsak, and Omer
Levy. 2022. Transformer language models without
positional encodings still learn positional informa-
tion. In Findings of the Association for Computa-
tional Linguistics: EMNLP 2022, pages 1382–1390,
Abu Dhabi, United Arab Emirates. Association for
Computational Linguistics.

John Hewitt and Percy Liang. 2019. Designing and in-
terpreting probes with control tasks. In Proceedings
of the 2019 Conference on Empirical Methods in Nat-
ural Language Processing and the 9th International
Joint Conference on Natural Language Processing
(EMNLP-IJCNLP), pages 2733–2743, Hong Kong,
China. Association for Computational Linguistics.

Amirhossein Kazemnejad, Inkit Padhi, Karthikeyan
Natesan Ramamurthy, Payel Das, and Siva Reddy.
2024. The impact of positional encoding on length
generalization in transformers. Advances in Neural
Information Processing Systems, 36.

Nayoung Lee, Kartik Sreenivasan, Jason D Lee, Kang-
wook Lee, and Dimitris Papailiopoulos. 2024. Teach-
ing arithmetic to small transformers. International
Conference on Learning Representations.

Jürgen Schmidhuber. 1992. Learning to control fast-
weight memories: An alternative to dynamic recur-
rent networks. Neural Computation, 4(1):131–139.

Yao-Hung Hubert Tsai, Shaojie Bai, Makoto Yamada,
Louis-Philippe Morency, and Ruslan Salakhutdinov.
2019. Transformer dissection: An unified under-
standing for transformer’s attention via the lens of
kernel. In Proceedings of the 2019 Conference on
Empirical Methods in Natural Language Processing
and the 9th International Joint Conference on Natu-
ral Language Processing (EMNLP-IJCNLP), pages
4344–4353, Hong Kong, China. Association for Com-
putational Linguistics.

Ashish Vaswani, Noam Shazeer, Niki Parmar, Jakob
Uszkoreit, Llion Jones, Aidan N Gomez, Łukasz
Kaiser, and Illia Polosukhin. 2017. Attention is all
you need. Advances in neural information processing
systems, 30.

Yu-An Wang and Yun-Nung Chen. 2020. What do
position embeddings learn? an empirical study of
pre-trained language model positional encoding. In
Proceedings of the 2020 Conference on Empirical
Methods in Natural Language Processing (EMNLP),
pages 6840–6849, Online. Association for Computa-
tional Linguistics.

Chunsheng Zuo and Michael Guerzhoy. 2024. Break-
ing symmetry when training transformers. NAACL
Student Research Workshop.

https://doi.org/10.18653/v1/2023.acl-short.102
https://doi.org/10.18653/v1/2023.acl-short.102
https://doi.org/10.18653/v1/2023.acl-short.102
https://doi.org/10.18653/v1/2023.acl-short.102
https://doi.org/10.18653/v1/2022.findings-emnlp.99
https://doi.org/10.18653/v1/2022.findings-emnlp.99
https://doi.org/10.18653/v1/2022.findings-emnlp.99
https://doi.org/10.18653/v1/D19-1275
https://doi.org/10.18653/v1/D19-1275
https://doi.org/10.18653/v1/D19-1443
https://doi.org/10.18653/v1/D19-1443
https://doi.org/10.18653/v1/D19-1443
https://doi.org/10.18653/v1/2020.emnlp-main.555
https://doi.org/10.18653/v1/2020.emnlp-main.555
https://doi.org/10.18653/v1/2020.emnlp-main.555

9426

Tasks Embeddings Layer 1 Layer 2 Layer 3 Layer 4 Layer 5 Layer 6

Addition (9) Init 0.45 0.96 0.98 0.99 0.99 0.99 0.98

Addition (9) Trained 0.38 0.93 0.84 0.92 0.89 0.84 0.51

Reversal (22) Init 0.47 0.90 0.95 0.95 0.97 0.95 0.97

Reversal (22) Trained 0.66 0.98 0.61 0.93 0.88 0.53 0.63

Indexing (20) Init 0.49 0.94 0.98 0.99 0.99 0.99 0.98

Indexing (20) Trained 0.74 0.93 0.95 0.98 0.91 0.90 0.85

Ordering (18) Init 0.55 0.94 0.99 0.99 0.99 0.98 0.98

Ordering (18) Trained 0.22 0.95 0.76 0.94 0.71 0.72 0.43

Table 6: Layer-wise adjacency probability score of the variance of embeddings for the 4 tasks, with initialization
and trained results. The number in parentheses beside each task indicates the input length involved in the task.

A More about the adjacency probability
score

We only consider each row up to the diagonal
because, for causal attention, each self-cosine-
similarity matrix S ∈ Rn×n of size n contains n
sub-matrices, from S1 ∈ R1×1 to Sn ∈ Rn×n. For
a sub-matrix of length k ∈ [1, .., n], it is formed by
embeddings resulting exactly from the first k out of
n tokens of the original sequence. Therefore, each
row-wise adjacency probability score at row k mea-
sures the last row of sub-matrix Sk. Another way
to think of this is that causal attention at the current
token only considers anything before it. Hence, we
measure just the adjacency probability score for
anything up to the current token, which is up to the
diagonal of each row.

Figure 6 demonstrates different adjacency prob-
ability scores with their respective sample matrix.
A higher adjacency probability score can be in-
terpreted as the model being more likely to know
the exact ordering of other tokens before a certain
token. Meanwhile, although a zero adjacency prob-
ability score will also allow the model to know
the token order oppositely, it is unachievable in a
self-cosine-similarity matrix unless all embeddings
are the same. For random matrices, the adjacency
probability score is about 0.5.

B Visualizations for probing results

Figure 8 shows the probing results on randomly
initialized Causal-NoPE Transformers. The poor
performance from using the embeddings as in-
put indicates that the models do not contain any
fixed/absolute positional information from the be-
ginning, whereas the descent performance from

using the cosine similarity as input suggests the ex-
istence of relative positional information inherent
to the causal attention.

Figure 9 demonstrates the prediction of probes
trained using various input features of the trained
Causal-NoPE Transformers.

C More Visualizations of Experimental
Results

Figure 12 provides an example of a model with 12
layers for the indexing task.

To determine if there are clusters of samples
that exhibit extremely low to extremely high val-
ues, we check the distributions of the adjacency
scores for all configurations. Typically, we observe
distributions like the ones in Figure 13 indexing
task. In this example, while the distributions of
adjacency scores concentrate around 1 for the un-
trained model, after training, only the adjacency
scores for layer 2 and layer 3 distribute densely
and closely to 1. In particular, the adjacency scores
are the highest and most concentrated in layer 3
of the trained model, to an extent that matches the
ones in the untrained model. We interpret these
observations as an indication that the model learns
to keep the adjacency pattern in earlier layers and
gradually discard it in later ones.

9427

Embeddings Layer 1 Layer 2 Layer 3 Layer 4 Layer 5 Layer 6
0.0

0.2

0.4

0.6

0.8

1.0

Pe
ar

so
n-

R

-0.00
0.07

0.84 0.85 0.84 0.81
0.71

-0.00

0.71

0.40
0.35

0.43
0.49

0.55

0.10

0.73

0.89 0.88 0.88 0.90 0.93X
VarX

SimX

(a)

Embeddings Layer 1 Layer 2 Layer 3 Layer 4 Layer 5 Layer 6
0.0

0.2

0.4

0.6

N
R

M
SE

0.37
0.41

0.23 0.21
0.24

0.28

0.35

0.29

0.20

0.27 0.28 0.26
0.23 0.23

0.29

0.20

0.13 0.13 0.13 0.12 0.11

X
VarX

SimX

(b)

Figure 4: Average layer-wise probing results for trained Causal-NoPE Transformers of (a) Pearson-R and (b)
Normalized Root Mean Squared Error (NRMSE) using one of the following as the input: the output vector
embeddings X , their variance V arX , and the cosine similarity between the output vector embeddings and the vector
at the last position SimX .

0 4 8 12 16

0

4

8

12

16

Embeddings (0.54)

0 4 8 12 16

0

4

8

12

16

Init Layer 1 (0.55)

0 4 8 12 16

0

4

8

12

16

Init Layer 2 (0.53)

0 4 8 12 16

0

4

8

12

16

Init Layer 3 (0.47)

0 4 8 12 16

0

4

8

12

16

Init Layer 4 (0.52)

0 4 8 12 16

0

4

8

12

16

Init Layer 5 (0.43)

0 4 8 12 16

0

4

8

12

16

Init Layer 6 (0.53)

0 4 8 12 16

0

4

8

12

16

Embeddings (0.5)

0 4 8 12 16

0

4

8

12

16

Trained Layer 1 (0.48)

0 4 8 12 16

0

4

8

12

16

Trained Layer 2 (0.5)

0 4 8 12 16

0

4

8

12

16

Trained Layer 3 (0.46)

0 4 8 12 16

0

4

8

12

16

Trained Layer 4 (0.43)

0 4 8 12 16

0

4

8

12

16

Trained Layer 5 (0.51)

0 4 8 12 16

0

4

8

12

16

Trained Layer 6 (0.57)

0.0

0.5

1.0

0.0

0.5

1.0

1.0

1.0

1.0

1.0

0.0

0.5

1.0

1.0

1.0

1.0

1.0

0.2

0.5

0.8

1.0

1.0

1.0

1.0

0.8

0.9

1.0

1.0

1.0

1.0

0.9

1.0

1.0

1.0

1.0

1.0

1.0

1.0

1.0

1.0

1.0

1.0

1.0

1.0

1.0

1.0

1.0

1.0

1.0

Figure 5: Self-cosine-similarity matrices of randomly initialized (first row) and trained (second row) 6-layer
Transformers with normal attention and learned absolute positional encodings on the task of Indexing (20). The
matrices are produced using a testing sample of 20 tokens, "wherex(299517340,9)=", as input.

0 10

0

10

Score=0.99

0 10

0

10

Score=0.93

0 10

0

10

Score=0.81

0 10

0

10

Score=0.69

0 10

0

10

Score=0.46

0 10

0

10

Score=0.33

0 10

0

10

Score=0.13

0 10

0

10

Score=0.01

0.25

0.50

0.75

1.00

0.25

0.50

0.75

1.00

0.25

0.50

0.75

1.00

0.25

0.50

0.75

1.00

0.25

0.50

0.75

1.00

0.25

0.50

0.75

1.00

0.25

0.50

0.75

1.00

0.25

0.50

0.75

1.00

Figure 6: Synthetic matrices with different adjacency probability score values. (See Appendix A

9428

Embeddings Layer 1 Layer 2 Layer 3 Layer 4 Layer 5 Layer 6
0.0

0.2

0.4

0.6

0.8

1.0

A
dj

ac
en

cy
 P

ro
ba

bi
lit

y
Sc

or
e

0.49

0.93
0.98 0.98 0.98 0.98 0.98

0.50

0.95

0.79

0.94
0.85

0.75

0.61

Init
trained

Figure 7: The layer-wise adjacency probability score of the norms for randomly initialized and trained models
averaged over the 4 tasks, correspond to the values presented in Table 6.

Embeddings Layer 1 Layer 2 Layer 3 Layer 4 Layer 5 Layer 6
0.25

0.00

0.25

0.50

0.75

1.00

Pe
ar

so
n-

R

-0.00
-0.10

-0.23
-0.16 -0.16 -0.16 -0.17

0.00

0.77
0.65

0.59 0.59 0.57 0.55

0.10

0.86
0.94 0.95 0.95 0.95 0.95X

VarX

SimX

(a)

Embeddings Layer 1 Layer 2 Layer 3 Layer 4 Layer 5 Layer 6
0.0

0.2

0.4

0.6

N
R

M
SE 0.39

0.53 0.53 0.52 0.53 0.53 0.53

0.29

0.19
0.22 0.23 0.23 0.24 0.24

0.29

0.15
0.10 0.09 0.09 0.09 0.09

X
VarX

SimX

(b)

Figure 8: Average layer-wise probing results for initialized Causal-NoPE Transformers of (a) Pearson-R and
(b) Normalized Root Mean Squared Error (NRMSE) using one of the following as the input: the output vector
embeddings X , their variance V arX , and the cosine similarity between the output vector embeddings and the vector
at the last position SimX .

9429

0 5 10 15 20 25 30
6

7

8
R=-0.00

Embeddings (MSE=161.77)

0 5 10 15 20 25 30

0
2
4
6
8

10
12 R=0.02

Layer 1 (MSE=188.40)

0 5 10 15 20 25 30

0
10
20
30
40
50
60
70 R=0.84

Layer 2 (MSE=427.77)

0 5 10 15 20 25 30

0

10

20

30

40

50 R=0.85

Layer 3 (MSE=91.03)

0 5 10 15 20 25 30

0

10

20

30

40
R=0.85

Layer 4 (MSE=80.16)

0 5 10 15 20 25 30

0
5

10
15
20
25
30 R=0.83

Layer 5 (MSE=55.66)

0 5 10 15 20 25 30

0
2
4
6
8

10
12
14
16
18 R=0.69

Layer 6 (MSE=163.23)

True Positions

Pr
ed

ic
te

d
Po

si
tio

ns

(a)

0 5 10 15 20 25 30
15

16
R=0.00

Embeddings (MSE=85.26)

0 5 10 15 20 25 30

0

5

10

15

20
R=0.65

Layer 1 (MSE=51.00)

0 5 10 15 20 25 30

0

5

10

15

20
R=0.48

Layer 2 (MSE=67.12)

0 5 10 15 20 25 30

0
2
4
6
8

10
12
14
16
18

R=0.29

Layer 3 (MSE=85.70)

0 5 10 15 20 25 30

0

5

10

15

20
R=0.40

Layer 4 (MSE=74.03)

0 5 10 15 20 25 30

0

5

10

15

20
R=0.41

Layer 5 (MSE=71.02)

0 5 10 15 20 25 30

0

5

10

15

20

R=0.25

Layer 6 (MSE=85.23)

True Positions

Pr
ed

ic
te

d
Po

si
tio

ns

(b)

0 5 10 15 20 25 30
14

15

16

17

18
R=0.10

Embeddings (MSE=84.38)

0 5 10 15 20 25 30

0

5

10

15

20
R=0.59

Layer 1 (MSE=55.77)

0 5 10 15 20 25 30

0

5

10

15

20

R=0.94

Layer 2 (MSE=13.90)

0 5 10 15 20 25 30

0

5

10

15

20

25 R=0.95

Layer 3 (MSE=9.22)

0 5 10 15 20 25 30

0

5

10

15

20

25
R=0.90

Layer 4 (MSE=16.27)

0 5 10 15 20 25 30

0

5

10

15

20

25
R=0.87

Layer 5 (MSE=20.56)

0 5 10 15 20 25 30
0

5

10

15

20

25
R=0.93

Layer 6 (MSE=12.04)

True Positions

Pr
ed

ic
te

d
Po

si
tio

ns

(c)

Figure 9: Violin plots for the test predictions of a trained probe for a Causal-NoPE Transformer trained on
the ordering task. The 3 different features, (a) embeddings, (b) variance, and (c) cosine similarity, are used
independently.

0 5 10 15 20

0

5

10

15

20

Embeddings (0.54)

0 5 10 15 20

0

5

10

15

20

Init Layer 1 (0.98)

0 5 10 15 20

0

5

10

15

20

Init Layer 2 (1.0)

0 5 10 15 20

0

5

10

15

20

Init Layer 3 (1.0)

0 5 10 15 20

0

5

10

15

20

Init Layer 4 (1.0)

0 5 10 15 20

0

5

10

15

20

Init Layer 5 (1.0)

0 5 10 15 20

0

5

10

15

20

Init Layer 6 (1.0)

0 5 10 15 20

0

5

10

15

20

Embeddings (0.58)

0 5 10 15 20

0

5

10

15

20

Trained Layer 1 (0.94)

0 5 10 15 20

0

5

10

15

20

Trained Layer 2 (0.97)

0 5 10 15 20

0

5

10

15

20

Trained Layer 3 (1.0)

0 5 10 15 20

0

5

10

15

20

Trained Layer 4 (0.92)

0 5 10 15 20

0

5

10

15

20

Trained Layer 5 (0.85)

0 5 10 15 20

0

5

10

15

20

Trained Layer 6 (0.86)

0.0

0.5

1.0

0.0

0.5

1.0

0.2

0.5

0.8

1.0

0.2

0.5

0.8

1.0

0.4

0.6

0.8

1.0

0.4

0.6

0.8

1.0

0.6

0.8

1.0

0.6

0.8

1.0

0.6

0.8

1.0

0.4

0.6

0.8

1.0

0.6

0.8

1.0

0.2

0.5

0.8

1.0

0.6

0.8

1.0

0.2

0.5

0.8

1.0

Figure 10: Layer-wise self-cosine-similarity matrices of randomly initialized (first row) and trained (second row)
Causal-NoPE Transformers on the task of ordering, with "rev(1849364897192906)=" as the input.

0 10 20

0.38

0.40

0.42
Embeddings (0.45, 0.0)

0 10 20
2

4

6

Init Layer 1 (0.91, 0.0)

0 10 20

5

6

7

8
Init Layer 2 (0.99, 0.0)

0 10 20

5

6

7

8
Init Layer 3 (1.0, 0.0)

0 10 20

6

7

Init Layer 4 (0.97, 0.0)

0 10 20

6

7

Init Layer 5 (0.98, 0.0)

0 10 20

6

7

Init Layer 6 (0.99, 0.0)

0 10 20

0.65

0.70

0.75

0.80
Embeddings (0.66, 0.0)

0 10 20

5

10

Trained Layer 1 (1.0, 0.0)

0 10 20

6

7

Trained Layer 2 (0.67, 0.0)

0 10 20

5

6

7

8
Trained Layer 3 (0.98, 0.0)

0 10 20

6

8

Trained Layer 4 (0.95, 0.0)

0 10 20

7

8

Trained Layer 5 (0.6, 0.0)

0 10 20

9

10

11

Trained Layer 6 (0.3, 0.0)

Figure 11: Layer-wise embedding norms for randomly initialized (first row) and trained (second row) Causal-NoPE
Transformers on the task of Reversal (22), with "rev(1849364897192906)=" as the input.

9430

0 4 8 12 16

0

4

8

12

16

Embeddings (0.36)

0 4 8 12 16

0

4

8

12

16

Init Layer 1 (1.0)

0 4 8 12 16

0

4

8

12

16

Init Layer 2 (1.0)

0 4 8 12 16

0

4

8

12

16

Init Layer 3 (1.0)

0 4 8 12 16

0

4

8

12

16

Init Layer 4 (1.0)

0 4 8 12 16

0

4

8

12

16

Init Layer 5 (1.0)

0 4 8 12 16

0

4

8

12

16

Init Layer 6 (1.0)

0 4 8 12 16

0

4

8

12

16

Init Layer 7 (1.0)

0 4 8 12 16

0

4

8

12

16

Init Layer 8 (1.0)

0 4 8 12 16

0

4

8

12

16

Init Layer 9 (1.0)

0 4 8 12 16

0

4

8

12

16

Init Layer 10 (1.0)

0 4 8 12 16

0

4

8

12

16

Init Layer 11 (1.0)

0 4 8 12 16

0

4

8

12

16

Init Layer 12 (1.0)

0 4 8 12 16

0

4

8

12

16

Embeddings (0.39)

0 4 8 12 16

0

4

8

12

16

Trained Layer 1 (0.77)

0 4 8 12 16

0

4

8

12

16

Trained Layer 2 (0.73)

0 4 8 12 16

0

4

8

12

16

Trained Layer 3 (0.86)

0 4 8 12 16

0

4

8

12

16

Trained Layer 4 (0.85)

0 4 8 12 16

0

4

8

12

16

Trained Layer 5 (0.91)

0 4 8 12 16

0

4

8

12

16

Trained Layer 6 (0.86)

0 4 8 12 16

0

4

8

12

16

Trained Layer 7 (0.88)

0 4 8 12 16

0

4

8

12

16

Trained Layer 8 (0.79)

0 4 8 12 16

0

4

8

12

16

Trained Layer 9 (0.91)

0 4 8 12 16

0

4

8

12

16

Trained Layer 10 (0.83)

0 4 8 12 16

0

4

8

12

16

Trained Layer 11 (0.77)

0 4 8 12 16

0

4

8

12

16

Trained Layer 12 (0.77)

0.0

0.5

1.0

0.0

0.5

1.0

0.4

0.6

0.8

1.0

0.0

0.5

1.0

0.6

0.8

1.0

0.2

0.5

0.8

1.0

0.6

0.8

1.0

0.6

0.8

1.0

0.6

0.8

1.0

0.6

0.8

1.0

0.6

0.8

1.0

0.6

0.8

1.0

0.6

0.8

1.0

0.6

0.8

1.0

0.6

0.8

1.0

0.4

0.6

0.8

1.0

0.7

0.8

0.9

1.0

0.2

0.5

0.8

1.0

0.6

0.8

1.0

0.4

0.6

0.8

1.0

0.7

0.8

0.9

1.0

0.2

0.5

0.8

1.0

0.7

0.8

0.9

1.0

0.2

0.5

0.8

1.0

0.6

0.8

1.0

0.4

0.6

0.8

1.0

Figure 12: Self-cosine-similarity matrices of randomly initialized (first row) and trained (second row) 12-layer
Transformers with causal attention and no positional encodings on the task of Indexing. The matrices are produced
using a testing sample of 22 tokens, "wherex(8483561,8)=0", as input, showing results from the embeddings to
the output of layer 12 left to right for the initialized and trained models. The number in the bracket represents the
adjacency probability score.

1 0 10

20

40

Embeddings (0.51, 0.05)

1 0 10

100

200

Init Layer 1 (0.99, 0.05)

1 0 10

100

200

Init Layer 2 (1.0, 0.04)

1 0 10

100

200

Init Layer 3 (1.0, 0.04)

1 0 10

100

200

Init Layer 4 (1.0, 0.04)

1 0 10

100

200

Init Layer 5 (1.0, 0.04)

1 0 10

100

200

Init Layer 6 (1.0, 0.04)

1 0 10

20

40

60

Embeddings (0.57, 0.04)

1 0 10

20

40

60

Trained Layer 1 (0.82, 0.06)

1 0 10

100

200

Trained Layer 2 (0.97, 0.04)

1 0 10

100

200

Trained Layer 3 (0.95, 0.04)

1 0 10

20

40

Trained Layer 4 (0.87, 0.05)

1 0 10

20

40
Trained Layer 5 (0.82, 0.05)

1 0 10

20

40

Trained Layer 6 (0.87, 0.05)

Figure 13: Distribution of adjacency probability score for a model before and after training ("Init"/"Trained") on the
indexing task. The sample size of the histograms is 256. The two numbers inside the brackets of the subplot titles
are the distribution’s mean and standard deviation. Notice that the 7 pairs of means and standard deviations for the
trained model (the second row) correspond to the values presented in Table 1 for the indexing task.

