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Abstract

Aspect Sentiment Quad Prediction(ASQP) en-
hances the scope of aspect-based sentiment
analysis by introducing the necessity to pre-
dict both explicit and implicit aspect and opin-
ion terms. Existing leading generative ASQP
approaches do not modeling the contextual re-
lationship of the review sentence to predict im-
plicit terms. However, introducing the contex-
tual information into the pre-trained language
models framework is non-trivial due to the in-
flexibility of the generative encoder-decoder ar-
chitecture. To well utilize the contextual infor-
mation, we propose an extractive ASQP frame-
work, CACA, which features with Context-
Aware Cross-Attention Network. When implicit
terms are present, the Context-Aware Cross-
Attention Network enhances the alignment of
aspects and opinions, through alternating up-
dates of explicit and implicit representations.
Additionally, contrastive learning is introduced
in the implicit representation learning pro-
cess. Experimental results on three benchmarks
demonstrate the effectiveness of CACA. Our
implementation will be open-sourced at https:
//github.com/DMIRLAB-Group/CACA.

1 Introduction

Aspect Sentiment Quad Prediction (ASQP) (Cai
et al., 2021a; Zhang et al., 2021a) is a fine-grained
text sentiment analysis technique that extracts sen-
timent information from text, including aspect,
opinion, category and sentiment polarity. Com-
pared with the Aspect Sentiment Triple Extraction
(ASTE) task (Peng et al., 2020; Wan et al., 2020),
the ASQP task introduces the necessity to predict
both explicit and implicit aspect and opinion terms,
which is more aligned with practical needs and
more challenging.

As shown in Figure 1, in the given sentence, we
can easily extract the quadruples that are explicitly

*Corresponding author, hpakyim@gmail.com

It ' s faster , the screen is much nicer , and it has twice 

the memory and four times the drive space .

Review Sentence:

Quadruple Extraction:
QUAD#1 (screen - design_features - nicer – positive)

QUAD#2 (drive space - design_features - null – positive)

QUAD#3 (memory - design_features - null – positive)

QUAD#4 (null - operation_performance - faster – positive)

Figure 1: An example of ASQP Task’s input and output.
From left to right, they represent aspect term, aspect cat-
egory, opinion term, and sentiment polarity respectively.
‘NULL’ represents the implicit target term.

present and obtain one target tuple {screen, nicer,
Design_features, Positive}. However, in addition
to this explicit quadruple, there are some implicit
quadruples that need to be extracted in combination
with complex contextual information, like {NULL,
Operation_performance, faster, Positive} which the
aspect term is implicit. These samples with implicit
targets need to be predicted through more complex
contextual relationships, which places higher re-
quirements on the model’s context understanding
ability.

Leading generative-based ASQP approaches
adopt the generative paradigm, constructing train-
ing samples from corresponding quadruples to fine-
tune pre-trained language models under encoder-
decoder architectures such as T5 (Raffel et al.,
2020). For instance, Zhang et al. (2021b,c) con-
structs predefined templates to convert quadruples
into natural language text to fine-tune the pre-
train language model. Gou et al. (2023) gener-
ates quadruples by defining multiple templates in
different views, allowing the generative model to
learn the connections between different elements
without changing the encoder-decoder structure in
some extent.

Although promising results have been reported,
we observe that they are still prone to incorrect pre-
dictions on challenging samples containing implicit

https://github.com/DMIRLAB-Group/CACA
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targets. Therefore, we conclude that existing ap-
proaches in the ASQP task leading to the following
two main limitations: (i) Generative frameworks
based on pre-trained models rely on a unified learn-
ing process, which cannot effectively distinguish
between learning explicit and implicit targets. As
shown in the Figure 1 for the case of implicit terms,
there can be various combinations of missing enti-
ties, with QUAD#2 and QUAD#3 missing opinion
terms, and QUAD#4 missing aspect terms. Rely-
ing solely on generative models may fail to handle
these scenarios, leading to incorrect predictions.
(ii) Existing solutions cannot effectively learn the
alignment between aspect terms and opinion terms
in cases where terms are missing. This deficiency
prevents them from constructing a substantial con-
nection between implicit and explicit terms, signif-
icantly affecting performance on such data in the
ASQP task.

In this paper, we propose an extractive ASQP
framework CACA, Context-Aware Cross-Attention
Network. To well handle the implicit targets, our
CACA introduce a Implicit Target Extraction mod-
ule, which not only incorporates certain explicit tar-
get contextual information but also uses contrastive
learning to differentiate between the representa-
tions of explicit and implicit targets. Meantime, we
can extract implicit representations with complex
contextual information from this module for use
in other sentiment elements extraction. Next, we
design a cross-attention mechanism to align aspect
terms and opinion terms from both directions. On
one hand, we can model the relationship between
explicit aspect terms and opinion terms. On the
other hand, when one of them is implicit, we can
use the implicit representations learned from Im-
plicit Target Extraction module to accurately cap-
ture other sentiment elements. As the QUAD#1
and QUAD#2 shown in Figure 1, we can not only
effectively align "screen" and "nicer", but also us-
ing the learned implicit opinion representation to
align with "drive space".

To sum up, our proposed CACA framework
makes the following contributions:

• In contrast to leading generative paradigm
for ASQP, our proposed CACA network is
based on extraction and integrates the cross-
attention mechanism to effectively align as-
pect terms and opinion terms.

• For the implicit targets, we devise an Implicit
Target Extraction module which introduces

contrastive learning to make explicit targets
representations more distinguishable from im-
plicit targets representations.

• By integrating the learned implicit represen-
tations with the CACA network, we signifi-
cantly improved the performance on the im-
plicit data subset in the ASQP task.

• We demonstrated the effectiveness of our
CACA through extensive experiments, and
it outperforms the latest baselines on three
benchmarks.

2 Methodology

The overall architecture of CACA is shown in Fig-
ure 2, our network mainly consists of the following
five parts: Span Generation, Explicit Target Extrac-
tion, Implicit Target Extraction, Relation Alignment
using Cross-Attention and Result Inference. Next,
we will describe each one in detail.

2.1 Span Generation
For a input sentence X = {w1, w2, ..., wn}, we
employ the pretrained language model to serve as
the contextual encoder to obtain the base contex-
tual representation H = {h1, h2, ..., hn} ∈ Rn×d,
where n is the length of the given sentence and d
is the dimension of word representations. Then,
we employ the slide window to obtain span-level
representation with a maximum length span of L.
The span representation from i to j words calculates
as follows:

s′i,j = hi ⊕ hj ⊕Mean(hi : hj)⊕ (hj − hi) (1)

si,j = Wss
′
i,j (2)

where Mean represents mean pooling. ⊕ denotes
the concatenation operation. hi : hj(i ≤ j) is a
sentence segment of [hi, hi+1, ..., hj ] and j−i ≤ L.
Ws ∈ R4d×d is the trainable paramters.

However, the span generated by the slide win-
dow contains a large amount of noise, which di-
lutes meaningful span information and hinders the
model’s learning. Therefore, we devise a pruning
rule to remove irrelevant spans. For detail, we use
the Natural Language Toolkit (NLTK1) to prune
spans for each generated span that mainly meet the
following conditions: (i) The length of stop words
exceeds half of the span length. (ii) The span does
not contain at least one adjective, noun, or adverb.

1https://www.nltk.org/

https://www.nltk.org/
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Relation Alignment Using Cross-Attention
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Figure 2: Overview of Context-Aware Cross-Attention Network. On the left side of the figure is the workflow of the
CACA network, while the right side details the specific implementations of the three sub-modules: Explicit Target
Extraction, Implicit Target Extraction and Relation Alignment using Cross-Attention.

After applying the pruning strategy, only M spans
are left out and the final span representation can be
expressed as:

S = {S1, S2, · · · , Si, · · · , SM} (3)

where i represents the ith representation of the span
representation S.

2.2 Explicit Target Extraction

This section focuses on the extraction of explicit
targets (aspect terms and opinion terms) and the
extracted results will be stored in two sets: aspect
term set SetA and opinion term set SetO. Firstly,
we construct two decoders with the same structure
to extract explicit targets. The aspect decoding
process can be described as follows:

S′ = Dropout(Wdown · σ(Wup · S)) (4)

SA = LayerNorm(S′ + S) (5)

where Wdown and Wup are the trainable parameters.
σ is the activation function. Then, the probability
distribution of each span is assessed:

pa = Softmax(WaS
A) (6)

where Wa ∈ RM×T , and T ∈ {Valid, Invalid} is
the set of target classes. Finally, we can obtain

the valid aspect set SetA which contain the span
representations of explicit aspect terms.

Similarly, we can decode opinion terms using
the same structure but with different parameters
to obtain the opinion decoder embeddings SO, the
probability distribution po and the valid opinion
set SetO (refer Appendix A.1 for details). In this
section, the loss is defined as:

LA&O = −
∑
i

yai log (p
a
i )−

∑
i

yoi log (p
o
i ) (7)

where yai and yoi are the true labels of explicit aspect
terms and opinion terms.

2.3 Implicit Target Extraction
In this section, we need to predict whether the sen-
tence contains implicit targets. We capture the
association between spans through self-attention
mechanisms.

Scontext = Softmax(
QW c

q (KW c
k )

T

√
dk

) · VW c
v (8)

where Q=K=V =S and W c
q ,W

c
k ,W

c
v are the train-

able parameters. dk represents the scaling factor.
Depending on the type of prediction task, we inte-
grate different target decoders. Then we perform
binary classification on the sentence to determine
the presence of implicit targets.

To ensure that the representations of sentences
with implicit targets are farther apart from those
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without implicit targets in the representation space,
we introduce Supervised Contrastive Learning
(Gunel et al., 2020). Specifically, within the same
batch, texts containing implicit targets are treated
as positive samples, while those without implicit
targets are considered negative samples. The pro-
cess can be represented as:

Simp,a = FNNa(Concat(Mean(Scontext, SA)) (9)

pimp,a = Softmax(W a
impS

imp,a) (10)

where W a
imp ∈ Rb×2. For each sample in mini-

batch B, our implicit contrastive learning loss for
aspect is defined as:

La
i = − 1

M(i)

∑
j∈M(i) log

exp(sim(ua
i ,u

a
j )/τ)∑B

k=1 exp(sim(ua
i ,u

a
k)/τ)

(11)
where M(i) denotes the set of examples with the
same label and k ̸= i. uai is the ith representa-
tion of Simp,a, τ is the temperature coefficient.
sim(ui, uj) is the formula for calculating cosine
similarity.

Similarly, we can use the same approach to pre-
dict whether a sentence has implicit opinion terms
(refer Appendix A.2 for details). And the total
loss for Implicit Target Extraction module can be
defined as:

LIMP = Limp,a&o + αLa
CL + βLo

CL (12)

Limp,a&o = −
∑
i

yimp,a
i log (pimp,a

i )

−
∑
i

yimp,o
i log (pimp,o

i )
(13)

La
CL =

∑
La
i ,Lo

CL =
∑

Lo
i (14)

where α and β are hyper parameters. yimp,a
i , yimp,o

i

are the ground truth labels whether the sentence
has implicit targets. For sentences that the model
identifies as containing implicit targets, we save
their representations for subsequent extraction of
other sentiment elements as shown in Figure 2.

2.4 Relation Alignment Using Cross-Attention

In Section 2.2 and 2.3, we obtain the explicit and
implicit representation. The key to enhancing pre-
diction performance lies in effectively aligning and
learning the relationship between aspect terms and
opinion terms, especially the explicit and implicit
alignment level. Therefore, we align their relation
from two directions based on cross-attention.

For the direction of aspect to opinion, we use
a cross-attention mechanism to incorporate SO as
supplementary information, which helps in better
capturing the opinion terms corresponding to the
specific aspect terms:

Sinter
a→o = Softmax(

SAW 1
q (S

OW 1
k )

T

√
dk

) · SOW 1
v (15)

SA′
= W 1 · (LayerNorm(SA + Sinter

a→o ) (16)

where W 1
q ,W

1
k ,W

1
v and W 1 are the trainable pa-

rameters. Then we fuse the SetA from Section 2.2
into SA′

by a Cross-Attention Block to obtain the
opinion span most relevant to a specific aspect.

Aa→o = Softmax(
SA′

W 2
q (Set

AW 2
k )

T

√
d

) (17)

qa→o = Wa→o(A
a→o · SA′

W 2
v ) (18)

p(o|a) = Softmax(qa→o) (19)

where Wo→a ∈ RM×s, and s ∈ {Positive, Nega-
tive, Neural, Invalid} is the sentiment class of every
span. p(o|a) is a probability distribution indicating
the likelihood of all possible opinion terms given
the aspect term.

When the existence of implicit aspect terms is
confirmed in Section 2.3, we utilize the implicit
representations Simp,a to effectively align the rela-
tionship with the opinion terms as illustrated on the
right side of the module in Figure 2. For the issue
of missing both aspect and opinion terms, we set
implicit placeholders in the sequence, so that the
model can also align the relationship between them
by an complex contextual semantic understanding.

For the opinion to aspect direction, we calculate
qo→a and p(a|o) in the same manner (refer Ap-
pendix A.3 for details). We can define the loss of
this section:

LA↔O = −λ
∑
i

∑
j

ya→o log (pa→o)

−(1− λ)
∑
i

∑
j

yo→a log (po→a)
(20)

where ya→o and yo→a are the true labels for the
sentiment of every span. λ is the loss weight for
the two directions.

2.5 Result Inference
Category Classifier For aspect categories, we
abandon the method of predicting categories solely
based on aspect terms. Instead, we utilize repre-
sentations formed by concatenating aspect terms
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and opinion terms to predict the category for each
tuple. This method can not only be applied to
multi-category aspect terms, but also well reflect
their category information through opinion terms
when the aspect terms are implicit. In such im-
plicit cases, the opinion term can better reflect the
category information of the quadruple.

Given the previous SetA and SetO, we perform
a similar Cartesian product to classify each tuple:

pci,j = FNNc(Concat(SetAi , Set
O
j )) (21)

where i and j represent the ith aspect term and
jth opinion term, Wc ∈ Rk×c, k is the number of
combinations of aspect terms and opinion terms, c
is the number of category classes. The loss of this
subsection can be defined as:

LC = −
∑
i

∑
j

yci,j log (p
c
i,j) (22)

where yci,j is the true labels of the aspect category.
Then we can obtain the (a,o,c) set as Vc.
Elimination Strategy After generating (a, o, s)
pairs based on the Section 2.4, tuple conflicts (i.e.,
the same a, o but different s) inevitably arise. To
address the issue of model consistency, previous
methods often resolved conflicts by selecting re-
sults with higher sentiment probabilities.

V ′ =

{
(a, o, sa→o) sa→o > so→a

(a, o, so→a) sa→o < so→a
(23)

where sa→o and so→a represent the sentiment po-
larity probabilities in both directions, respectively.

However, they did not consider the impact of er-
roneous answers caused by sample uncertainty and
noise, which also affects performance. Therefore,
we set an additional confidence threshold to elimi-
nate incorrect or uncertain answers from the model.
The threshold calculation formula is as follows:

p(a, o) =

{
p(a)p(o|a) if a → o
p(o)p(a|o) if o → a

(24)

V ′′ = {(a, o, s) | p(a, o) > δ} (25)

Vs = V ′ ∩ V ′′ (26)

where δ represents the threshold. V ′′ is the set
obtained by threshold filtering from two directions.
Vs is the (a,o,s) set after elimination. Then,we can
merge sets Vc and Vs to finally obtain the (a, o, c,
s) quad set Vquad.

2.6 Training

The training objective is to minimize the total loss
function, which is defined as follows:

L(Θ) = LA&O + LIMP + LA↔O + LC (27)

where Θ denotes all trainable parameters of the
model. The four losses originate from the four
main components of our model.

3 Experiments

3.1 Set up

Datasets To validate the effectiveness of our model,
we conducted experiments separately on Restau-
rant, Laptop datasets (Cai et al., 2021b) and Phone
dataset (Zhou et al., 2023). The last dataset has
the larger size, more words per sample and higher
density compared to the other two datasets. Restau-
rant and Laptop datasets contain implicit aspect
and opinion terms while Phone dataset contains
no samples with implicit aspect terms. The data
distribution is shown in Table 1.

Samples Categories
Quadruples

EA&EO EA&IO IA&EO IA&IO

Restaurant 2286 13
2429

(66.40%)

350
(9.57%)

530
(14.49%)

349
(9.54%)

Laptop 4076 121
3269

(56.77%)

1237
(21.48%)

910
(15.80%)

342
(5.94%)

Phone 7115 88
13160

(82.86%)

2724
(17.14%)

N/A N/A

Table 1: The data distribution of three datasets, where
EA, EO, IA, and IO respectively represent explicit as-
pect and opinion terms, implicit aspect and opinion
terms.

Evaluation Metrics We utilize the F1 score as
the primary evaluation metric and report the corre-
sponding precision and recall scores. During the
experiment, a quadruple prediction is considered
correct only when all predicted elements match the
gold labels entirely.
Implementation Details We use the pre-trained
model of DeBERTaV3-base2 and DeBERTaV3-
large3 (He et al., 2021), which has a richer corpus
than BERT (Devlin et al., 2018). The AdamW op-
timizer (Loshchilov and Hutter, 2017) is employed
during the model training process with a learning
rate set to 10−4 and the tempertature τ set to 0.07.
The loss weights (α, β, λ) are set to (0.5,0.5,0.7)

2https://huggingface.co/microsoft/
deberta-v3-base

3https://huggingface.co/microsoft/
deberta-v3-large

https://huggingface.co/microsoft/deberta-v3-base
https://huggingface.co/microsoft/deberta-v3-base
https://huggingface.co/microsoft/deberta-v3-large
https://huggingface.co/microsoft/deberta-v3-large
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Model
Restaurant Laptop Phone

P R F1 P R F1 P R F1

Extract-Classify(Cai et al., 2021b) 38.54 52.96 44.61 45.56 29.48 35.80 31.28 33.23 32.23

GAS(Zhang et al., 2021c) 60.69 58.52 59.59 41.60 42.75 42.17 50.72 48.15 49.40

Paraphrase(Zhang et al., 2021b) 58.98 59.11 59.04 41.77 45.04 43.34 46.72 49.84 48.32

GEN-SCL-NET†(Peper and Wang, 2022) 59.46 58.78 59.12 44.13 43.11 43.61 45.16 51.56 48.15

OTP(Bao et al., 2023) 71.13 56.08 62.71 45.12 37.91 41.20 - - -

MVP(Gou et al., 2023) 60.86 59.84 60.35 44.38 43.34 43.85 52.00 52.44 52.22

One-ASQP(Zhou et al., 2023) 65.91 56.24 60.69 43.80 39.54 41.56 57.42 50.96 54.00

IACOS(Xu et al., 2024) 57.24 53.21 55.15 49.59 34.65 40.80 - - -

Llama2†(Touvron et al., 2023) 61.27 60.65 60.95 43.76 43.17 43.46 51.67 51.37 51.52

GPT-4o mini(15-shot)† 41.39 35.42 38.17 16.95 15.01 15.92 26.14 17.78 21.16

CACA(base) 66.31 61.24 63.16 45.26 41.37 43.22 66.40 46.39 54.59

CACA(large) 67.45 62.53 64.67 46.30 43.19 44.69 63.78 49.35 55.65

Table 2: Results of Restaurant, Laptop and Phone Datasets compared to other baselines. Most results are from their
original papers, with those marked with an "†" indicating our own reproduced results.

and the threshold δ is set to 0.9. We train our frame-
work in a total of 200 epochs on the NVIDIA 3090
GPU. We utilize the validation set to select the best
checkpoint for final testing. The experiment was
conducted under five different random seeds and
the final score was based on the average of these
five runs.
Baseline We compare our method against several
strong baselines for ASQP as follows:

• The extractive-based methods: Extract-
Classify (Cai et al., 2021b), One-ASQP (Zhou
et al., 2023), IACOS (Xu et al., 2024);

• The generative-based methods: GAS
(Zhang et al., 2021c), Paraphrase (Zhang et al.,
2021b), MVP (Gou et al., 2023), GEN-SCL-
NET (Peper and Wang, 2022), OTP (Bao et al.,
2023);

• We alse benchmark popular LLMs like
LLaMa-7B (Touvron et al., 2023) which we
fine-tune it on the three datasets and GPT-4o
mini4. Detailed setups and more results for
GPT-4o mini are described in Appendix A.4.

3.2 Main Results

The results of all baselines on the experimental
datasets are shown in Table 2. We can see that
our model outperforms all baselines, particularly in
terms of F1 score. It is evident that our model has

4https://openai.com/

certain advantages compared to the latest genera-
tive models. Regarding precision, our confidence-
based elimination strategy filters out a batch of
incorrect predictions, resulting in outstanding pre-
cision performance across all baselines. For the F1
scores, our model surpasses the best-performing
baseline by nearly 2 F1-score on the Restaurant
and Phone dataset. We also apply CACA to the
Pair-wise Aspect and Opinion Terms Extraction
(PAOTE) task and achieve excellent results (refer
section 4.2 for details).

In addition, to validate the model’s performance
on different types of data, we divided the test set
into multiple subsets based on explicit and implicit
targets. We calculated the F1 score for each subset
and the results are shown in Table 3. By observing
the data, our method generally achieved better re-
sults on targets with implicit aspects. In the Restau-
rant dataset, our method improved by nearly 19%
over the best baseline on EA&IO. This indicates
that we have effectively aligned the relationship
between implicit and explicit targets.

3.3 Ablation Study

To validate the effectiveness of each module, we
conducted ablation experiments on three datasets,
focusing on the bidirectional interactive decoding
model, contrastive learning in the implicit mod-
ule and the elimination strategy. As shown in Ta-
ble 4, the effectiveness of our modules was con-
firmed. The aspect term to opinion term direction
of decoding had the most significant impact on the

https://openai.com/
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Model
Restaurant Laptop Phone

EA&EO EA&IO IA&EO IA&IO EA&EO EA&IO IA&EO IA&IO EA&EO EA&IO

Extract-Classify 45.0 23.9 34.7 N/A 35.4 16.8 39.0 N/A 35.2 24.2

Paraphrase 65.4 45.6 53.3 45.6 45.7 33.0 51.0 39.6 49.1 45.6

GEN-SCL-NAT 66.5 46.2 56.5 50.7 45.8 34.3 54.0 39.6 50.1 45.4

One-ASQP 66.3 31.1 64.2 N/A 44.4 26.7 53.5 N/A 54.8 52.9

CACA 69.5 55.2 60.3 55.8 44.9 35.3 54.8 41.2 57.1 54.1

Table 3: The F1 scores on testing subsets with the combinations of the explicit and implicit targets.

Ablation Study Restaurant Laptop Phone Avg.∆

CACA 64.67 44.69 55.65 -

w/o A→O Direction 63.07 43.51 54.33 -1.37

w/o O→A Direction 64.03 43.78 54.58 -0.87

w/o La
CL & Lo

CL 63.47 43.60 55.03 -0.91

w/o Elimination Strategy 63.26 43.36 54.67 -1.24

Table 4: The ablation experiments on individual mod-
ules.

EA&EO EA&IO IA&EO IA&IO

40

60

80

A
cc

ur
ac

y(
%

)

O→A A→O A↔ O

Figure 3: Accuracy of different implicit and explicit
target combinations on the restaurant dataset

model. While opinion terms do guide aspect terms
to some extent, aspect terms are the core of the en-
tire quadruple, and decoding from opinion terms to
aspect terms is more of an auxiliary role. Secondly,
the elimination strategy proved effective, indicat-
ing that the model produced a considerable number
of low-confidence answers, which were often in-
correct. In general, we believe that the structure
we devised is effectively validated for quadruple
application.

4 Discussion and Analysis

4.1 The performance on implicit level
We have already discussed the effects under differ-
ent implicit combination subsets in Section 3.2. Ad-
ditionally, we similarly divided the data of Restau-
rant dataset as shown in Table 1 and calculated the
accuracy of aspect terms and opinion terms from
both unidirectional and bidirectional perspectives

Figure 4: The representation space with the contrastive
learning on the Restaurant dataset.

without considering the categories and sentiment
polarity as shown in Figure 3. We observed that
when we consider results from both directions, the
accuracy of implicit aspect-opinion pairs shows a
significant improvement. This validates the effec-
tiveness of addressing implicit target recognition
from both directions.

For the implicit representation, we employed
contrastive learning in implicit target extraction.
Figure 4 illustrates the implicit representation space
under aspect terms in the Restaurant dataset. It is
evident that after incorporating contrastive learning,
the boundary between explicit and implicit repre-
sentation spaces becomes more distinct in the right
image.

4.2 The performance on PAOTE task

To demonstrate our CACA’s ability to effectively
integrate the relationship between aspect and opin-
ion, and to better model their correlation, we apply
the model to the PAOTE task with widely used
datasets, which focus on modeling between aspect
and opinion. We compared with the latest baseline
methods (SpanMlt (Zhao et al., 2020), GTS (Wu
et al., 2020), LAGCN (Wu et al., 2021), MAIN (Liu
et al., 2022)) and the results are shown in Table 5.

As indicated by the results, our model outper-
forms all methods by approximately 4 F1 points
across four benchmark datasets. This demonstrates
CACA’s effectiveness in simultaneously extracting
aspect and opinion terms, enabling a better cap-
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Single-Implicit Samples Multi-Implicit Samples

Sample1: the crowd is mixed yuppies , young and old.
Gold:     A: crowed   O: NULL   C: Restaurant#Miscellaneous S:Neutral
Result:  A: crowed   O: NULL   C: Restaurant#Miscellaneous  S:Positive

Sample2: I felt ackward and next time went to the casino bathroom.sample
Gold:     A: NULL     O: ackward  C: Restaurant#Miscellaneous S:Negative
Result:  A: NULL     O: ackward   C: Restaurant#Miscellaneous S:Negative

Sample1:the anti-reflective coating will wear off and it isn't covered under apple's warranty.
Gold:  

Result: 

Sample2: it’s very portable and battery should last full day of normal usage.
Gold:  

Result: 

A: apple's warranty O: NULL  C: Support#General     S: Negative  
A: anti-reflective coating O: NULL  C: Laptop#Quality       S: Negative

A: apple's warranty O: NULL  C: Warranty#General   S: Neutral
A: anti-reflective coating O: NULL  C: Laptop#Quality       S: Negative

A: battery O: NULL   C: Battery#Operation_performance  S: Positive
A: NULL  O: portable C: Laptop#Portabliity                        S: Negative
A: battery O: NULL   C: Power#Operation_performance    S: Positive
A: NULL  O: portable C: Laptop#Portabliity                        S: Negative

Sample3: Once you're inside ,the real experience begins.
Gold:     A: NULL O: NULL C: Restaurant#General S:Positive
Result:  A: NULL O: NULL C: Service#General S:Positive

Figure 5: The case study of our model.

ture of fine-grained sentiment information in text.
And by the alignment of aspect and opinion terms,
CACA fully leverages the relationship between as-
pect terms and opinion terms, significantly enhanc-
ing extraction accuracy and realation consistency.

Model 14lap 14res 15res 16res

SpanMlt(Zhao et al., 2020) 68.66 75.60 64.68 71.78

GTS(Wu et al., 2020) 65.67 75.53 67.53 74.62

LAGCN(Wu et al., 2021) 68.88 76.62 68.91 76.59

MAIN(Liu et al., 2022) 69.86 77.54 70.92 77.97

CACA 73.87 81.42 75.15 82.70

Table 5: The F1 scores on PAOTE task with our align-
ment network and the results are cited from their original
publications.

4.3 Effect of threshold δ and loss weight λ

Th threshold δ represents the confidence boundary
in the model’s elimination strategy. When δ is set
to 0.9, the model’s performance is at its best. This
indicates that the model indeed has a portion of
low-confidence incorrect answers and validates the
effectiveness of the Elimination Strategy. The λ
value denotes the loss weigths in different direc-
tions in aspect and opinion terms. By adjusting λ,
our CACA can focus more on a specific direction,
thereby improving overall performance. As the Ta-
ble 6 is shown, when λ is set to 0.3, the model’s
performance decreases to some extent. However,
when set to 0.7, the model’s performance improves.
This indicates that focusing on the alignment di-
rection from aspect terms to opinion terms plays a
crucial role in improving the extraction of quadru-
ples. In other words, aspect terms have a stronger
directional influence on opinion terms. Nonethe-
less,observing the ablation experiments also reveals
that another direction contributes to a little perfor-
mance improvement.

Hyperparamters Restaurant Laptop Phone

δ =

0.6 63.92 43.78 54.39

0.7 63.87 43.97 54.56

0.8 64.09 44.35 55.43

0.9 64.67 44.69 55.65

λ =

0.3 63.75 44.06 54.34

0.5 64.13 44.29 55.13

0.7 64.67 44.69 55.65

Table 6: Model performance under different δ and λ
hyperparameters.

4.4 The Effect of T5-Encoder
To validate the indivisibility of the encoder-decoder
architecture in generative models, we extracted the
T5 encoder and applied it to our model. The re-
sults, as shown in the Table 7, fully demonstrate
the inherent limitations of generative models.

PLM Parameters Restaurant Laptop

T5-base encoder 110M 59.27 41.42

DebertaV3-base 86M 63.16 43.22

DebertaV3-large 304M 64.67 44.69

Table 7: The T5-Encoder’s Effect of Our Structure.

4.5 Case Study
We conduct a case study on CACA with a few
examples as shown in Figure 5. We divided the
samples into two categories: single-implicit and
multi-implicit, and displayed some errors that oc-
curred. In single implicit samples, our first sample
made an error in polarity judgment, while in the
third sample, there was an error in category judg-
ment, which may be due to issues arising from
the imbalance in the dataset distribution. In multi-
implicit samples, we also encountered some errors
in predicting sentiment polarity and aspect category
classification. However, despite the complexity of
multiple implicit targets, our CACA still performs
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Datasets
Single Element Pair Elements Triple Elements

A O C S A&O C&S O&C&S A&C&S A&O&S A&O&C

Restaurant 29.32% 27.16% 35.16% 47.38% 12.78% 30.73% 14.64% 15.51% 9.90% 5.30%

Laptop 54.68% 52.39% 32.86% 63.81% 40.31% 29.01% 11.76% 18.80% 36.33% 4.80%

Phone 19.36% 26.16% 26.75% 63.65% 9.12% 22.84% 7.46% 9.91% 7.24% 2.07%

Table 8: The error rate of the remaining elements after excluding the corresponding element, where A, O, C, and S
represent Aspect Term, Opinion Term, Aspect Category, and Sentiment Polarity, respectively.

well in accurately predicting the presence of multi-
implicit targets. This strongly demonstrates the
classification capability of our model in handling
implicit issues.

4.6 Further Error Analysis

To further explore which element the model per-
forms best on and where there is still room for
improvement, we calculated the overall error rate
of the remaining elements when one, two, or three
elements are correctly predicted. The error rates
for various cases are shown in the Table 8.

Specifically, when only one element is correctly
predicted, the overall error rate for the remaining
three elements is higher. Among these, when sen-
timent is correct, the model exhibits the highest
error rate, indicating that predicting the other three
elements is more challenging compared to senti-
ment polarity. When two elements are correctly
predicted, the error rates for the other two elements
are below 30%, especially for the category and
sentiment polarity. This demonstrates the effective-
ness of our model in extracting and aligning aspect
terms and opinion terms. When aspect terms and
opinion terms are correct, the error rate is around
10% except for the laptop dataset, which is due
to the specific nature of its categories. When all
three elements are correctly predicted, it can be
observed that sentiment polarity has the least im-
pact, while category has the greatest impact on the
laptop dataset.

5 Related Work

With the rapid development of ASQP, the quadru-
ple extraction task is mainly divided into two cat-
egories: generative-based methods and the other
based on extractive methods.
Generative methods: Previous works design novel
approaches based on tree structure (Mao et al.,
2022; Bao et al., 2022, 2023); Some introduce con-
trastive learning to the generative models (Peper
and Wang, 2022; Li et al., 2024); Moreover,

Some researchers enhance their generative models
through data augmentation techniques (Hu et al.,
2022; Yu et al., 2023; Wang et al., 2023; Zhang
et al., 2024b,c).

However, although all generative models have
rich pre-trained knowledge, they are limited by the
inherent encoder-decoder structure and cannot well
perceive the implicit existence by building unique
structural modeling complex context information.
Extractive methods: There are relatively few stud-
ies focusing on the extraction of all four elements.
Cai et al. (2021b) first used an extractive approach
to solve the ASQP task. Zhou et al. (2023); Zhang
et al. (2024a) decompose the quadruple extraction
task into multiple subtasks. Xu et al. (2024) lever-
ages informative and adaptive negative examples
to jointly train the multi-label classifier and the
other two classifiers on categories and sentiments
by multi-task learning.

However, in all quadruple works recent years,
there are few researchers investigating how to bet-
ter align implicit and explicit terms, and well utilize
the contextual information to improve the perfor-
mance of the implicit target. Our proposed method
of using constrastive learning to obtain the implicit
representation and Context-Aware Cross-Attention
Network can enhance the alignment of aspect terms
and opinion terms effectively.

6 Conclusions

In this paper, we proposed the CACA network to
tackle the issue of implicit target and enhance the
alignment of the aspect terms and opinion terms.
We introduce contrastive learning to make explicit
target representations more distinguishable from
implicit target representations. By integrating with
the CACA network, the relationship between as-
pect terms and opinion terms is effectively aligned,
whether explicit or implicit. Experiments on three
benchmark datasets demonstrate that our model
outperforms the baselines.
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Limitations

Our CACA model also has some limitations. Our
model often makes errors when dealing with nu-
merous aspect categories that have few labeled
examples. Therefore, it is crucial to investigate
more resilient approaches for identifying aspect
categories in low-resource settings. Moreover, our
model makes a bad performance when handling
neutral text. This could be due to the presence of
certain sentiment words in the samples, which may
affect the judgment of sentiment polarity, causing
entities that originally lack polarity to be assigned
a certain sentiment. This is also the main research
direction in the future. We can consider integrating
data augmentation to improve the performance on
these data.
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as follows:

S′ = Dropout(W ′
down · σ(W ′

up · S)) (28)

SO = LayerNorm(S′ + S) (29)

po = Softmax(Wo(S
O)) (30)

LO = −
∑
i

yoi log (p
o
i ) (31)

where W ′
down, W ′

up and Wo are the trainable pa-
rameters. σ is the activation function. yoi is the
ground truth labels of the opinion terms. poi is the
probability distribution of opinion terms.

A.2 The Implicit Opinion Module
We use a similar approach to predict whether im-
plicit opinion terms exist in the text by building a
classifier and incorporating contrastive learning to
distinguish between texts containing implicit terms
and those containing only explicit terms. The spe-
cific formula representation and loss are as follows:

Simp,o = FNNa(Concat(Mean(Scontext, SO))
(32)

pimp,o = Softmax(W o
impS

imp,o) (33)

Limp,o = −
∑
i

yimp,o
i log (pimp,o

i ) (34)

where Scontext is given by the formula equation 8.
W o

imp ∈ Rb×2 is the trainable parameters. yimp,o
i

is the label that indicates whether the text contains
implicit opinion terms. pimp,o

i is the corresponding
probability distribution.

For each sample in mini-batch B, our implicit
contrastive learning loss for opinion is defined as:

Lo
i = − 1

M(i)

∑
j∈M(i) log

exp(sim(uo
i ,u

o
j )/τ)∑B

k=1 exp(sim(uo
i ,u

o
k)/τ)

(35)
where M(i) denotes the set of examples with the
same label and k ̸= i. uoi is the ith representation
of Simp,o, τ is the temperature coefficient.

A.3 Alignment from Opinion to Aspect
For the another direction from opinion to aspect,
the specific formula is as follows:

Sinter
o→a = Softmax(

SOW 3
q (S

AW 3
k )

T

√
d

) · SAW 3
v

(36)
SO′

= W 3 · (LayerNorm(SO + Sinter
o→a ) (37)

where W 3
q ,W

3
k ,W

3
v and W 3 are the trainable pa-

rameters.

Similarly, we use the module shown in the Fig-
ure 2 to identify the aspect term information most
relevant to the specific opinion term.

Ao→a = Softmax(
SO′

W 4
q (Set

OW 2
k )

T

√
dk

) (38)

qo→a = Wo→a(A
o→a · SO′

W 4
v ) (39)

p(a|o) = Softmax(qo→a) (40)

where Wo→a ∈ RM×s, and s ∈ {Positive, Nega-
tive, Neural, Invalid} is the sentiment class of every
span. p(a|o) is a probability distribution indicating
the likelihood of all possible opinion terms given
the aspect term.

A.4 Experiments with ChatGPT
For the GPT model, we utilize In-Context Learning
(Brown et al., 2020). For detail, we used the prompt
provided in the DOT (Jun and Lee, 2024) and ran-
domly sampled a specified number of instances.
The prompt templates we used are shown in the
Figure 6, and we conducted the corresponding ex-
periments in a few-shot manner on ChatGPT-4o
mini. The results are shown in the Table 9.

It is evident that GPT has certain limitations
when handling the more complex quad extraction
task. However, as the number of samples provided
in the prompt increases, there can be some improve-
ment in the model’s performance. Yet, compared
to smaller models, the performance gap is still sig-
nificant, almost more than double. In our experi-
ments, we conducted a sampling inspection of the
samples extracted by the LLMs and found that the
errors were mainly due to the predicted entity tar-
gets being overly complex, with some irrelevant
information mixed in. Additionally, the predictions
of implicit targets were often haphazard, frequently
misidentifying texts without implicit entities as hav-
ing them, which negatively impacted the model’s
performance.
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Shot Numbers
Restaurant Laptop Phone

P R F1 P R F1 P R F1

0-shot 17.20 16.66 16.93 10.08 9.93 10.01 9.39 7.28 8.2

5-shot 33.33 29.34 31.21 12.26 10.98 11.58 20.85 14.14 16.85

10-shot 36.58 32.03 34.15 15.04 13.23 14.08 25.90 17.75 21.06

15-shot 41.39 35.42 38.17 16.95 15.01 15.92 26.14 17.78 21.26

CACA 67.45 62.53 64.67 46.30 43.19 44.69 63.78 49.35 55.65

Table 9: The F1 results on GPT-4o mini with different shot numbers and the same prompt template.

Prompt

According to the following sentiment elements definition :

- The 'aspect term' refers to a specific feature, attribute, or aspect of a productor service that a user may express 

an opinion about, the aspect term might be 'null' for implicit aspect.

- The 'opinion term' refers to the sentiment or attitude expressed by a user towards a particular aspect or feature 

of a product or service, the aspect term might be 'null' for implicit opinion.

- The 'aspect category' refers to the category that aspect belongs to, and the available categories includes: 

{dataset specific categories}. 

- The 'sentiment polarity' refers to the degree of positivity, negativity or neutrality expressed in the opinion 

towards a particular aspect or feature of a product or service , and the available polarities includes: 'positive ', 

'negative' and 'neutral ‘.

Recognize all sentiment elements with their corresponding aspect terms , aspect categories , opinion terms and 

sentiment polarity in the following text with the format of [('aspect term', 'opinion term', 'aspect category', 'sentiment 

polarity'), ...]:

<Example#1 Start>

Sentence: {Sentence}

Output: {Tuple List}

<End>

....

<Input>

Sentence: {Sentence}

Output: 

Figure 6: The prompt template we used on GPT-4o mini.


	Introduction
	Methodology
	Span Generation
	Explicit Target Extraction
	Implicit Target Extraction
	Relation Alignment Using Cross-Attention
	Result Inference
	Training

	Experiments
	Set up
	Main Results
	Ablation Study

	Discussion and Analysis
	The performance on implicit level
	The performance on PAOTE task
	Effect of threshold  and loss weight  
	The Effect of T5-Encoder
	Case Study
	Further Error Analysis

	Related Work

	Conclusions
	Appendix
	The Opinion Decoder
	The Implicit Opinion Module
	Alignment from Opinion to Aspect
	Experiments with ChatGPT


