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Abstract

Instruction-guided image editing consists in
taking an image and an instruction and deliv-
ering that image altered according to that in-
struction. State-of-the-art approaches to this
task suffer from the typical scaling up and do-
main adaptation hindrances related to supervi-
sion as they eventually resort to some kind of
task-specific labelling, masking or training. We
propose a novel approach that does without any
such task-specific supervision and offers thus
a better potential for improvement. Its assess-
ment demonstrates that it is highly effective,
achieving very competitive performance.

1 Introduction

Instruction-guided image editing consists in taking
an image and an instruction in plain natural lan-
guage stating an intended alteration and delivering
another image that results from altering the input
image according to that instruction, as in Figure 1.

The alteration should be confined to the aspects
objectively requested in the instruction, keeping
the rest of the image unaltered. Provided they are
sufficiently objective, the intended alterations can
be of any kind, from shallow aspects (e.g. color
changing) to more structural contents of the input
image (e.g. add, replace or remove elements).

State-of-the-art approaches to this task resort to
supervised training (Santos et al., 2022b; Sheynin
et al., 2024; Fu et al., 2023; Zhang et al., 2023;
Brooks et al., 2023; Li et al., 2024; Santos et al.,
2022a), which relies on task-specific datasets, cu-
rated to contain triples with an image, an editing
instruction, and a possible output image (Zhang
et al., 2024; Hui et al., 2024; Ge et al., 2024).

These approaches may be complemented with
further supervision at inference time, for instance
with some kind of masking, where the human user
marks in the input image the area that should be
affected by the alteration stated in the instruction,

e.g. by circling (Wasserman et al., 2024). Alterna-
tively, this supplementary information can itself be
learned, in which case further task-specific training
is needed (Kirillov et al., 2023; Li et al., 2024).

This approach involves hindrances of different
sorts. First, asking the user to manually mark the in-
put image is a step that ideally should be dispensed
with in favour of a fully self-contained language-
guided operation.

Second, while requiring extensive and costly
labelling effort, task-specific datasets induce the
typical bottleneck in terms of domain adaptation,
and the supervised training they support suffers
from the typical ceiling in terms of scaling up, as
larger and more diverse datasets are ever needed to
achieve improved results.

Finally, task-specific datasets inherently suffer
from an insufficient representability of the task they
are aimed at capturing as in each instance the out-
put image stored is just one among many equally
possible outcomes of the respective instruction over
the respective input image.

To illustrate this, consider an example where the
input image contains an elephant and the instruc-
tion asks to place a bow on it (see Figure 1): produc-
ing an image where the elephant is now wearing a
small red bow at the top of its head is an acceptable
outcome, but it is just one among many possible
others, where the bow would appear with different
sizes, shapes, colours, in different positions, etc.

This insufficient representability is problematic
for the performance of the system, which happens
to be trained on a rather narrow sample of possible
outcomes and thus is hindered in its generalization
capacity. But as these datasets serve not only for
training but also for evaluation, this is also problem-
atic for the fair assessment of the systems seeking
to solve this task: if they too do not deliver an al-
tered image that is identical or close to the output
image stored in the gold test dataset, that counts as
a failure, even though that altered image is a differ-
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Figure 1: Top: Architecture of the method presented in this paper. Bottom: Three examples, showing inputs (left
images and edit requests) from the MAGICBRSUH test set and outputs (right images) from our proposed method.

ent, yet fully acceptable response to the instruction.
In this paper we propose an alternative method

to the instruction-guided image editing task that
dispenses with masking, task-specific datasets, and
even any task-specific training (supervised or not),
circumventing the hindrances noted above.

Our method is sketched in Figure 1. The instruc-
tion is integrated into a suitably designed prompt.
That prompt is entered into a pre-existing LLM
(not trained for this task). That LLM generates a
caption for an input image (but not that image) and
for an output image (but not that image). The em-
beddings of these two captions are used to obtain a
difference vector that represents the alterations re-
quired for the input image. Together with the input
image, this edit-direction vector is entered into a
diffusion model that generates an output image.

Experimental results reported in the present pa-
per demonstrate that our method is highly effective,
achieving competitive performance with regards
to state-of-the-art methods, which are much more
resource intensive given they rely on task-specific
learning and datasets.

Also in contrast to those approaches, our method
has the potential for its performance to keep im-
proving. It does not require any training since it
only needs pre-trained models (an LLM and an im-
age generation model conditioned on embeddings,
such as Stable Diffusion). Consequently, as the ca-
pacity of these pre-trained models improves pushed
by the respective research areas, the performance

delivered by our method will also improve.
The remainder of this paper is structured as fol-

lows: Section 2 introduces related work; Section 3
presents the proposed approach; Section 4 elabo-
rates on the experimental setup; Section 5 reports
on the results obtained and discusses them; Sec-
tion 6 gives concluding remarks; and finally Sec-
tion 7 discusses possible limitations of our work.

2 Background

Early work focused on GANs and RNNs to perform
the editing (El-Nouby et al., 2019; Cheng et al.,
2020; Jiang et al., 2021), demonstrating promising
capabilities in both understanding and performing
the alterations requested. However, these works
focus on toy datasets (El-Nouby et al., 2019), con-
strained domains (Cheng et al., 2020), or a reduced
set of possible edits (Jiang et al., 2021).

A more promising approach was advanced by
Brooks et al. (2023), who introduced an image
editing dataset that is used to fine-tune a Stable
Diffusion model. This is done by giving it a new
conditioning vector that represents the input image,
and by reusing the same text conditioning mecha-
nism that was originally intended for captions to
take as input the text edit instruction instead.

Similarly, Zhang et al. (2023) and Sheynin et al.
(2024) also trained a Stable Diffusion model. The
first on a dataset of edited images scored by manual
annotation, and the second on a multi-task dataset
across a broad spectrum of editing tasks.
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Li et al. (2024) propose ZONE, which adds an
automatic segmenter, SAM (Kirillov et al., 2023),
to select the part of the image that should be edited.
Though the system is claimed to be zero-shot, it
includes an InstructPix2Pix module that requires
task-specific training.

MGIE (Fu et al., 2023) goes a step further and
incorporates an LLM into the editing pipeline
through the use of several adapters and a Stable
Diffusion model, all trained specifically for the
instruction-guided image editing task.

Though increasingly sophisticated models might
bring better performance, their underlying super-
vised approach runs into intrinsic scalability issues.
They are data-hungry methods that need labelled
datasets which are very hard to extend to ever large
volumes and more general scope, given the vast
space of possible images and instructions.

As an alternative, some proposals sought to re-
sort to unsupervised approaches, like Hertz et al.
(2022) with a method that involves manual editing
of a caption which is then injected into the cross-
attention maps during the diffusion process.

The capabilities of a diffusion model for image
editing are also extended by pix2pix-zero (Parmar
et al., 2023), where a vector that helps to guide
the model towards the output image is obtained by
manually gathering sets of generated captions that
support the determination of a difference vector
between the input and the output images.

As an example, if the request is to change the
hat in a picture into a bow, a large set of sentences
about hats is generated with a text decoder, and
their latent representations are averaged. Sentences
about bows, in turn, are also generated and their
average representation is determined. The differ-
ence vector between these representations is used
to guide the generation of the output image.

Nevertheless, these proposals also face intrinsic
scalability issues, namely in that the sets of cap-
tions require manual curation. A human in the
loop is necessary to understand the image and the
editing request, and then to conceive prompts to
make the language decoder generate the two sets
of sentences that are necessary to guide the im-
age alteration procedure. Furthermore, the sets of
sentences and their corresponding difference vec-
tors are highly specific to each individual request,
which limits their ability to generalize.

Differently from previous proposals in the
literature, our approach is both unsupervised—
overcoming the drawbacks encountered for su-

pervised ones—and guided solely by the editing
request—overcoming the drawbacks both of man-
ual assistance to the caption generation process and
of its lack of generalization strength.

3 Proposed approach

The method we propose relies on a difference vec-
tor to guide the image editing, which is obtained
from the captions of the input and output images.
The caption of the input image is obtained with any
capable, off-the-shelf image-to-text tool.

The caption of the output image, in turn, is ob-
tained with any capable, off-the-shelf text gener-
ation decoder, upon being given the text of the
caption of the input image together with the text
of the image editing instruction—arranged under
an appropriate prompt template.1 This method is
sketched in Figure 1 and is detailed next.

3.1 Reconstruction after deconstruction

The generation of the output image consists in the
reconstruction of the input image after it has been
deconstructed (into its noisy rendering), and it is
also done in consonance with the modifications
requested in the editing instruction. This process is
known as image inversion and was initially applied
to GANs (Xia et al., 2022; Bermano et al., 2022).

To undertake this procedure, here we make use
of Stable Diffusion to generate the edited image.
Accordingly, the image is recreated by using the
same model, which will allow one to have access to
the internal model states during image generation.

These internal states can then be used together
with some conditioning guide (Abdal et al., 2020)
to both steer the model to add the requested alter-
ations as well as to ensure that the remainder of the
image maintains similarity to its initial form.

Hence, one of the ingredients needed is the in-
terim noise vector into which the input image is
“deconstructed”.

To get this noise vector, the inversion pro-
cess by Denoising Diffusion Implicit Models
(DDIM) (Song et al., 2020) is resorted to. This
is a technique where the diffusion process is ap-
plied in reverse, meaning that one goes from the
image to noise, rather than from noise to image.
This process requires not only the input image but
also a caption of the input image. In our case this
caption is obtained with BLIP (Li et al., 2022).

1This prompt can be generated automatically, with no need
for training or manual curation — see Appendix F.



9549

DDIM Inversion is a lossy process, which im-
plies that some details will be already missing be-
fore the (re)construction process of the output im-
age even begins. Thus, by using better inversion
methods, the resulting edited image will be better.

3.2 Guiding the reconstruction of images

After performing the DDIM inversion, one needs to
find a way to guide the image editing process. To
achieve this, an edit-direction embedding is used,
which is a vector that points from the input image
to the output one.

To obtain this edit-direction embedding, we re-
sort to two textual captions, one that represents
the input image, before the edit, and another that
represents the output image, after the desired trans-
formation had been applied.

The embeddings for these captions are obtained
through a process that involves using an embedding
model that delivers its semantic representation in
a latent space that is common between language
and images. In the case of Stable Diffusion, the
embedding model used is the CLIP model.

These source and target embeddings are both
vectors and subtracting them returns another vector.
Similar to classifier-free guidance (Ho and Sali-
mans, 2022), this vector can be conceptualized as
a direction from the initial image, before the edit,
to the final image, after the edit.

By having this embedding, the editing process is
guided by using it to steer the image reconstruction
towards the desired transformation. Essentially, it
acts as a conditioning factor that helps to guide the
image alteration process into the desired direction.

Summing up, one represents input and input im-
ages by means of captions, which in turn are rep-
resented by embeddings, which in turn are used
to obtain the edit-direction embedding, which in
turn is used to generate the output image from a
“deconstructed” representation of the input image.

3.3 Guiding the generation of captions

The quality of the edit is affected by the quality of
the before and after-edit captions since they are at
the root of the edit-direction embedding.

To generate the before-edit caption, we use the
one computed for DDIM inversion, which is ob-
tained through BLIP. For the after-edit caption, we
rely on the ever increasing capacity of Large Lan-
guage Models (LLMs). This caption is obtained by
prompting the decoder with text that includes both

the edit instruction introduced by the user and the
before-edit caption produced with BLIP.2

Accordingly, all models, either for image or lan-
guage processing, are used only for inference, not
requiring any fine-tuning of other sort of training.

4 Experimental setup

This section introduces the models used as well as
the evaluation data and metrics.

4.1 Large language models
The Transformer architecture (Vaswani et al., 2017)
has introduced a new paradigm in NLP, having
leveraged unprecedented results in virtually all
sorts of tasks in language understanding, gener-
ation, translation, etc. (Devlin et al., 2018; Brown
et al., 2020; Vaswani et al., 2017).

We experimented with a few prominent Trans-
former models, namely: (i) Gemma (Mesnard et al.,
2024), (ii) Llama 2 (Touvron et al., 2023), (iii) Mis-
tral (Jiang et al., 2023), and (iv) Phi-2 (Gunasekar
et al., 2023). More details are in Appendix B.

4.2 Image generation model
Image generation methods encompass a range
of techniques aimed at creating realistic or styl-
ized images from scratch or based on existing
ones, encompassing generative adversarial net-
works (GANs) (Goodfellow et al., 2014), varia-
tional autoencoders (VAEs) (Kingma and Welling,
2013) and diffusion models (Dhariwal and Nichol,
2021; Ramesh et al., 2022; Rombach et al., 2022),
among others.

For the experiments reported here, two diffu-
sion model were integrated into our image edit-
ing pipeline, namely Stable Diffusion 1.4 and
1.5 (Rombach et al., 2022).

As demonstrated in Appendix D, Stable Diffu-
sion 1.4 has better performance than 1.5 in our
approach, therefore, we will adopt SD 1.4 for most
of the experiments in this paper. Further discussion
on the choice and details of Stable Diffusion can
be found in Appendix A.

4.3 Evaluation data
For evaluation, we resorted to the MAGICBRUSH
dataset (Zhang et al., 2024). This is based on im-
ages from MSCOCO (Lin et al., 2014) and was
created by human curators in Amazon Mechanical

2The prompt template used in the experiments below was
designed manually by us after some experimentation. For
automatically generated prompts see Appendix F.
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Figure 2: Example from MAGICBRUSH test set. The request is “Make the teddy bear black”. The four images
are: the original one, the one generated from the noise obtained through DDIM Inversion, the one generated by our
system, and the gold edited one in the dataset.

Turk with the help of DALL-E 2 (Ramesh et al.,
2022), by having them write a textual edit instruc-
tion for each input image, along with the respective
target caption for the resulting image, after the in-
tended transformation had been applied, and also
drawing a free-form region mask on the input im-
age, indicating the area to be affected by the edit.
The masked image and the target caption were then
given to DALL-E 2 to generate a new image with
the desired transformation, by using mask infilling.

The dataset includes over 10,000 instances.
Given our model does not require training, we used
only the 1053 instances in the test split for evalua-
tion, to ensure comparability with results reported
in the literature.

Masking issues While, to the best of our knowl-
edge, this dataset is the one with the highest quality
for the task, it is not without its problems. As seen
in Figure 2, the teddy bear in the original image
(first image) does not have the same shape as the
teddy bear in the gold edited image (fourth image),
despite the editing request only asking for a colour
change (“Make the teddy bear black”).

This problem arises from the masking that was
performed on the image during dataset creation, as
important information was lost, such as the specific
shape of the initial object. DALL-E 2 only had
to generate a new object that fitted the description
“teddy bear”, thus possibly losing relevant aspects
of the initial object not transmitted through the
textual description.

4.4 Evaluation metrics

Besides having performed human evaluation, We
resorted to automatic metrics, named in Table 1 as
“CLIP-T”, “CLIP-I”, “BLEU”, and “Cosine Sim.”:

Except for BLEU (Papineni et al., 2002), all met-
rics are obtained through the cosine distance be-
tween CLIP embeddings.

CLIP-I and CLIP-T are obtained by comparing
the embedding of the image output by our model
to the embedding, respectively, of the gold image
(I) and of its gold caption (T).

The other two metrics concern captions, the gold
and the generated ones. Cosine Sim. stands for
their cosine similarity and BLEU for the 4-gram
BLEU.

CLIP ViT-B/32 was used to obtain all embed-
dings, which is the same model that was used in
the MAGICBRUSH paper, to ensure comparability
with the scores reported there (Zhang et al., 2024).
To compute BLEU, sacremoses was used.3

4.5 Preferred metric

While comparing to the gold image seems an obvi-
ous choice for evaluation, doing so with the gold
caption instead may appear as a not-so-useful en-
deavour. Nevertheless, the latter option is not only
reasonable but it is even preferable given it permits
a more fair performance scoring.

First, as mentioned in Section 4.3, given the
way MAGICBRUSH was created, sometimes there
is information loss regarding the “source” image,
such as the shape and colour of entities, especially
when these are not specified in the request. While
this is a problem when using the gold image, in
CLIP-I, this issue disappears when using the gold
caption, in CLIP-T, because “a black teddy bear” is
always a description of any black teddy bear despite
its specific shape that happens to be represented in
the gold image.

3https://github.com/hplt-project/sacremoses. Default set-
tings were used.
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Second, DDIM Inversion introduces artefacts
and removes or alters details present in the source
image (cf. the first and second images in Figure 2
for examples of these differences). Once again, this
problem disappears when using CLIP-T, as details
such as the positioning of the blades of grass or
the fur pattern on the dog are not important to the
distance scoring with it.

Finally, due to the nature of the task, as exem-
plified in Figure 2, when asked to “make the teddy
bear black”, there are various shades of black that
could be used, without making the outcome better
or worse. This is even more prevalent when the
request is to add something that was not previously
present in the image since often the full details of
what is to be added (its shape, colour, position,
etc.) are not specified. When evaluated with the
caption, in CLIP-T, unless explicitly specified in
the edit request, visual attributes such as shape,
colour, position or others do not impact the evalu-
ation outcome—that is not the case with CLIP-I,
instead, which turns thus to be a less reliable met-
ric.

5 Experiments and discussion

This section reports on the assessment experiments.
The dataset used is MAGICBRUSH, of which eight
examples are displayed in Figure 5 in Appendix E
to illustrate the output of our system.

Looking through these output images, presented
in the second column, one observes very satisfac-
tory results. All editing requests were made effec-
tive at least to some degree, if not completely.

Among all examples where alterations were
made, only one clearly does not fulfil the editing in-
struction, namely the second example on the right,
where the “spider” was added inside the blender
instead of "next to it" as requested.

It is also worth noting the fourth example, on the
right, where instead of adding the required object
(exotic planet) as a new object in the scene, the
model modified a pre-existing object, the traffic
light, that happened to have a similar shape/colour.

5.1 Number of captions and shots

The approach of Parmar et al. (2023) relies on the
generation of “a large bank of diverse sentences
for both source s and the target t” (i.e. what we
call the before-edit and after-edit captions), whose
embeddings are to be averaged.

The specific number of such sentences is not

indicated in that paper, but the corresponding code
repository mentions “a large number of sentences
(~1000)”.

Such a large number of captions is impractical
for on-the-fly usage on a consumer-level GPU since
generating even a couple of sentences already takes
a few seconds.

To help clarify the number of captions to be
used in obtaining the edit-direction embedding, we
did preliminary experimentation along these three
dimensions:4 (i) the number of captions generated,
either before-edit or after-edit (one, two and four);
(ii) the number of few-shot examples provided to
the LLM that generates the caption (zero, one and
three); (iii) for the before-edit captions, using BLIP,
instead of the LLM, to generate the first caption.

Detailed scores from all these experiments are
in Appendix C.

The combinations of these various dimensions
supporting the best performance are two: (a) when
measured with CLIP-T (0.2817): resorting to 1-
shot and 1-caption, and using BLIP for the before-
edit caption; and (b) when measured with CLIP-I
(0.8350): resorting to 3-shot, 4-captions, and using
BLIP for the first before-edit caption.

It is worth noting that using the caption gen-
erated by BLIP as the first before-caption permits
better performance than having the language model
generating it. This can be attributed to the fact that
adding the first before-edit caption provides miss-
ing information to the model which is not present
in the edit request.

5.2 Prompt simplification
Under the preferred metric CLIP-T, the best per-
formance is thus found when only one caption is
generated for both the before and after-edit cap-
tions, and when the before-edit caption is obtained
with BLIP. As a consequence, only the after-edit
caption is being generated by the LLM.

Considering this, the prompt that asks the LLM
to produce the captions was simplified, and to
further help the LLM, we also include in this
prompt the before-caption, as generated by BLIP:
“Given the caption ‘[CAPTION]’ describing an im-
age and a transformation ‘[TRANSFORMATION]’
to be applied to the image, generate the caption

4After some exploratory experimentation, the prompt used
was “Given the transformation ‘[TRANSFORMATION]’ gen-
erate [NUMBER] image captions for before and after the
transformation.”—where [TRANSFORMATION] is the tex-
tual edit request, and [NUMBER] is the number of before and
after-edit captions to be generated.
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Figure 3: Examples of different edit-direction weights, with base images and instructions from MAGICBRUSH.
Instruction in top row: “Make the woman obese.”; in bottom row: “Let’s add birds to the sky”.

of the image after applying the transformation.”—
where [CAPTION] is the before-edit caption, and
[TRANSFORMATION] is the textual edit request.

Using this simplified prompt, there was an im-
provement with CLIP-T from 0.2817 to 0.2841,
and an improvement of 0.8310 to 0.8366 with
CLIP-I.

5.3 Edit-embedding weight

The edit-direction embedding results from the dif-
ference between the embeddings of the before and
after-editing captions. Its importance was assessed
by introducing different weighting factors, 0.75, 1
and 1.25, to help find the best edit strength.

A heavier-weighted edit-direction embedding in-
duces the model to make more changes. This is as
expected, and is perspicuously illustrated with the
examples in Figure 3.

When looking into the evaluation Table 4 in Ap-
pendix D, the trend is that, on average, weights
higher than the initial 0.75 lead to worse results—
more distance between the output image and the
gold images or captions—, along all metrics except
one, CLIP-T.

But this average may conceal important differ-
ences among different examples. For instance, in
Figure 3 the first row shows the results of the in-
struction “Make the woman obese” with increasing
edit-distance strength. The change conveyed by
this instruction is suited to a gradual application.

In contrast, the alteration conveyed by the in-

struction in the second row, “Let’s add birds to
the sky”, becomes effective only after reaching
a threshold with a sufficiently high weight. The
change only occurs at 1.25, the highest weight ex-
perimented with. Either there are birds in the sky or
there are not, there is no way to almost have birds
in the sky.

5.4 Underlying LLMs

Table 1 presents the evaluation for the various
LLMs studied. Each evaluation point took ∼12h on
an NVIDIA A100 40GB GPU. Editing one image
takes ∼30s.

Llama 2 has the worst performance both when
comparison is made with images (CLIP-I) and
with captions (CLIP-T). This can be attributed to
its being the only model considered that is not
instruction-tuned and, therefore, has less capacity
to follow instructions, as expected.

Gemma, Phi-2 and Mistral are close to each
other in performance, with Phi-2 outperforming
Gemma on three of the four metrics, and Mistral
in one metric, despite it having less than half the
parameters of Gemma and Mistral.

Mistral emerges as the best-performing model
in this experiment, for all metrics except CLIP-
I, where Phi-2 slightly outperforms it. Mistral is
also one BLEU point ahead of the second best
models, when comparing output captions to gold
test captions, which is larger than the differences
among the other models.
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This performance ranking of these models turns
out to be as expected, as it is aligned with their
ranking in the HuggingFace leaderboard.

Additionally, the first lines in Table 1 indicate
scores from ablation studies. We experimented
with using the embedding of the editing instruction
only as the edit-direction embedding ("Instruction
only" line), and with using the embedding of the
after-edit caption only as the edit-direction embed-
ding ("After-edit caption only" line), obtained with
Mistral, is used.

As expected, one obtains worse results in both
cases than with the full system given important
sources of information are missing.

The worst performance is found when directly
applying the instruction to edit the image. This is
as expected since no information about the input
image is provided.

5.5 Other systems
Table 2 shows the scores of several state-of-the-art
alternatives for this task.

Unlike ours, these approaches are supervised, re-
quiring fine-tuning on some labelled dataset, which
leads to models that follow the patterns found in
the training dataset of MAGICBRUSH.

Note that, as mentioned above, MAGICBRUSH
was created by mask-infilling. Hence, a model
trained on it will not learn to keep a close relation-
ship with the input image.

This is particularly noticeable if the edit instruc-
tion requires modifying an object (e.g. its colour,
position, etc.), since mask-infilling hides the origi-
nal object, and a brand new object will be generated
in the gold target image.

We refer back to the example in Figure 2 where
this can be observed, that is, the teddy bear in the
”Edited gold target´´ column (the target image from
the MAGICBRUSH dataset) is severely different
than the one in the input image.

This limitation negatively affects the reliability
of the CLIP-I scores since we are comparing our
output images to test target images that were cre-
ated in such a manner. Accordingly, CLIP-T ap-
pears to be a fairer metric since it is free from this
drawback as it compares output images (embed-
dings) to test target captions (embeddings).

Under this metric, our best setup with Mistral
has competitive performance with the state-of-the-
art, supervised and competing approaches. With
our 0.2904 score in CLIP-T being superior to
the 0.2764 from InstructPix2Pix, the 0.2752 from

HIVE, and the 0.2630 from EMU-Edit; and com-
petitive with the 0.3040 from MGIE and the 0.3046
from ZONE.

Under CLIP-I, in turn, our system (0.8285 with
Phi-2) is close in performance to both Instruct-
Pix2Pix (0.8524) and HIVE (0.8519), while being
surpassed by EMU-Edit (0.8970), MGIE (0.9114),
and ZONE (0.9269).

Still, this is an impressively good achievement
since our method, being training-free, is being com-
pared to supervised ones.

5.6 Manual evaluation

To further assess the reliability of the automatic
quantitative metrics for the evaluation results ob-
tained, we ran two human qualitative evaluations,
comparing our best setup (with Mistral) with In-
structPix2Pix and with ZONE (the method with the
highest CLIP-T and CLIP-I scores).5

Fifteen human annotators were provided with a
questionnaire with 30 examples randomly selected
from the MAGICBRUSH test set.

Each example included an input image, an edit
request, and two output images, A and B, one gen-
erated by our method and the other by the other
system (either InstructPi2Pix or ZONE), in a ran-
dom order.

A characterization of the annotators and the ques-
tionnaire is in Appendix E, which also includes, in
Figure 5, some side-by-side examples of editing
done with the three judged methods.

The annotators were asked to judge the result of
the alteration requested and to indicate one of four
possible answers: (i) both are acceptable, (ii) only
A is acceptable, (iii) only B is acceptable, and
(iv) none is acceptable.

In the comparison with InstructPix2Pix, annota-
tors found our approach acceptable in 33% of the
cases, against 24% for InstructPix2Pix, thus rein-
forcing that our method performs better, confirming
the relative ranking when using CLIP-T.

In turn, when compared against ZONE, this is
deemed acceptable 37% of the time, against 35%
for our approach, once again reinforcing the rank-
ings obtained with CLIP-T.

It is also worth noting that “none is accept-
able” was chosen 52% of the time when comparing
against InstructPix2Pix, and 44% when comparing
against ZONE, which indicates that there is still

5We did not find code available from MGIE to generate
images for qualitative evaluation.
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BLEU Cosine Sim. CLIP-T CLIP-I

Instruction only - - 0.2818 0.8027
After-edit caption only - - 0.2897 0.8120

Mistral 10.2731 0.7883 0.2904 0.8268
Phi-2 9.2404 0.7492 0.2880 0.8285
Gemma 9.0551 0.7351 0.2878 0.8215
Llama 2 8.5030 0.7354 0.2819 0.8180

Table 1: Ablation study (top): using the instruction embedding as guide, using only the after-edit caption as guide;
and experiments with different LLMs (bottom): using the full pipeline. Higher scores are better.

CLIP-T CLIP-I

EMU-Edit 0.2630 0.8970
HIVE 0.2752 0.8519
InstructPix2Pix 0.2764 0.8524
Ours (with Mistral) 0.2904 0.8268
MGIE 0.3040 0.9114
ZONE 0.3046 0.9269

Table 2: Comparing our best approach (with Mistral) with the literature. Higher scores are better.

much room for improvement for the instruction-
guided image editing task6.

The evaluation results reported here and in previ-
ous sections demonstrate that not only our approach
is an effective method for instruction-guided im-
age editing, but it is also a competitive or supe-
rior alternative to recent approaches present in the
literature, which set the previous state-of-the-art
for this task but were supervised and much more
resource-intensive.

6 Conclusions

This paper introduces a novel method for generic
instruction-guided image editing that is based
solely on inference over pre-existing models. Re-
sorting to language models, the user-entered edit
instruction is used to generate captions of images,
and resorting to multimodal models, these captions
are used to induce an edit-direction that supports
the intended edit of the source image.

This approach is free of task-specific training
and of its respective resource-intensive overhead,

6An approach was considered acceptable if the annotator
deemed either that only its result was acceptable or that both
results were acceptable.

In detail,the results obtained were: (i InstructPix2Pix) both
acceptable 9%, only our approach acceptable 24%, only In-
structPix2Pix acceptable 15%, and none acceptable 52%;
(ii ZONE) both acceptable 16%, only our approach acceptable
19%, only ZONE acceptable 21%, and none acceptable 44%.

and circumvents labelled data scarcity and biases
introduced during supervised learning over them,
which are drastic limitations to the previous meth-
ods in the literature.

The experiments reported here demonstrate that
our method is effective for real-time image editing
and that its performance is competitive with regards
to alternative, state-of-the-art approaches recently
proposed in the literature.

All its key components belong to very active re-
search areas or topics that very likely will continue
to get rapid advances in the short to medium term.
As their expected substantial improvements will
induce substantial improvement for this approach,
there is a great potential for its steady progress in
the near future.
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7 Limitations

This section discusses limitations, and potential
remedies for them, concerning the results presented
in this paper.

7.1 Image reconstruction

A first limitation concerns the DDIM inversion pro-
cess. During this process some noise is introduced
in the input image, and this may result in a recon-
structed image that is slightly dissimilar from the
original in aspects not related to the alteration re-
quested. This can be seen in some examples in
Figure 5, and it is more prominent in the first and
fourth examples in the left side, where the cows
in the background were removed and the lighting
fixtures disappeared, respectively. All other im-
ages may have some degree of dissimilarity, but
the shape and position of the main objects in the
image are eventually preserved.

Future improvements of research on this image
inversion will expectedly allow for a boost in qual-
ity for image generation, and a fortiori for an im-
proved performance by our method. Another pos-
sible improvement to consider consists in using
null-text inversion (Mokady et al., 2023) in a future
approach.

7.2 Generation of captions

Considering the results in Table 1, BLEU and Co-
sine Sim. scores increase along with the increase
in quality of the output. Given these metrics de-
termine how close the after-edit caption is to the
gold test caption, this indicates that improving the
quality of these captions generated will improve
the performance of the proposed method.

Improving the before-edit caption, in turn, will
also deliver better results since, as it stands, it of-
ten only loosely describes the input image and
sometimes even misses mentioning the object to
be edited. Having a better before-editing caption
would also help the image inversion process.

Hence, better language generation models
should have a positive impact in the performance
of the proposed method.

Another step towards better captions is through
the automatic finding of better prompts. Prompt
optimization has gained traction as an effective
mechanism for enhancing LLMs in several down-
stream tasks. Some exploratory work on this topic
can be found in Appendix F.

7.3 Potential negative impact

Instruction-guided image editing provides numer-
ous opportunities for enhancing user engagement,
creativity and accessibility.

However, like other technologies, it may have a
dual usage and the way it is used can significantly
impact its effectiveness and its ethical standing.
Therefore, it is essential to use this technology in a
responsible and ethical manner.

One of the major advantages of our approach
to instruction-guided image editing is that it does
not require any form of training, so no biases are
introduced by our method. However, it is important
to note that the pre-existing pre-trained models
that are eventually used by this method may have
certain limitations and potential biases themselves
that may affect its performance. Therefore, users
should be made aware of these limitations and be
thus cautious to avoid any adverse effects.

7.4 Further considerations

Additional limitations can be read from what was
presented in the paper, and are summarized here:
(i) The experiments are performed for one dataset
only, partly due to the lack of further relevant
datasets for the task studied in this paper. Other
datasets are either too small, too domain-specific,
or contain noise such as incorrect edits and low-
quality images. (ii) Only the English language
is taken into account, once again due to the test
dataset available. However, it is worth noting that
the proposed method itself is language independent,
and not limited to English. Given that no training
is required, any pre-trained model in any other lan-
guage can be used. (iii) Only one test run was
performed, due to hardware constraints since any
testing run turned out to be quite time expensive
given our experimental setup.

7.5 Potential for progress

All the key components of the method proposed
here belong to very active research areas or topics
that very likely will continue to get rapid advances
in the short to medium term. As their expected
substantial improvements will induce substantial
improvement for this approach, there is a great
potential for its steady progress in the near future.
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A Image generation models

This section details the two diffusion image generation models used in this work, namely Stable Diffusion
1.4 and 1.5.

Stable Diffusion 1.4 The Stable Diffusion model is a text-conditioned image generator model that
combines an autoencoder with a diffusion model to create a latent diffusion model. The autoencoder
encodes images into latent representations with a reduced dimensionality when compared to the input
image, reducing the computational needs during the training phase. Text prompts, on the other hand, are
encoded using a text encoder and are then cross-attended by the UNet backbone of the latent diffusion
model. Finally, the loss is computed using a reconstruction objective between the noise added to the latent
representation and the prediction made by the UNet.

Stable Diffusion 1.4 (https://huggingface.co/CompVis/stable-diffusion-v1-4) had several
rounds of training on the LAION dataset (https://laion.ai/), with each round changing the input
image dimension, aesthetic score, and the probability of dropping the text-conditioning to improve
classifier-free guidance.

Stable Diffusion 1.5 SD 1.5, in turn, has the same architecture and even the same starting point as
1.4, with the difference being how long the model was fine-tuned on top of SD 1.2. The 1.4 version is
fine-tuned for 225 thousand steps at resolution 512x512 on “laion-aesthetics v2 5+” with a 10% probability
of dropping the text-conditioning, and version 1.5 for 595 thousand steps.

As demonstrated in Section D Stable Diffusion 1.4 has better performance than 1.5 in our approach,
therefore, we will adopt SD 1.4 for most of the experiments in this paper.

B Large language models

Here we give additional details on the large language models that we used in our experiments.

Gemma (Mesnard et al., 2024), trained on a diverse 6 Trillion token dataset comprising web documents,
code and mathematical texts. We resorted to the 7 Billion parameter instruction-tuned decoder-only
model, named gemma-7b-it (https://huggingface.co/google/gemma-7b-it). This model uses a
chat template, which we employ during inference.

Llama 2 (Touvron et al., 2023), of which we used the 7 Billion parameter, pre-trained-only model,
Llama-2-7b (https://huggingface.co/meta-llama/Llama-2-7b-hf). This model was trained with
a mix of publicly available data totalling 2 Trillion tokens. While its chat versions employ supervised
fine-tuning and reinforcement learning with human feedback for alignment with human preferences in
helpfulness and safety, the pre-trained-only model does not. This results in a less constrained model, but it
may also cause it to disperse from the task at hand. Since this model is a pre-trained-only no chat template
is needed.

Mistral (Jiang et al., 2023) fine-tuned on various HuggingFace instruction datasets. We re-
sorted to the 7 Billion Mistral-7B-Instruct-v0.2 model (https://huggingface.co/mistralai/
Mistral-7B-Instruct-v0.2) and used the respective chat template during inference.

Phi-2 (Gunasekar et al., 2023) is a compact 2.7 Billion model (https://huggingface.co/microsoft/
phi-2). Despite its size, it offers a competitive performance with respect to models several times its size.
It was trained on 250 Billion tokens, obtained through a combination of NLP synthetic data created by
GPT-3.5 and filtered web data from Falcon RefinedWeb and SlimPajama, which was assessed by GPT-4.
This model was not fine-tuned through reinforcement learning from human feedback and does not have
guardrails.

Model ranking
A ranking of these models in terms of their performance can be found in the HuggingFace leaderboard
(https://huggingface.co/spaces/HuggingFaceH4/open_llm_leaderboard) which assesses several
LLMs that are trained under the same criteria and tested on the same benchmarks, including reasoning

https://huggingface.co/CompVis/stable-diffusion-v1-4
https://laion.ai/
https://huggingface.co/google/gemma-7b-it
https://huggingface.co/meta-llama/Llama-2-7b-hf
https://huggingface.co/mistralai/Mistral-7B-Instruct-v0.2
https://huggingface.co/mistralai/Mistral-7B-Instruct-v0.2
https://huggingface.co/microsoft/phi-2
https://huggingface.co/microsoft/phi-2
https://huggingface.co/spaces/HuggingFaceH4/open_llm_leaderboard
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CLIP-T CLIP-I
avg stdev avg stdev

Our model, 0-shot

1-caption 0.2751 0.0007 0.8021 0.0013
1-caption; w. BLIP caption 0.2795 0.0003 0.8255 0.0044
2-caption; w. BLIP caption 0.2796 0.0001 0.8329 0.0003
4-caption; w. BLIP caption 0.2799 0.0003 0.8347 0.0007

Our model, 1-shot

1-caption 0.2772 0.0012 0.8093 0.0023
1-caption; w. BLIP caption 0.2817 0.0003 0.8310 0.0002
2-caption; w. BLIP caption 0.2800 0.0008 0.8328 0.0016
4-caption; w. BLIP caption 0.2797 0.0002 0.8348 0.0009

Our model, 3-shot

1-caption 0.2762 0.0003 0.8119 0.0032
1-caption; w. BLIP caption 0.2798 0.0001 0.8251 0.0001
2-caption; w. BLIP caption 0.2797 0.0000 0.8348 0.0010
4-caption; w. BLIP caption 0.2790 0.0000 0.8350 0.0011

Table 3: CLIP cosine distance scores, averaged over two prompts, for different number of few-shot examples and
different number of captions. The best scores are shown in bold.

Instruct: Given the transformation `Make the cat a dog', generate 2 image captions for before and
after the transformation.
Output: Before transformation

Caption 1: A photo of a tabby cat sleeping.
Caption 2: A cat playing with a ball of yarn.

After transformation

Caption 1: A photo of a cute dog.
Caption 2: A dog chewing on a bone.

Figure 4: Example of the output generated by the language model.

challenges and adversarial tasks. As of this writing, the models above rank on the leaderboard with
the following overall scores: Llama-2-7b with 50.97, Gemma-7b-it with 53.56, Phi-2 with 61.33, and
Mistral-7B-Instruct-v0.2 with 65.71.

C Number of captions

Table 3 presents the results obtained during the experiments on the number of captions to be generated.
Two runs were performed, using Phi-2 as the LLM, with distinct prompts:

• A terse prompt: “Given the transformation ‘[TRANSFORMATION]’ generate [NUMBER] image
captions for before and after the transformation.”;

• and a more expressive and detailed prompt: “Employing the specified method ‘[TRANSFORMA-
TION]’, craft [NUMBER] pairs of descriptive captions delineating the images both prior to and
following the application of the transformation process, elucidating the changes brought about.”.

Figure 4 showcases examples of the output from the LLM.
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w CLIP-I Tgt CLIP-T Tgt CLIP-I Src CLIP-T Src

0.75 0.8374 0.2804 0.8555 0.2874
1 0.8366 0.2841 0.8501 0.2863
1.25 0.8285 0.2880 0.8340 0.2822

0.75 0.8335 0.2796 0.8510 0.2865
1 0.8356 0.2847 0.8480 0.2856
1.25 0.8196 0.2870 0.8240 0.2805

Table 4: Comparison SD 1.4 (top) vs. 1.5 (bottom), along three edit-distance weights (w), according to four distance
metrics (larger is better), under Phi-2.

The values in the “avg” columns are the average between scores obtain by the two studied prompts, and
the “stdev” columns their standard deviation.

As an overall trend, when evaluating against the gold image through CLIP-I, the more examples in
the few-shot prompt the better; in contrast, with CLIP-T, the better performance is obtained with only
one-shot.

Similarly, with CLIP-I, the larger the number of captions generated the better the performance; in
contrast, with CLIP-T, the better performance is obtained with only one caption generated (generated by
BLIP).

D Edit-embedding weight

Table 4 presents the results obtained in the experiments on the impact of the edit-embedding weight,
as well as the performance between different Stable Diffusion models, where “Tgt” means that the
comparison is with the target gold image/caption, and “Src” with the input image/caption.

The CLIP-T Tgt metric shows a trend opposite to the other three metrics when edit-distance is increased.
The more changes are done to the input image, the further away the output image will be from it, but it is
also possible for the changes to lead to a result that is more distant from the gold test image. Therefore, the
presence of more alterations is positively accommodated by CLIP-T Tgt—which compares output image
and gold test caption—and can be negatively accommodated by CLIP-I Tgt—which, in turn, compares
output image and test image.

This, once again, raises the concern that CLIP-I may not be the best evaluation metric since the
requested change can be performed in almost infinite ways. For instance, there will be changes in CLIP-I
score with as little, and as irrelevant, alterations as a slight shift of the place where the birds are added to
the sky in Figure 3.

CLIP-T Tgt, in turn, compares to a ground language representation of the target, rather than a visual
one. It seems thus to be a more robustly abstract and general representation of the intended target than a
(perhaps too specific) image fixed to serve as the ground test.

Finally, the experiments with SD 1.5 showcase the same trends as above, despite its slightly worse
performance when compared with SD 1.4. For more details see (Santos et al., 2024).

E Human evaluation details

Human annotators were all volunteers. They were properly informed of the purpose of the collected data
and all consented to the use of their responses for evaluating the outcome of research on an AI tool and to
its scientific publication.

The vast majority of the annotators had a higher education degree. They were ~62% female and ~38%
male.

The exact written instruction provided to the annotators is as follows:
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Please judge how well the editing request was performed between system A and system B. Only keep
the most appropriate answer, i.e.:
“A is best” if A satisfies the request better than B;
“B is best” if B satisfies the request better than A;
“Both are ok” if both equally satisfy the request;
“None are ok" if none satisfies the request.

Figure 5 shows some random examples taken from the MAGICBRUSH test set, used for manual
evaluation.

Figure 5: Examples from MAGICBRUSH test set (first columns) edited with our method (second columns),
InstructPix2Pix (third columns), and ZONE (fourth columns). Edit-requests left side: “Have the cow wear a hat.”;
“Change the blue and yellow to red and white plane.”; “Make the man look to the camera.”;“Put a clown face on the
mirror.”. Edit-requests right-side: “It should have french fries on the plate.”; “Add a spider next to the blender.”;
“Add fire to the buildings.”; “Put an exotic planet in the sky.”. These images were obtained through 100 DDIM
inversion steps, 100 DDIM image generation steps and with captions generated with Mistral.

F Meta-prompt

Our method resorts to language and image models only for inference. While fully unsupervised, it still
relies on a prompt created by a human to generate the target captions. A further step towards unwavering
unsupervision, consists in dispensing not only with supervised learning over labelled datasets, but also
with human intervention to design that prompt.

In a second set of experiments, presented in this Section, our method resorts to prompts that are
automatically created, being extended with a prompt optimization technique for that purpose.

F.1 Related work
Prompt optimization has gained traction as an effective mechanism for enhancing LLMs in several
downstream tasks (Lester et al., 2021; Srivastava et al., 2023). Recent studies have introduced techniques
such as chain-of-thought (Wei et al., 2022) and tree-of-thoughts (Yao et al., 2024), searching through a
pool of prompt candidates generated by an LLM (Zhou et al., 2022), applying iterative local edit operations
at a syntactic phrase-level split within the prompts (Prasad et al., 2023), employing reinforcement learning
to rewrite prompts (Kong et al., 2024) or evolutionary operators over a prompt population for optimization
(Guo et al., 2023).

In particular, Yang et al. (2023) introduced the state-of-the-art OPRO technique, leveraging LLMs as op-
timizers through meta-prompts. We extend our image editing method with prompts that are automatically
generated on the basis of such met-prompting.
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F.2 Meta-prompting

I have a list of prompts, each with its corresponding score. The prompts are sorted in ascending order based on
their scores, with higher scores indicating better quality. The task at hand consists in generating an image caption
that represents an image after applying a transformation. In this task the model receives two inputs: a source
caption ([SOURCE_CAPTION]) that represents the image before the transformation; and a transformation
request ([TRANSFORMATION]) detailing the transformation to be performed in the image. The generated
prompt must always contain two placeholder fields [SOURCE_CAPTION] and [TRANSFORMATION], and an
instruction that commands the model to generate the image caption after performing the transformation. Your
task is to generate a new prompt that considers the previous ones and aims to achieve a higher score.

prompt: "Write a caption for the image obtained by applying the transformation [TRANSFORMATION] to the
original caption [SOURCE_CAPTION]."
score: 6.44245171546936

prompt: "Create a new caption describing the image after [TRANSFORMATION] has been applied to
the original caption [SOURCE_CAPTION]."
score: 6.690672039985657

prompt: "Compose an image caption that represents the image after the transformation [TRANSFOR-
MATION] is applied to the original caption [SOURCE_CAPTION]."
score: 6.857702553272247

Figure 6: Meta-prompt: in black, the top paragraph with the meta-instruction used in the experiments; below, in
green, the list of top performing prompts after the last optimization step, and the respective scores. The best scoring
prompt, at the bottom, is the final prompt that was automatically obtained and used for the results presented in
Table 5. Experimentation took ~2 days on three NVIDIA A100 40GB GPUs.

Algorithm 1 Meta-prompt algorithm
1: Input: Dataset D, each examples contains a before-edit caption bc and the editing request er; meta-prompt metaP with the

description of the optimization task.
2: Output: history: list of best scored prompts
3: history ← ∅
4: for step in number of optimization steps do ▷ We use 20 optimizations steps
5: input← metaP ⊕ history ▷ ⊕ : concatenation
6: newP ← LLM(input) ▷ We generate 2 prompts; LLM() invokes the llm to generate a continuation
7: allP ← newP ⊕ history
8: E ← random subset from D ▷ We select 8 examples
9: for each prompt pi in allP do

10: for each example ej in E do
11: transP ← template(pi, bc, er) ▷ template() fills the placeholders of the generated prompts
12: ac← LLM(transP ) ▷ ac is the after-edit caption
13: scoreij ← evaluate(ej , ac) ▷ evaluate() edits the image and evaluates the result
14: end for
15: scorei ←

∑
j
scoreij

16: end for
17: history ← top best evaluated prompts ▷ We keep the top-3 best prompts
18: end for

Meta-prompting is a method for optimizing prompts using LLMs and natural language descriptions
to guide it. Through iterative refinement over a meta-prompt describing a task to be optimized, an
LLM generates new prompts based on a history of previous prompts and their scores. This process can
automatically discover high-performance prompts by exploring the optimization trajectory and searching
for better prompts.

The integration of the meta-prompting technique in our image editing method aims to enhance editing
performance by refining the prompt eventually used to generate the after-edit caption. This is achieved by
prompting the LLM to generate a target caption based on the source caption and the editing instruction
and by iteratively generating and evaluating other possible prompts for the same purpose, using the
instructions delivered so far and their performance scores to guide the eventual finding of the optimal
prompt for this concrete task.
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Figure 7: Performance scores with CLIP-I of the best prompt at each meta-prompting step (blue line), conducted on
the first 100 examples of the test set, and the manual prompt used in the first set of experiments (red line)

BLEU Cosine Sim. CLIP-T CLIP-I

Final 10.3595 0.7695 0.2830 0.7785
Human 11.2302 0.7611 0.2729 0.7675
Initial 7.1965 0.7111 0.2578 0.7201

Table 5: Second set of experiments, with automatic prompt and the Llama3 70B model: with final prompt (top row),
initial prompt (bottom), and the manual prompt from the first set of experiments (Human)

An example of a meta-prompt is provided in Figure 6, and a detailed description of this optimization
via meta-prompting in Algorithm 1.

F.3 A larger language model

Meta-prompting requires a significantly larger model than the ones used in the first set of experiments.
In this second set of experiments, we resort to a 70 Billion parameter model, Llama-3-70B-Instruct
(https://huggingface.co/meta-llama/Meta-Llama-3-70B-Instruct) (AI@Meta, 2024), using 4-
bit quantization. This model was pre-trained over 15 trillion tokens from publicly available sources
followed by supervised fine-tuning and reinforcement learning with human feedback to align it with
human preferences. We opted for this model after preliminary experiments with smaller models had failed
to deliver any sensible meta-prompting optimization.

We experimented with a maximum of 20 steps for optimization. At each step, two new prompts are
generated and evaluation is undertaken. Each of these 2 prompts is evaluated on 8 examples randomly
sampled from the MAGICBRUSH development set, which are used to (re-)evaluate also the 3 prompts
retained in the prompt history, which had been the best so far. These 5 prompts (2 new + 3 previous) are
re-ranked according to this new evaluation and only the 3 best are retained at each iteration step.

To guide the optimization process through these steps, CLIP-I was used as the evaluation metric since
the MAGICBRUSH development set does not have captions for the before and after-edit images and thus
does support any of the other metrics, which rely totally or partly on captions.

F.4 Discussion: automatic prompt

The scores of this second set of experiments are in Table 5, while the performance of the best prompt at
each optimization step is presented in Figure 7,

In Table 5, one observes substantial improvement across all metrics from the initial to final step—
corresponding final prompt is in Table 6. This clearly indicates that the meta-prompting is an effective
technique for automatically generating a prompt for our image editing method.

This is confirmed in Figure 7, with performance, under CLIP-I, steadily trending upwards, with the
manually optimized prompt outperformed at the 19th step. This optimization profile seems also to indicate
that there may be room for further improvement, as performance will possibly keep growing if more

https://huggingface.co/meta-llama/Meta-Llama-3-70B-Instruct
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meta-prompting steps are performed.
Furthermore, and above all, the scores in Table 5 demonstrates also that meta-prompting can lead to

automatic prompts (0.2830 in CLIP-T) that outperform the prompt manually optimized in the first set of
experiments (0.2729 in CLIP-T).

In what concerns the manual prompt, it is noteworthy a drop in performance with the larger 70 Billion
parameter LLM (0.2729 CLIP-T, Table 5), relative to the scores with the much smaller 7 Billion LLMs
(0.2904 CLIP-T, Table 1). This seems to be a certain paroxysm of the greater generative capabilities of the
larger model. They may lead to longer captions for the target image, which may end up inserting “noise”
in the editing process by enlarging the differences between the before-edit caption and the after-edit
caption. This analysis is supported by the high BLEU and low Cosine Sim. scores of the “human” prompt
in Table 5, given longer sequences tend to benefit BLEU metric but are irrelevant for Cosine Sim. metric.
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