@inproceedings{yang-etal-2025-sccd,
title = "{SCCD}: A Session-based Dataset for {C}hinese Cyberbullying Detection",
author = "Yang, Qingpo and
Chen, Yakai and
Xu, Zihui and
Shang, Yu-ming and
Guo, Sanchuan and
Zhang, Xi",
editor = "Rambow, Owen and
Wanner, Leo and
Apidianaki, Marianna and
Al-Khalifa, Hend and
Eugenio, Barbara Di and
Schockaert, Steven",
booktitle = "Proceedings of the 31st International Conference on Computational Linguistics",
month = jan,
year = "2025",
address = "Abu Dhabi, UAE",
publisher = "Association for Computational Linguistics",
url = "https://aclanthology.org/2025.coling-main.639/",
pages = "9533--9545",
abstract = "The rampant spread of cyberbullying content poses a growing threat to societal well-being. However, research on cyberbullying detection in Chinese remains underdeveloped, primarily due to the lack of comprehensive and reliable datasets. Notably, no existing Chinese dataset is specifically tailored for cyberbullying detection. Moreover, while comments play a crucial role within sessions, current session-based datasets often lack detailed, fine-grained annotations at the comment level. To address these limitations, we present a novel Chinese cyberbullying dataset, termed SCCD, which consists of 677 session-level samples sourced from a major social media platform Weibo. Moreover, each comment within the sessions is annotated with fine-grained labels rather than conventional binary class labels. Empirically, we evaluate the performance of various baseline methods on SCCD, highlighting the challenges for effective Chinese cyberbullying detection."
}
<?xml version="1.0" encoding="UTF-8"?>
<modsCollection xmlns="http://www.loc.gov/mods/v3">
<mods ID="yang-etal-2025-sccd">
<titleInfo>
<title>SCCD: A Session-based Dataset for Chinese Cyberbullying Detection</title>
</titleInfo>
<name type="personal">
<namePart type="given">Qingpo</namePart>
<namePart type="family">Yang</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Yakai</namePart>
<namePart type="family">Chen</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Zihui</namePart>
<namePart type="family">Xu</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Yu-ming</namePart>
<namePart type="family">Shang</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Sanchuan</namePart>
<namePart type="family">Guo</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Xi</namePart>
<namePart type="family">Zhang</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<originInfo>
<dateIssued>2025-01</dateIssued>
</originInfo>
<typeOfResource>text</typeOfResource>
<relatedItem type="host">
<titleInfo>
<title>Proceedings of the 31st International Conference on Computational Linguistics</title>
</titleInfo>
<name type="personal">
<namePart type="given">Owen</namePart>
<namePart type="family">Rambow</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Leo</namePart>
<namePart type="family">Wanner</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Marianna</namePart>
<namePart type="family">Apidianaki</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Hend</namePart>
<namePart type="family">Al-Khalifa</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Barbara</namePart>
<namePart type="given">Di</namePart>
<namePart type="family">Eugenio</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Steven</namePart>
<namePart type="family">Schockaert</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<originInfo>
<publisher>Association for Computational Linguistics</publisher>
<place>
<placeTerm type="text">Abu Dhabi, UAE</placeTerm>
</place>
</originInfo>
<genre authority="marcgt">conference publication</genre>
</relatedItem>
<abstract>The rampant spread of cyberbullying content poses a growing threat to societal well-being. However, research on cyberbullying detection in Chinese remains underdeveloped, primarily due to the lack of comprehensive and reliable datasets. Notably, no existing Chinese dataset is specifically tailored for cyberbullying detection. Moreover, while comments play a crucial role within sessions, current session-based datasets often lack detailed, fine-grained annotations at the comment level. To address these limitations, we present a novel Chinese cyberbullying dataset, termed SCCD, which consists of 677 session-level samples sourced from a major social media platform Weibo. Moreover, each comment within the sessions is annotated with fine-grained labels rather than conventional binary class labels. Empirically, we evaluate the performance of various baseline methods on SCCD, highlighting the challenges for effective Chinese cyberbullying detection.</abstract>
<identifier type="citekey">yang-etal-2025-sccd</identifier>
<location>
<url>https://aclanthology.org/2025.coling-main.639/</url>
</location>
<part>
<date>2025-01</date>
<extent unit="page">
<start>9533</start>
<end>9545</end>
</extent>
</part>
</mods>
</modsCollection>
%0 Conference Proceedings
%T SCCD: A Session-based Dataset for Chinese Cyberbullying Detection
%A Yang, Qingpo
%A Chen, Yakai
%A Xu, Zihui
%A Shang, Yu-ming
%A Guo, Sanchuan
%A Zhang, Xi
%Y Rambow, Owen
%Y Wanner, Leo
%Y Apidianaki, Marianna
%Y Al-Khalifa, Hend
%Y Eugenio, Barbara Di
%Y Schockaert, Steven
%S Proceedings of the 31st International Conference on Computational Linguistics
%D 2025
%8 January
%I Association for Computational Linguistics
%C Abu Dhabi, UAE
%F yang-etal-2025-sccd
%X The rampant spread of cyberbullying content poses a growing threat to societal well-being. However, research on cyberbullying detection in Chinese remains underdeveloped, primarily due to the lack of comprehensive and reliable datasets. Notably, no existing Chinese dataset is specifically tailored for cyberbullying detection. Moreover, while comments play a crucial role within sessions, current session-based datasets often lack detailed, fine-grained annotations at the comment level. To address these limitations, we present a novel Chinese cyberbullying dataset, termed SCCD, which consists of 677 session-level samples sourced from a major social media platform Weibo. Moreover, each comment within the sessions is annotated with fine-grained labels rather than conventional binary class labels. Empirically, we evaluate the performance of various baseline methods on SCCD, highlighting the challenges for effective Chinese cyberbullying detection.
%U https://aclanthology.org/2025.coling-main.639/
%P 9533-9545
Markdown (Informal)
[SCCD: A Session-based Dataset for Chinese Cyberbullying Detection](https://aclanthology.org/2025.coling-main.639/) (Yang et al., COLING 2025)
ACL