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Abstract

Information diffusion prediction is crucial for
understanding how information spreads within
social networks, addressing both macroscopic
and microscopic prediction tasks. Macroscopic
prediction assesses the overall impact of diffu-
sion, while microscopic prediction focuses on
identifying the next user likely to be influenced.
However, few studies have focused on both
scales of diffusion. This paper presents Hy-
perIDP, a novel Hypergraph-based model de-
signed to manage both macroscopic and micro-
scopic Information Diffusion Prediction tasks.
The model captures interactions and dynamics
of cascades at the macro level with hypergraph
neural networks (HGNNs) while integrating
social homophily at the micro level. Consider-
ing the diverse data distributions across social
media platforms, which necessitate extensive
tuning of HGNN architectures, a search space
is constructed to accommodate diffusion hy-
pergraphs, with optimal architectures derived
through differentiable search strategies. Addi-
tionally, cooperative-adversarial loss, inspired
by multi-task learning, is introduced to ensure
that the model can leverage the advantages of
the shared representation when handling both
tasks, while also avoiding potential conflicts.
Experimental results show that the proposed
model significantly outperforms baselines.

1 Introduction

Social platforms are integral to modern life, enhanc-
ing instant communication and facilitating rapid
information dissemination. User activity patterns
within these networks are crucial to the spread of in-
formation, often resulting in information cascades.
A comprehensive understanding of the mechanisms
underlying information diffusion offers significant
economic and social benefits, with applications in
areas such as fake news detection (Kim et al., 2021),
viral marketing (AlSuwaidan and Ykhlef, 2016),
and recommendation systems (Wu et al., 2022).
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Figure 1: The illustrations demonstrate two key aspects:
the prediction of macroscopic cascade size on the left
and the prediction of the next user likely to be influenced
at the microscopic level on the right.

Current research on modeling information cas-
cades primarily addresses two key aspects: macro-
scopic prediction, which estimates the incremental
or total size of a cascade (Li et al., 2017; Chen
et al., 2019b; Sun et al., 2023), and microscopic
prediction, which identifies the next user likely to
be influenced within the cascade (Wang et al., 2017,
2018; Yu et al., 2022). On the one hand, macro-
prediction concentrates on overarching patterns and
trends, employing network topology and dissemi-
nation models to forecast information propagation.
On the other hand, micro-prediction delves into the
particulars of individual users’ behaviors and at-
tributes, utilizing analyses of user and content char-
acteristics to anticipate the impact of information
diffusion. Macro-prediction and micro-prediction
collectively provide a comprehensive understand-
ing of information dissemination and can mutually
reinforce and enhance each other (Guo et al., 2024).
Since both tasks require learning propagation fea-
tures from observed cascades, they inherently share
commonalities. (Jiao et al., 2024) In the context
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of multi-task learning (Zhang and Yang, 2018), the
need to improve prediction accuracy through the
extraction of common features across tasks is of
critical importance. Furthermore, balancing shared
and task-specific representations is essential. Al-
though encouraging shared representations can en-
hance overall performance, it may also create con-
flicts with task-specific representations, potentially
limiting generalization (Zhang and Yang, 2021).

However, simultaneously conducting diffusion
prediction at two different scales presents several
major challenges, which can be categorized into
two main types. The first is complexity of interac-
tions. Information dissemination involves intricate
interactions both within individual cascades and
across different cascades, making it difficult to ef-
fectively capture and model these dynamics (Jin
et al., 2022; Sun et al., 2022). The second is cross-
platform generalization. The substantial variation
in data distribution and user behavior across social
media platforms complicates the transferability of
models trained on one platform to another. Existing
methods struggle to adapt to the specific charac-
teristics of each platform, resulting in poor cross-
platform generalization. Moreover, manually ad-
justing model architectures for different platforms
is time-intensive and often fails to achieve optimal,
data-specific results (Ren et al., 2021a).

To overcome the aforementioned challenges, Hy-
perIDP is introduced as a streamlined and effi-
cient Hypergraph-based framework for multi-scale
Information Diffusion Prediction. At the macro
level, sequential hypergraphs are constructed to ef-
fectively capture interactions and dynamics among
cascades, aligning with the hypergraph’s capac-
ity to model complex user and cascade interac-
tions. Dividing the time period into sequential
windows allows for an accurate depiction of the
dynamic evolution of cascades. At the micro level,
the framework emphasizes the role of social ho-
mophily within social networks. Additionally, an
uncertainty-weighted center loss, inspired by multi-
task learning, is employed to preserve the integrity
of shared features. Moreover, a differentiable hy-
pergraph neural architecture search method is pro-
posed for automatic hypergraph learning. Key con-
tributions of this work are summarized as follows:

1) Temporal hypergraph-based cooperative-
adversarial cascade diffusion modeling. To
address the complexity of interactions, Hyper-
IDP integrates both macro and micro prediction

tasks, leveraging their mutual reinforcement to
enhance overall performance. The method mod-
els information diffusion within temporal hyper-
graphs, capturing the interactions and dynamics
between cascades. Inspired by the multi-task
learning paradigm, a cooperative-adversarial
loss function is employed to preserve the in-
tegrity of shared features while simultaneously
reducing conflicts.

2) Automated hypergraph neural network de-
sign. To enhance the cross-platform gener-
alizability, a differentiable neural architecture
search method is introduced to enable automatic
diffusion hypergraph learning. By designing
a comprehensive search space, HyperIDP out-
performs the performance of existing human-
designed baselines.

3) Experimental results on real-world social media
datasets demonstrate that the proposed method
significantly outperforms existing approaches
in terms of accuracy and robustness, validating
the framework’s effectiveness.

2 Methodology

This section provides an in-depth explanation of the
components and design principles of the proposed
framework, as depicted in Figure 2. HyperIDP
comprises four primary components:

1) Global Interaction Learning Module: This
component extracts user preferences at each
time interval and models the dynamic changes
in cascades using Hypergraph Neural Networks
(HGNNs), with a fusion layer facilitating inte-
gration at the cascade level.

2) Social Relationship Learning Module: It cap-
tures social relationships at the individual user
level through the application of Graph Neural
Networks (GNNs).

3) Diffusion Prediction Module: This module
employs uncertainty-weighted center loss to
learn both shared and task-specific representa-
tions for multi-scale diffusion prediction.

4) Neural Architecure Search Module: This
component constructs a comprehensive search
space based on diffusion hypergraphs and so-
cial graphs, utilizing a differentiable architec-
ture search algorithm to identify the optimal
model configuration.
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Figure 2: The architectural overview of our model.

2.1 Problem Formulation

To commence, we present the social graph and dif-
fusion hypergraphs that constitute the foundation
for diffusion prediction within our model. The
social graph is denoted as GS = (U,E), where
U is the user set and E is the edge set. Each
edge (ui, uj) ∈ E represents a social relation-
ship between user ui and uj . The observed dif-
fusion cascades D = {d1, d2, . . . , dM} , |D| = N
are split into T subsets according to timestamps
for constructing sequential diffusion hypergraphs
GD =

{
Gt

D | t = 1, 2, . . . , T
}
, Gt

D =
(
U t, E t

)
,

where U t is the user set and E t is the hyperedge set.
In the diffusion hypergraph, users participate in the
same cascade and are connected by a hyperedge,
in other words, a hyperedge represents a cascade.
Note that the set of nodes connected by hyperedge
is different in each hypergraph. It means that if
ui participates in dm during the t-th time interval,
then ui being connected to hyperedge em only oc-
curs in diffusion hypergraph Gt

D. This work aims
to address both the macroscopic and microscopic
problems based on the above introductions.

Macroscopic Diffusion Prediction: Given
a social graph GS , diffusion hypergraphs GD

and an observed diffusion sequence dm =
{(umi , tmi ) | umi ∈ U}, estimate the final size |dm|
of cascade dm.

Microscopic Diffusion Prediction: Given

a social graph GS , diffusion hypergraphs GD

and an observed diffusion sequence dm =
{(umi , tmi ) | umi ∈ U}, predict which user will par-
ticipate in dm in the next step.

2.2 User Global Interaction Learning

To account for global interactions among cascades
and the dynamic changes within them simultane-
ously, the HGNN is employed based on the con-
structed sequential diffusion hypergraphs. HGNN
captures global user interactions within each dis-
tinct time interval at the cascade level, while a
fusion layer between consecutive time intervals
models the evolving dynamics of cascades.

Hypergraph Neural Network
User interactions are modeled at each time inter-
val using HGNNs, as illustrated in Figure 3. In
a standard graph, graph convolution aggregates
neighboring vertices to generate a new representa-
tion of the central vertex, with information flowing
through the edges. Similarly, in a hypergraph, hy-
peredges serve as channels for information trans-
mission. The message aggregation process within
a hypergraph is executed in two stages: (1) Vertex
Aggregation and (2) Hyperedge Aggregation.

Vertex Aggregation
Given a diffusion hypergraph snapshot Gt

D, the
features of the hyperedge need to be obtained by
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aggregating the features of the vertices in the hy-
peredge. Specifically, hyperedge feature can be
calculated by:

Xe,t = conv
(
Merg

(
X

(i)
v,t ,∀i ∈ {0, . . . , k}

))
,

(1)
where X(i)

v,t is the features of the i-th vertex in a hy-
peredge Xe,t. The Merg(·) mechanism merges the
message of all the vertices and the conv(·) operator
indicates that 1-dimension convolution is used to
compact the derived result.

Hyperedge Aggregation
We regard each vertex as a center point c, and then
aggregate the hyperedge features associated with
it to obtain the high-order feature of c, denoted as
Xh,t at t-th time interval. The attention mechanism
is employed to generate the weights for each hyper-
edge in different ways. The high-order feature is
calculated as:

Xh,t =
m∑
i=0

w
(i)
e,tX

(i)
e,t , (2)

where m represents the number of hyperedges as-
sociated with the centroid vertex, and w represents
the calculated weights of hyperedges.

Sequential HGNNs with Fusion Layer
The above two-stage convolution operation only
learns user interaction at a specific time interval,
which can not adequately characterize the evolu-
tion of cascades in propagation. Therefore, we
design a fusion strategy to connect the interactions
at different time intervals learned by HGNN in
chronological order, which is defined as:

XD = Fuse (Xh,1, · · · , Xh,T ) , (3)

whereXD is the final global interactive repre-
sentation obtained through sequential HGNNs.
[Xh,1, · · · , Xh,T ] denote the representation of ev-
ery diffusion hypergraphs. And Fuse(·) operator
represents various fusion strategies.

2.3 User Social Relationship Learning
User tends to have more social interactions with
users who are similar to them and this refers to the
principle called social relationship. Close friends,
who are usually friends alike in certain qualities
or interests, have more influence on each other
than dissimilar ones. Users’ social relationship can
be reflected through social network structure. We

introduce the social graph to model user social rela-
tionships and apply a multi-layer GNN to embed so-
cial relationship. Given social graph GS = (U,E),
the user social relationship embedding matrix Xl

S

at l-th layer is updated by:

Xl+1
S = GNN

(
ÃS ,X

l
S

)
, (4)

where ÃS is the adjacent matrix of self-looped
GS . The initial relationship embedding matrix
X0

S ∈ RN×d is randomly initialized from a nor-
mal distribution, and d is the dimension of embed-
ding. GNN(·) operator indicates different types of
GNNs. We can obtain the final social relationship
representation XS after several layers of them.

2.4 Multi-Scale Diffusion Prediction
We concatenate the global interaction and social
relationship representation XD, XS and then feed
them into distinct output layers dedicated to the
multi-scale diffusion prediction process.

Macroscopic Diffusion Prediction
For macroscopic diffusion prediction, we aim to
predict the final cascade size in the future. We
calculate the final size of diffusion cascade dm by:

Sm = Linear (concat (XD,XS)) , (5)

where concat (·, ·) is the concatenation operation
and Linear(·) represents a multilayer perceptron
(MLP). We train the macroscopic task by minimiz-
ing the following loss function:

Lmacro =
1

M

M∑
m=1

(
Sm − Ŝm

)2
, (6)

where M is the number of diffusion cascades and
Ŝm is the ground truth.

Microscopic Diffusion Prediction
For microscopic diffusion prediction, the next in-
fluenced probability pi ∈ R|dm| for user ui is pre-
dicted by:

pi = softmax (Linear (concat (XD,XS))) ,
(7)

We adopt the cross entropy (CE) loss for micro-
scopic training:

Lmicro = −
|dm|∑
j=2

|U |∑
i=1

p̂ji log (pji) , (8)

where |U | is the number of users and p̃ is true
probability. If user ui participate in cascade dm at
the step j, then p̂ji = 1, otherwise p̂ji = 0.
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Training with Cooperative-Adversarial Loss
In multi-task learning (MTL), balancing shared and
conflicting task representations is crucial (Zhang
and Yang, 2018). Although promoting shared repre-
sentations can enhance overall performance, it may
also cause conflicts between task-specific repre-
sentations, which can hinder generalization (Yang
et al., 2019b).

To address this, we introduce a novel loss func-
tion combining cooperative and adversarial com-
ponents. This loss function fosters consistency be-
tween task representations while reducing conflicts,
thereby improving MTL performance. Specifically,
the cooperative loss encourages consistent or com-
plementary representations within shared layers,
quantified as the Euclidean distance between the
outputs of the shared representation space:

Lcoop = γ ∥Hmacro −Hmicro∥2 , (9)

where Hmacro and Hmicro represent the shared rep-
resentation space for the two scales of diffusion
prediction tasks, and γ is the weight of the coopera-
tive loss. To prevent one task from overly dominat-
ing the shared layer and leading to the collapse of
the representation space, adversarial loss (Ladv) is
introduced to ensure that the representations of dif-
ferent tasks maintain diversity and independence.
The adversarial loss is realized by limiting the con-
sistency of gradient directions between macro-level
and micro-level prediction, defined as the inner
product of the gradients of the two tasks:

Ladv = δ ∥∇Lmacro · ∇Lmicro∥ , (10)

where ∇θLmacro and ∇θLmicro represent the gradi-
ents of the two scales of diffusion prediction tasks,
and δ is the weight of the adversarial loss. The
final total loss function combines the task losses,
cooperative loss, and adversarial loss as follows:

L = λLmacro+(1−λ)Lmicro+γLcoop +(1−γ)Ladv ,
(11)

where λ is the weight of the task losses, and γ rep-
resents the weight coefficients for the cooperative
and adversarial losses, respectively.

2.5 Hypergraph Neural Architecture Search
Search Space
Although a graph can be considered a special case
of a hypergraph, the search space in existing graph
NAS methods cannot be directly applied to hyper-
graph NAS. Therefore, it is essential to develop a

Vertex
aggregation

Skip-

connection

Aggregation

Hyperedge
aggregation ...

...

Temporal aggregation

Figure 3: The proposed hypergraph NAS framework,
with the supernet being generated from the defined
search space.

search space specifically tailored for hypergraph
neural architecture search. As shown in Table 1, to
create an expressive search space suitable for se-
quential diffusion hypergraphs, we focus on three
key components: vertex aggregation, hyperedge
aggregation, skip-connection aggregation, and se-
quential aggregation. We denote the set of vertex
aggregators as Ov, the set of skip-connection ag-
gregators as Os, and the set of temporal sequential
aggregators as Ot. In this work, we employ four
different methods to aggregate high-order features
and original centroid vertex features to generate
new centroid vertex features.

Operations

Ov HGCN, HGAT, SAGESUM, SAGEMEAN, Trans
Oh ATTSUM, ATTMEAN, ATTMAX, ATTMLP
Os CONCAT, SUM, MEAN, MAX
Ot RNN, LSTM, GRU

Table 1: Search space for diffusion hypergraphs.

Differentiable Search
To create a continuous search space, as proposed by
DARTS (Liu et al., 2018), we replace the categori-
cal selection of a specific operation with a softmax
function applied over all possible operations:

ō(x) =
∑
o∈O

exp (αo)∑
o′∈O exp (αo′)

o(x), (12)

where the operation mixing weights for each node
c are parameterized by a vector α of dimension
|O|, where O is drawn from four sets of operations:
Ov,Oh,Os, and Ot, as described in the previous
section. The corresponding parameters αv, αh,αs,
and αt are then computed. In this context, x rep-
resents the input features of a given layer. Let
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ōv, ōh, ōs, and ōt denote the mixed operations cor-
responding to Ov,Oh,Os, and Ot, respectively, as
defined in Eq. 12. The vertex aggregation and hy-
peredge aggregation processes in HyperIDP are
then formulated as:

Xe,t = ōv

(
X

(k)
v,t ,∀X

(k)
v,t ∈ e

)
,

Xh,t = ōh (Xe,t,∀e ∋ c,∀t ∈ {0, . . . , T}) ,
(13)

Then the embedding of the center point c for diffu-
sion hypergraph Gt

Dis computed as:

Zv,t = ōs

(
X

(c)
v,t , Xh,t

)
, (14)

The final representation of the diffusion hypergraph
sequence GD is then obtained through temporal
aggregation operations:

ZD = ōt (Zv,t,∀t ∈ {0, . . . , T}) , (15)

Upon completing the architecture search, we re-
tain the top-k highest-weighted operations in each
module to form the final architecture, which is sub-
sequently fine-tuned using validation data. For the
sake of simplicity, we set k = 1, thereby replacing
each mixed operation ō with its highest-weighted
counterpart, o = argmaxo∈ααo.

3 Experiments

A thorough experimental analysis is conducted on
three real-world datasets to evaluate the effective-
ness of the proposed method. This section ad-
dresses the following research questions:

• RQ1: Effectiveness. How does the pro-
posed method compare to other state-of-the-
art (SOTA) approaches in terms of perfor-
mance? (Section 3.2)

• RQ2: Modularity. What is the impact of
different components on the overall model
performance? (Section 3.3)

• RQ3: Sensitivity. How do variations in hyper-
parameters influence the final performance?
(Appendix C.2)

3.1 Experimental Setting
Datasets
Experiments are performed on three datasets:
Christianity (Sankar et al., 2020), Android (Sankar
et al., 2020), and Douban (Zhong et al., 2012). Ta-
ble 2 presents the statistics of these datasets, with
a detailed description available in the Appendix.
Our code can be found at https://github.com/
HowieHsu0126/HyperIDP.

Dataset Christ Android Douban

# Users 2,897 9,958 12,232
# Links 35,624 48,573 39,658

# Cascades 589 679 3,475
Avg. Length 22.9 33.3 21.76

Table 2: Statistics of datasets. Christ is short for the
dataset Christianity.

Baselines
Several representative baseline models are evalu-
ated in comparison to the proposed models. For
macroscopic prediction, the following models are
analyzed: DeepCas (Li et al., 2017), DeepHawkes
(Cao et al., 2017), CasCN (Chen et al., 2019b),
and CasFlow (Xu et al., 2023). For microscopic
prediction, these models are examined: TopoL-
STM (Wang et al., 2017), NDM (Yang et al., 2018),
SNIDSA (Wang et al., 2018), Inf-VAE (Sankar
et al., 2020), and DyHGCN (Yuan et al., 2021).
For multi-scale prediction, these models are consid-
ered: FOREST (Yang et al., 2019a) and DMT-LIC
(Chen et al., 2019a). This study also incorporates
various NAS techniques, including Random search
(Li and Talwalkar, 2020), Bayesian-based search
(White et al., 2021), and GraphNAS, a reinforce-
ment learning-based NAS approach for GNN (Gao
et al., 2021). Detailed descriptions of these baseline
models are provided in the Appendix.

3.2 Performance Comparison (RQ1)
For macroscopic prediction, the evaluation metric
applied is the Mean Squared Logarithmic Error
(MSLE), a method frequently adopted in previous
studies. For microscopic prediction, two ranking
metrics are used: Mean Average Precision at top k
(MAP@k) and Hits Scores at top k (Hits@k), with
k values of [10, 50, 100].

A comprehensive evaluation of HyperIDP
against multiple baseline models is conducted
across three datasets, focusing on both microscopic
and macroscopic diffusion prediction tasks. The
results, presented in Tables 3, 4, and 5, reveal sev-
eral key findings: 1) HyperIDP consistently outper-
forms all state-of-the-art baselines in both macro-
scopic and microscopic prediction tasks, leverag-
ing sequential hypergraphs to dynamically model
cascade interactions, which significantly improves
performances. 2) As illustrated in Figure 4, the
search cost of HyperIDP is compared with three
representative NAS methods, and HyperIDP ex-

https://github.com/HowieHsu0126/HyperIDP
https://github.com/HowieHsu0126/HyperIDP
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Models
Christianity Android Douban

@10 @50 @100 @10 @50 @100 @10 @50 @100

TopoLSTM (Wang et al., 2017) 0.1548 0.3642 0.4768 0.0471 0.1307 0.2092 0.0317 0.0152 0.0173
NDM (Yang et al., 2018) 0.0475 0.1156 0.1472 0.0181 0.0434 0.0544 0.0379 0.0517 0.0539

SNIDSA (Wang et al., 2018) 0.0651 0.2087 0.3493 0.0282 0.0838 0.1288 0.0713 0.1796 0.2315
Inf-VAE (Sankar et al., 2020) 0.0778 0.2558 0.3844 0.0329 0.0927 0.1443 0.1375 0.2372 0.3048
DyHGCN (Yuan et al., 2021) 0.2391 0.4678 0.5914 0.0737 0.1735 0.2585 0.1449 0.2637 0.3318

FOREST (Yang et al., 2019a) 0.2757 0.4676 0.5592 0.0877 0.1741 0.2325 0.1097 0.1975 0.2561
DMT-LIC (Chen et al., 2019a) 0.2779 0.4431 0.5678 0.0943 0.1648 0.2304 0.1474 0.2517 0.3063

Random (Li and Talwalkar, 2020) 0.1944 0.2026 0.2065 0.0688 0.0705 0.0716 0.1153 0.1208 0.1202
Bayesian (White et al., 2021) 0.1966 0.2048 0.2043 0.0666 0.0727 0.0738 0.1131 0.1187 0.1224
GraphNAS (Gao et al., 2021) 0.1933 0.2015 0.2076 0.0699 0.0704 0.0736 0.1120 0.1210 0.1232

HyperIDP (Ours) 0.3503 0.5289 0.6461 0.1385 0.2298 0.3057 0.2245 0.3376 0.3952

Table 3: The experimental results on three datasets are evaluated using Hits@k score for k = 10, 50, and 100, with
higher scores representing superior performance. The best-performing human-designed architectures are underlined,
while the highest score on each dataset is highlighted in bold.

Models
Christianity Android Douban

@10 @50 @100 @10 @50 @100 @10 @50 @100

TopoLSTM (Wang et al., 2017) 0.0534 0.0628 0.0646 0.0177 0.0213 0.0224 0.0343 0.0835 0.0873
NDM (Yang et al., 2018) 0.0155 0.0188 0.0193 0.0068 0.0081 0.0093 0.0132 0.0833 0.0875

SNIDSA (Wang et al., 2018) 0.0257 0.0317 0.0335 0.0111 0.0133 0.0141 0.0362 0.0428 0.0157
Inf-VAE (Sankar et al., 2020) 0.0183 0.0265 0.0281 0.0087 0.0114 0.0121 0.0532 0.0579 0.0607
DyHGCN (Yuan et al., 2021) 0.1073 0.1178 0.1195 0.0383 0.0445 0.0457 0.0810 0.0847 0.0854

FOREST (Yang et al., 2019a) 0.1578 0.1667 0.1681 0.0619 0.0678 0.0686 0.0664 0.0703 0.0711
DMT-LIC (Chen et al., 2019a) 0.1658 0.1739 0.1757 0.0633 0.0643 0.0673 0.0821 0.0867 0.0886

Random (Li and Talwalkar, 2020) 0.1578 0.1667 0.1681 0.0639 0.0653 0.0686 0.0664 0.0703 0.0711
Bayesian (White et al., 2021) 0.1587 0.1676 0.1689 0.0630 0.0674 0.0684 0.0644 0.0683 0.0721
GraphNAS (Gao et al., 2021) 0.1596 0.1685 0.1697 0.0641 0.0658 0.0687 0.0653 0.0714 0.0723

HyperIDP (Ours) 0.1966 0.2048 0.2065 0.0688 0.0725 0.0736 0.1153 0.1208 0.1224

Table 4: The experimental results on three datasets are evaluated using MAP@k score for k = 10, 50, and 100, with
higher scores representing superior performance. The best-performing human-designed architectures are underlined,
while the highest score on each dataset is highlighted in bold.

Model Christianity Android Douban

DeepCas (Li et al., 2017) 1.435 2.113 2.131
DeepHawkes (Cao et al., 2017) 1.102 1.962 1.734
CasCN (Chen et al., 2019b) 1.037 0.972 1.467
CasFlow (Xu et al., 2023) 0.754 1.032 0.456

FOREST (Yang et al., 2019a) 1.715 0.547 0.834
DMT-LIC (Chen et al., 2019a) 1.681 0.212 0.751

Random (Li and Talwalkar, 2020) 1.780 0.223 0.752
Bayesian (White et al., 2021) 1.683 0.220 0.753
GraphNAS (Gao et al., 2021) 1.690 0.213 0.750
HyperIDP 0.561 0.142 0.413

Table 5: The experimental results on three datasets are
evaluated using MSLE, with lower scores representing
superior performance. The best-performing human-
designed architectures are underlined, while the highest
score on each dataset is highlighted in bold.

hibits the lowest search cost among all NAS base-
lines. This efficiency is primarily due to the dif-

ferentiable search algorithm, which transforms the
search space from discrete choices to a continuous
optimization problem, enabling the use of gradient
information during the search process and facilitat-
ing faster convergence to the optimal architecture.

Christianity Android Douban
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Figure 4: The search cost of each model on all datasets.
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Models
Christianity Douban

Hits@100 MAP@100 MSLE Hits@100 MAP@100 MSLE

w/o Hyper 0.5932 0.2076 1.089 0.3745 0.1221 0.592
w/o Macro 0.5648 0.1938 9.233 0.3729 0.1264 4.674
w/o Micro 0.5946 0.1982 0.852 0.3632 0.1217 0.724
w/o Coop 0.5810 0.1943 0.882 0.3674 0.1206 0.728
w/o Adv 0.5993 0.1967 0.874 0.3625 0.1187 0.739

Vanilla 0.6315 0.2118 0.563 0.3794 0.1259 0.532

Table 6: Ablation studies on the Christianity and Douban datasets assess the contributions of individual submodules
within HyperIDP.

3.3 Ablation Study (RQ2)

Table 6 provides the definitions of various model
variants: w/o Hyper represents the replacement of
sequential hypergraphs, w/o Macro signifies the
exclusion of the macro-level loss function Lmacro ,
w/o Micro denotes the omission of the micro-level
loss function Lmicro , w/o Coop indicates the re-
moval of the cooperative loss function Lcoop , and
w/o Adv refers to the elimination of the adversarial
loss function Ladv .

The key insights are as follows: 1) The inte-
gration of interactive hypergraphs significantly en-
hances the capture of cascade interactions on a
global scale, as shown by the performance of w/o
Hyper. 2) The macroscopic prediction contributes
to refining the microscopic prediction by accurately
modeling individual user propagation behaviors,
while the microscopic prediction, in turn, sharp-
ens the overall propagation trends captured by the
macroscopic prediction. The distinct differences
between w/o Macro, w/o Micro, and HyperIDP in
macro and micro indicators underscore the mutual
reinforcement between these tasks, leading to su-
perior performance. 3) The cooperative loss (w/o
Coop) allows the model to adaptively learn comple-
mentary representations across different tasks by
effectively leveraging inter-task correlations. Fur-
thermore, the adversarial loss (w/o Adv) prevents
any single task from dominating the shared repre-
sentation space, thereby maintaining the integrity
of the representation space.

4 Conclusion

This paper presents HyperIDP, a multi-scale dif-
fusion prediction model for both microscopic and
macroscopic predictions. HyperIDP constructs se-
quential hypergraphs to capture complex influences

and dynamics among cascades from a macro per-
spective, while simultaneously learning implicit
structures and user characteristics within social net-
works from a micro perspective. To ensure feature
integrity, uncertainty-weighted center loss is em-
ployed. A search space is developed to tune GNN
architectures for both diffusion hypergraphs and
social graphs, with optimal designs identified via
differentiable search strategies. Experimental re-
sults validate the model’s effectiveness in predict-
ing next-influenced users and cascade sizes.

5 Limitations

One potential limitation of this work lies in its re-
liance on the accuracy of the initial hypergraph
construction, which might not be robust to noisy or
incomplete data. And the computational complex-
ity of the NAS process may limit the scalability of
the approach, particularly when applied to large-
scale datasets or more complex datasets.
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A Related Works

A.1 Macroscopic Diffusion Prediction

Previous research can be classified into three
primary approaches: feature-based, generative
process-based, and deep learning-based methods
(Guo et al., 2024). Feature-based methods focus
on extracting handcrafted features from input data,
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which are then applied to machine learning algo-
rithms for regression or classification tasks. How-
ever, these techniques heavily depend on domain
knowledge and tend to lack generalizability. Gen-
erative process-based approaches model the spread
of infected users as a point process, improving
interpretability but often missing implicit infor-
mation within cascade dynamics (Yu et al., 2022;
Zhang et al., 2023). Recently, deep learning-based
methods have demonstrated significant effective-
ness. For instance, DeepCas (Li et al., 2017) uses
recurrent neural networks (RNNs) to encode sam-
pled sequences from social graphs and cascades,
while DeepHawkes (Cao et al., 2017) integrates the
Hawkes process into an RNN framework. Other ap-
proaches, such as CoupledGNN (Cao et al., 2020)
and CasCN (Chen et al., 2019b), leverage graph
neural networks (GNNs) to capture diffusion pat-
terns across social networks.

A.2 Microscopic Diffusion Prediction

Microscopic diffusion prediction methods are com-
monly classified into three categories: independent
cascade (IC)-model-based approaches, embedding-
based approaches, and deep learning-based ap-
proaches (Guo et al., 2024). IC-model-based meth-
ods assume independent diffusion probabilities be-
tween user pairs and use Monte Carlo simulations
for prediction. Embedding-based approaches ex-
tend the IC model by representing each user as a
parameterized vector, modeling diffusion probabil-
ities based on factors such as global user similarity
(Jalili and Perc, 2017). However, these methods
often fail to account for infection history. Deep
learning techniques offer more advanced solutions,
with models like TopoLSTM (Wang et al., 2017)
structuring hidden states as directed acyclic graphs.
NDM (Yang et al., 2018) combines self-attention
with convolutional neural networks, while Inf-VAE
(Sankar et al., 2020) uses a variational autoencoder
framework to capture social homophily and tem-
poral influence. Other methods, such as SNIDSA
(Wang et al., 2018) and DyHGCN (Yuan et al.,
2021), utilize diffusion paths, social networks, and
temporal data for enhanced prediction. Addition-
ally, models like MS-HGAT (Sun et al., 2022) em-
ploys hypergraphs to capture global user dependen-
cies.

A.3 Hypergraph Learning

Hypergraph learning is initially introduced as a la-
bel propagation method for semi-supervised learn-

ing. This approach seeks to minimize label dis-
crepancies among vertices connected by the same
hyperedge (Gao et al., 2020). Various methods
for constructing hypergraphs, including the k-NN
method (Jiang et al., 2019) and the spectral radius
method (Chang et al., 2018), have been explored.
Recent research has focused on optimizing hyper-
edge weights, assigning greater weight to hyper-
edges or sub-hypergraphs of higher significance
(Huang et al., 2017). In addition to label prop-
agation, dynamic hypergraph structure learning
employs a dual optimization process to learn the
hypergraph structure (Chang et al., 2018). Hyper-
graph neural networks (HGNNs) represent the first
deep learning method for hypergraphs, using the
hypergraph Laplacian to model hypergraphs from
a spectral perspective (Feng et al., 2019). Although
HGNNs have achieved notable success, their archi-
tecture design typically relies heavily on domain
expertise. To address this, the proposed approach
employs Neural Architecture Search (NAS) to au-
tomatically identify optimal feature aggregation
operators for hypergraph learning, eliminating the
need for manual design.

A.4 Neural Architecture Search

Contemporary scholarship is increasingly concen-
trating on NAS, acclaimed for its capacity to inde-
pendently generate neural architectures that outper-
form those designed by humans (Ren et al., 2021b;
Baymurzina et al., 2022). However, the adaptation
of NAS for GNN presents complexities (Oloulade
et al., 2021). A pivotal element of NAS involves
the delineation of the search space, which substan-
tially influences the effectiveness and efficiency of
the search algorithms (Gao et al., 2021). Such a
search space typically encompasses all pertinent
GNN hyperparameters, including hidden embed-
ding size, aggregation functions, and the number of
layers. Traditional approaches involve a trial-and-
error methodology, initiating with the sampling of a
candidate architecture followed by its training from
the ground up (Gao et al., 2021; Pan et al., 2021;
Liu et al., 2023). This technique necessitates exten-
sive periods for training a multitude of architectures
throughout the search process. Recently, the focus
of NAS has shifted towards differentiable methods
due to their enhanced efficiency (Zhao et al., 2021).
These methods employ an over-parameterized net-
work, or supernet, within a cohesive framework
and search space, facilitating the incorporation of
existing methodologies.
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B Experimental Details

B.1 Datasets
Three datasets are employed in the experiments:
Christianity, Android, and Douban.

• Christianity (Sankar et al., 2020) comprises a
user friendship network and cascading interac-
tions focused on Christian themes, collected
from Stack Exchange.

• Android (Sankar et al., 2020) is derived from
Stack Exchange and includes user interactions
across various channels, forming their friend-
ship networks.

• Douban (Zhong et al., 2012) is a Chinese
social platform where users can update and
share their book reading statuses, as well as
follow the activities of others.

B.2 Baselines
The following representative baseline models are
compared with the proposed models:

Macroscopic Prediction Models:

• DeepCas (Li et al., 2017) transforms cascade
graphs into node sequences through random
walks and learns representations for each cas-
cade using a deep learning framework.

• DeepHawkes (Cao et al., 2017) integrates
end-to-end deep learning with the Hawkes
process for cascade prediction.

• CasCN (Chen et al., 2019b) applies graph
convolutional networks (GCNs) to capture the
structural patterns of information diffusion
and utilizes LSTM to learn the sequential de-
pendencies of users’ retweeting behaviors in
cascades.

• CasFlow (Xu et al., 2023) employs normaliz-
ing flows to learn node-level and cascade-level
latent factors, enabling hierarchical pattern
learning in information diffusion.

Microscopic Prediction Models:

• TopoLSTM (Wang et al., 2017) extends the
standard LSTM model to simulate the infor-
mation diffusion process in social networks.

• NDM (Yang et al., 2018) utilizes CNN to cap-
ture users’ diffusion representations and em-
ploys self-attention for diffusion prediction.

• SNIDSA (Wang et al., 2018) jointly learns
heterogeneous information representations by
exploring diffusion paths and social network
structures.

• Inf-VAE (Sankar et al., 2020) incorporates
social homophily through graph neural net-
works (GNNs) and employs a co-attentive fu-
sion network to integrate social and temporal
variables.

• DyHGCN (Yuan et al., 2021) learns the struc-
tural and dynamic properties of social and
diffusion graphs, encoding temporal informa-
tion into a heterogeneous graph to capture
dynamic user preferences.

Unified Multi-scale Prediction Models:

• FOREST (Yang et al., 2019a) integrates
macroscopic information into an RNN-based
microscopic diffusion model to predict both
microscopic and macroscopic diffusion simul-
taneously.

• DMT-LIC (Chen et al., 2019a) employs a
shared representation layer to capture the un-
derlying structure of cascade graphs and the
node sequence in the diffusion process.

NAS Approaches:

• Random (Li and Talwalkar, 2020) NAS is a
technique for discovering optimal neural net-
work architectures through a randomized ex-
ploration process. Unlike traditional methods
that rely on domain expertise or structured
algorithms like evolutionary strategies and re-
inforcement learning, Random NAS gener-
ates neural network architectures by randomly
sampling from a predefined search space.

• Bayesian (White et al., 2021) NAS applies
Bayesian optimization (BO) to efficiently ex-
plore neural architecture search spaces. Tra-
ditional NAS methods can be computation-
ally expensive, as they often require training
a large number of architectures to find an op-
timal design. BANANAS addresses this by
integrating BO with a neural predictor model,
enabling more sample-efficient search and re-
ducing the computational cost.
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• GraphNAS (Chen et al., 2019a) is a special-
ized NAS approach designed to discover op-
timal architectures for GNNs using reinforce-
ment learning (RL). GNNs are particularly
useful for learning over graph-structured data,
such as social networks, chemical molecules,
and knowledge graphs. GraphNAS automates
the design of GNN architectures, which tradi-
tionally involves significant manual effort and
domain expertise.

B.3 Experimental Settings

Each dataset is randomly sampled, with 80% of
the cascades allocated for training, 10% for vali-
dation, and 10% for testing. Baseline methods are
implemented according to their original settings.
The MINDS model is developed using PyTorch,
with the Adam optimizer applied at a learning rate
of 0.001. The embedding dimension is fixed at 64,
and the batch size is 32. The balance parameter λ is
set to 0.3, while the hyperparameter γ is configured
to 0.05. Social homophily learning is conducted us-
ing a 2-layer GCN, and global interaction learning
is achieved via a single-layer HGNN. The number
of time intervals is specified as 8.

C Additional Experiments

C.1 Searched Architectures

The top-1 architectures identified by HyperIDP
across various datasets are visualized in the Fig-
ure 5. These architectures demonstrate clear data-
dependence and introduce novel designs to the lit-
erature. The inclusion of skip-connections proves
to significantly impact performance. Moreover,
attention-based vertex aggregators, being more ex-
pressive than non-attentive counterparts, are more
frequently utilized, making HGAT the preferred
choice (Chen et al., 2020).

C.2 Parameter Analysis (RQ3)

This subsection investigates the influence of var-
ious hyperparameter settings on the model’s per-
formance using the Android and Douban datasets.
To analyze the sensitivity of embedding size and
the number of time intervals, each parameter is
varied individually while others remain fixed. Fig-
ure 6 illustrates the model’s performance in multi-
scale prediction across different hyperparameter
configurations. During parameter selection, both
macro and micro indicators are carefully evalu-
ated; optimal performance is achieved when the

HGCN
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(c) Douban

Figure 5: The searched architectures by HyperIDP on
different datasets.

macro index is minimized and the micro index is
maximized. Remarkably, HyperIDP exhibits stable
performance when hyperparameters are adjusted
within a reasonable range, indicating strong robust-
ness. Consequently, the optimal hyperparameter
configuration is determined to be (λ, γ, number of
time intervals) = (0.5, 0.25, 8).
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Figure 6: The parameter sensitivity is evaluated on the Douban and Android datasets. For the maroc-micro
balance parameter λ ∈ {0.25, 0.5, 0.75, 1.0}, the number of time intervals in the range [2, 12], and the cooperative-
adversarial balance parameter γ ∈ {0.25, 0.5, 0.75, 1.0}, the performance metrics considered are MAP@100,
MAP@100, and MSLE.
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