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Abstract

The visual information-seeking task aims to
answer visual questions that require external
knowledge, such as “On what date did this
building officially open?". Existing methods
using retrieval-augmented generation frame-
work primarily rely on textual knowledge bases
to assist multimodal large language models
(MLLMs) in answering questions. However,
the text-only knowledge can impair informa-
tion retrieval for the multimodal query of im-
age and question, and also confuse MLLMs in
selecting the most relevant information during
generation. In this work, we propose a novel
framework MuKA which leverages a multi-
modal knowledge base to address these limita-
tions. Specifically, we construct a multimodal
knowledge base by automatically pairing im-
ages with text passages in existing datasets. We
then design a fine-grained multimodal interac-
tion to effectively retrieve multimodal docu-
ments and enrich MLLMs with both retrieved
texts and images. MuKA outperforms state-of-
the-art methods by 38.7% and 15.9% on the
InfoSeek and E-VQA benchmark respectively,
demonstrating the importance of multimodal
knowledge in enhancing both retrieval and an-
swer generation. 1

1 Introduction

Recently, Multimodal Large Language Models
(MLLMs) (Alayrac et al., 2022; Liu et al., 2024b;
Li et al., 2023) have showcased strong capabilities
in vision-language understanding and text gener-
ation. Although they have achieved impressive
performance in various vision-language tasks such
as image captioning and general visual question
answering (Goyal et al., 2017; Hudson and Man-
ning, 2019), existing MLLMs still struggle with
visual information-seeking tasks (Chen et al., 2023;

*Corresponding author.
1https://github.com/lhdeng-gh/MuKA

Figure 1: Illustration of the challenge in retrieving
documents from a textual knowledge base that match
the entity shown in the visual information-seeking
question. By utilizing a multimodal knowledge base,
our MuKA retriever and answer generator identify the
accurate multimodal document, ultimately providing
the correct answer.

Mensink et al., 2023) which require knowledge-
intensive visual question answering. Figure 1 illus-
trates an example of such a task, where a user asks
about an image of a particular building: “On what
date did this building officially open?". To answer
such questions, models must not only have general
knowledge of object names, colors or quantities,
but more importantly, should be equipped with de-
tailed knowledge associated with the specific entity
in the image.

Memorizing all the detailed knowledge in
MLLMs proves to be challenging (Chen et al.,
2023). To address this, previous works have
adopted a Retrieval-Augmented Generation (RAG)
framework (Caffagni et al., 2024; Yan and Xie,

https://github.com/lhdeng-gh/MuKA
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2024), which first retrieves relevant documents
from a textual knowledge base and then feeds the
top-K documents to MLLMs for answer generation.
The RAG-based approaches yield promising results
by integrating external knowledge with MLLMs’
reasoning capabilities. However, existing methods
solely utilize the textual knowledge base, making
it difficult to retrieve relevant documents given the
multimodal query of image and question due to
the cross-modal gap. For example, as shown in
Figure 1, a baseline system with only textual knowl-
edge base retrieves textual documents with dates
of buildings, but fails to find the exact building de-
picted in the image. Moreover, even if a retriever
returns the correct document in its top-K ranking
list, simply providing all top-K texts to the MLLM
can confuse the model to select the most relevant
information for answering the question accurately.

In this work, we propose a novel Multimodal
Knowledge Augmented generation (MuKA) frame-
work to address the limitations of existing methods
using pure textual knowledge bases. When we hu-
mans seek relevant information for a multimodal
query of image and question, we compare the query
with not only text but also any associated images
with the text to ensure accurate retrieval. Our frame-
work is inspired by this principle. To achieve this,
we first construct a multimodal knowledge base by
automatically pairing textual documents with their
corresponding entity images. Then we design a re-
triever that matches multimodal queries and multi-
modal documents by a fine-grained interaction. As
illustrated in Figure 1, our MuKA retriever effec-
tively ranks the document about the correct build-
ing at the top. To further distinguish the correct
document from other similar documents ranked at
the top, we propose to enhance the context of the
MLLM generator with multimodal documents, al-
lowing the generator to select the most relevant
knowledge from the top-ranked documents.

Experimental results on two public benchmarks
InfoSeek and E-VQA show that our MuKA re-
triever outperforms the best baseline by 9.3 and
4.0 points in terms of R@5 performance, and
our MuKA generators consistently outperform
their counterparts that read textual knowledge,
implying the effectiveness of multimodal knowl-
edge in answer generation. When used together,
our MuKA method improves the state-of-the-art
methods by 38.7% and 15.9% on the two datasets
respectively.

To summarize, our contributions are three-fold:

• We identify the significance of multimodal
knowledge for knowledge-intensive visual
information-seeking tasks and construct a mul-
timodal knowledge base to facilitate research
in this direction.

• We propose a novel multimodal knowledge
augmented generation framework MuKA,
which enhances knowledge retrieval by fine-
grained multimodal interactions and improves
answer generation by enriching contexts with
multimodal documents.

• Extensive experiments on the InfoSeek and
the E-VQA datasets demonstrate the effective-
ness of our MuKA method with multimodal
knowledge base.

2 Related Works

Visual Information-Seeking Visual Question
Answering (VQA) involves answering questions
based on visual context. Traditional VQA bench-
marks (Goyal et al., 2017; Hudson and Manning,
2019; Singh et al., 2019) primarily target the as-
sessment of the visual context understanding abil-
ity of models. Knowledge-intensive VQA bench-
marks (Marino et al., 2019; Schwenk et al., 2022;
Wang et al., 2017) elevate this challenge by requir-
ing knowledge related to the visual context. Vi-
sual information-seeking, a category of knowledge-
intensive VQA, demands more specific and de-
tailed knowledge of the entity presented in the
query image. Several datasets have been proposed
for this task, including ViQuAE (Lerner et al.,
2022), Encyclopedic VQA (E-VQA) (Mensink
et al., 2023), and InfoSeek (Chen et al., 2023).
To tackle this task, AVIS (Hu et al., 2024) lever-
ages a Large Language Model (LLM) to dynam-
ically strategize the utilization of external tools.
RA-VQA-v2 (Lin et al., 2024b) builds a Retrieval-
Augmented Generation (RAG) pipeline with its
late-interaction knowledge retrieval. In this paper,
we build a RAG pipeline over multimodal knowl-
edge bases, and present our results on InfoSeek and
E-VQA as the previous work do (Lin et al., 2024c).

Multimodal Large Language Models Multi-
modal Large Language Models (MLLMs) have
demonstrated strong capabilities in visual con-
text understanding and natural language genera-
tion. An MLLM typically comprises of a Large
Language Model (LLM), a vision encoder and
vision-language integration modules. Open-source
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LLMs (Raffel et al., 2020; Touvron et al., 2023;
Jiang et al., 2023) greatly contribute to the develop-
ment of MLLMs. Vision encoders are typically pre-
trained visual backbones (Radford et al., 2021; Sun
et al., 2023; Zhai et al., 2023) to encode visual in-
puts into features. As for the vision-language inte-
gration modules, Flamingo (Alayrac et al., 2022) in-
serts cross-attention layers within the LLM. Recent
MLLMs adopt a simpler approach by projecting
visual features into the embedding space of LLMs.
These projectors may comprise of fully-connected
layers (Liu et al., 2024b; Zhu et al., 2023a) and
cross-attention blocks (Li et al., 2023; Ye et al.,
2023). LLaVA-1.5 (Liu et al., 2024a) employs a
MLP module as the projector. VILA (Lin et al.,
2024a) adopts a similar approach but reduces the
number of visual features through down-sampling.
VILA is pre-trained on interleaved image-text cor-
pus (Zhu et al., 2023b) and image-text pairs (Byeon
et al., 2022). In this paper, we develop answer gen-
erators reading textual or multimodal documents
using the LLaVA-1.5 and VILA models.

Retrieval-Augmented Generation Retrieval-
Augmented Generation (RAG) augments the in-
puts of LLMs with retrieved documents (Guu et al.,
2020; Lewis et al., 2020), thereby improving perfor-
mance in knowledge-intensive tasks. Fine-tuning
LLMs on document-reading examples facilitates
the utilization of retrieved information (Luo et al.,
2023; Zhang et al., 2024; Asai et al., 2024). Re-
cent studies have successfully applied RAG to
knowledge-intensive vision-language tasks (Lin
and Byrne, 2022; Qiu et al., 2024). However,
their knowledge retrieval targets are textual, and
using multimodal queries to retrieve textual docu-
ments poses difficulty in matching long-tail entities
with their knowledge. The retrieval for multimodal
queries can be conducted in stages (Caffagni et al.,
2024), sequentially performing visual (Radford
et al., 2021) and textual (Karpukhin et al., 2020;
Izacard et al., 2021) retrieval. EchoSight (Yan and
Xie, 2024) performs multimodal re-ranking after
visual retrieval, but still only passes textual docu-
ments for answer generation. Recent studies have
developed multimodal retrievers to handle multi-
modal queries (Wei et al., 2023; Lin et al., 2024b,c).
PreFLMR (Lin et al., 2024c), built upon the late-
interaction architecture, demonstrated strong per-
formance on a variety of retrieval tasks. We build
the MuKA retriever based on PreFLMR to retrieve
multimodal documents for downstream generators.

3 Method

3.1 Overview

For the task of visual information-seeking, given
a multimodal query (q, Iq), where q is the textual
question and Iq is the query image, a model is ex-
pected to generate a textual answer a. A knowledge
base can be utilized during generation, comprising
of candidate multimodal documents (d, Id), where
d represents the document text and Id represents
the document image. Previous works leverage the
multimodal query to retrieve textual documents but
the exact textual documents can be hard to find
due to difficulties in recognizing long-tail entities
within the query images. As the example in Fig-
ure 1 shows, it is difficult to judge which one is the
most relevant entity to the query image based on the
texts of two entities. However, we can recognize
which building is more similar to the query image
by observing their corresponding images. There-
fore, we construct multimodal knowledge bases
(See Sec. 3.2) and propose leveraging multimodal
documents in the knowledge bases in retrieving rel-
evant documents and generating an answer to the
given multimodal query.

We then propose a new framework called MuKA,
which adopts an RAG framework based on a mul-
timodal knowledge base to solve the problem. In
the stage of retrieval, we add document images as
a source to match with query text and images and
propose a masked fine-grained multimodal inter-
action mechanism. (See Sec. 3.3.) In the stage
of generation, we propose fine-tuning a founda-
tion multimodal large language model with mul-
tiple interleaved retrieved documents, consisting
of image and text, as our generator model. (See
Sec. 3.4.) During inference, given a multimodal
query, we first retrieve top-K relevant multimodal
documents from the knowledge base by using our
proposed MuKA retriever. Then we compose a
prompt, including the image and text of question, a
list of interleaved image and text of top documents,
and the instruction, to generate a short answer. By
following the instruction, our generator finally gen-
erates answers.

3.2 Multimodal Knowledge Base
Construction

To make fair comparisons with previous works,
we choose two widely used benchmarks:
InfoSeek (Chen et al., 2023) and Encyclopedic
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Figure 2: An overview of our MuKA framework, which consists of a multimodal knowledge base (Sec. 3.2),
a MuKA retriever (Sec. 3.3) and a MuKA generator (Sec. 3.4).

Figure 3: Distribution of the sources to collect images
for multimodal knowledge bases.

VQA (E-VQA) (Mensink et al., 2023), which
has only text knowledge bases. Therefore, we
collect a corresponding image for each entity and
upgrade the two datasets with a new constructed
multimodal knowledge bases.

Specifically, we adopt a cascaded strategy to col-
lect the entity images from multiple sources. We
first request the main image using the Wikipedia
API. If the main image is unavailable, we then se-
lect the first non-trivial image on the Wikipedia
page. If previous methods fail, we search on Wiki-
media Commons and select the top-ranked image.
As a fallback, we use a common search engine to
find the top-ranked image. Finally, for the very
few entities where all methods fail, we use a black
image as a placeholder.

Finally, we successfully upgrade the knowledge
bases for the InfoSeek and the E-VQA datasets into
multimodal knowledge bases. The distribution of
different sources to collect the images are shown

in Figure 3. It shows that most images are obtained
via the first step. We will release the data to help
reproduce our work and facilitate future research.

3.3 Fine-grained Multimodal Interactions for
Retrieval

Given a multimodal query (q, Iq) and candidate
multimodal documents of (d, Id), the retriever
aims to identify documents that correspond to
the correct entity and contain relevant informa-
tion. We propose a retriever that performs fine-
grained multimodal interactions, derived from the
late-interaction mechanism (Khattab and Zaharia,
2020; Lin et al., 2024c).

We start by representing the multimodal query
(q, Iq) and a multimodal document (d, Id) into
multi-vector representations, denoted as Q and D,
respectively. Next, we explain how to calculate
the relevance between Q and D with our masked
multimodal interaction mechanism.

Multimodal Query Representation Given the
user provided question q along with query image
Iq, as shown in Figure 2, the query representation
Q is composed of three categories of features: text
features QT, global image features QCLS

I and im-
age patch features QPatch

I . These categories con-
tain Nq, NCLS and NPatch features, respectively.
Each feature vector has dh dimensions. Therefore,
the total number features on the query side lQ is
Nq +NCLS +NPatch:

Q =
[
QT | QCLS

I | QPatch
I

]
∈ RlQ×dh . (1)

Each category of features is extracted from their
respective modality encoders and then projected
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Figure 4: Architecture of our proposed MuKA Generator. Based on an MLLM pre-trained on interleaved image and
text, our generator takes multimodal query and top-K multimodal documents returned by our MuKA retriever as the
main part of prompt and asks the model to generate short answers.

into the shared dimension. For the text features, a
language model FL first encodes a search instruc-
tion and the question q into Nq token features, each
with a dimension of dL. Subsequently, a linear pro-
jector FLIN maps each token feature into the shared
dimension dh.

QT = FLIN(FL(q)) ∈ RNq×dh . (2)

For the query image I , a vision encoder FV en-
codes I into both a global image feature and NPatch

image patch features, all with a dimension of dV .
Specifically for Vision Transformers (Dosovitskiy
et al., 2020), the global image feature is extracted
from the final layer, while the patch features are
obtained from the second-to-last layer for better
representations. Furthermore, the global image fea-
ture is processed through a multi-layer perception
module FMLP, projecting it into NCLS features of
shared dimension dh:

QCLS
I = FMLP(FV,CLS(I)) ∈ RNCLS×dh . (3)

For each patch feature, a transformer module FTR

incorporates text features into the cross attention
mechanism to perform query-aware feature map-
ping, transforming it into the shared dimension dh:

QPatch
I = FTR(FV,−2(I), FL(q)) ∈ RNPatch×dh .

(4)

Multimodal Document Representation Given
a document d along with query image Id, as shown
in Figure 2, the document representation D is com-
posed of two categories of features: text features

DT and global image features DCLS
I . We do

not use document image patch features because
it needs query text in the cross attention modules to
calculate patch features online, which is resource-
intensive. The representation of a multimodal doc-
ument is achieved by concatenating of the text fea-
tures DT and the global image features DCLS

I .
The number of features for each multimodal docu-
ment lD is Nd +NCLS:

D =
[
DT | DCLS

I

]
∈ RlD×dh . (5)

Specially, a separate text encoder F ′
L encodes

the document text d into Nd token features, which
are then projected into the shared dimension dh by
its corresponding linear projector F ′

LIN:

DT = F ′
LIN(F

′
L(d)) ∈ RNd×dh . (6)

Regarding the document image Id, we reuse the
vision encoder FV and multi-layer perception mod-
ule FMLP on the query side:

DCLS
I = FMLP(FV,CLS(Id)) ∈ RNCLS×dh . (7)

The features on the document side can be pre-
built and indexed to facilitate efficient retrieval.

Masked Multimodal Interaction As the global
document image features and query image patch
features are in different levels, interaction between
them lacks practical meaning and may introduce
interference. We mask out such interaction, im-
plementing a masked multimodal late-interaction
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mechanism:

r((q, I), (d, Id)) =

lQ∑
i=1

lD
max
j=1

mask(QiDj
T ), (8)

where the mask operator sets the relevance scores
between the patch features of query images and
the global features of document images into −∞,
thereby excluding them from the max-pooling pro-
cess of the late interaction mechanism. This pre-
vents the unwanted interaction during relevance
calculation.

3.4 Top-K Multimodal Documents
Augmented Generator

We propose enriching answer generators with
top-K multimodal documents returned by our
MuKA retriever, which offers MLLMs a clear view
of entities that supply relevant information to the
question, leading to more accurate answers.

Similar to VILA (Lin et al., 2024a), our
MuKA generates textual responses conditioning on
visual and textual contexts, as shown in Figure 4.
An image I is first encoded using a pre-trained vi-
sual encoder FV to obtain NPatch patch embeddings,
each with a dimension of dV :

EI,Patch = FV (I) ∈ RNPatch×dV . (9)

Second, these patch embeddings are then trans-
formed by a vision-language integration module
FM , which converts them into a sequence of visual
tokens of length Nm:

⟨image⟩ = {v1, v2, . . . , vNm}
= FM (EI,Patch) ∈ RNm×dL ,

(10)

where each visual token vi corresponds to an
embedding compatible with the language model,
hence having a dimension of dL. Third, we denote
a sequence of text tokens as ⟨text⟩ accordingly.
The MLLM, with parameter θ, predicts output text
sequence ⟨text⟩o of length L in an auto-regressive
manner:

p(⟨text⟩o | ⟨image⟩q ⟨text⟩q ⟨image⟩1d ⟨text⟩
1
d . . . )

=
L∏
i=1

pθ(⟨text⟩o,i | ⟨image⟩q ⟨text⟩q . . . ⟨text⟩o,<i),

(11)
where ⟨image⟩q ⟨text⟩q denotes tokens of the
query, and ⟨image⟩id ⟨text⟩

i
d denotes tokens of the

i-th multimodal document.

Dataset Samples Knowledge Base
#Train #Valid #Test #Passages #Entities

InfoSeek 100k - 4,708 98k 34k
E-VQA 167k 9,852 3,750 52k 19k

Table 1: Statistics of the Infoseek and E-VQA datasets
used in our experiments. The counts for passages and
entities represent unique values across all dataset splits.

Model InfoSeek E-VQA

CLIP 17.1 10.4
FLMR 47.1 -
Google Lens - 62.5
PreFLMR 60.1 73.7
MuKA Retriever (ours) 69.4 77.7

w/o fine-tuning 66.6 75.6
w/o mask 68.9 77.0

Table 2: Retrieval performance of Recall@5 on InfoS-
eek and E-VQA datasets. Baseline results for CLIP,
FLMR, and Google Lens are sourced from existing liter-
ature. PreFLMR and our MuKA Retriever are fine-tuned
on respective knowledge bases. w/o fune-tuning is the
zero-shot version of our MuKA Retriever. w/o mask
indicates no masking between global image features
and patch features.

4 Experiments

4.1 Datasets and Evaluations

Visual information-seeking datasets. We use
a sub-split of InfoSeek (Chen et al., 2023) and
E-VQA (Mensink et al., 2023) dataset to evalu-
ate the visual information-seeking performance,
following the same setup as (Lin et al., 2024c).
Knowledge base. To ensure a fair comparison,
we use the knowledge bases introduced in previ-
ous literature (Lin et al., 2024c), which consist of
textual documents sourced from Wikipedia. Each
document belongs to an entity while each entity
may corresponds to multiple documents. For each
QA pair, the documents that belongs to the correct
entity and contain the answer are considered posi-
tive items. Our constructed multimodal knowledge
bases, as detailed in Sec. 3.2, builds upon the tex-
tual knowledge bases, with each textual document
paired with the image of its corresponding entity.
Table 1 presents the statistics of the two datasets
along with their knowledge bases provided.
Evaluation protocol. We report Recall@5 per-
formance for knowledge retrieval. This metric
measures whether the correct answer to a ques-
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No. Model Finetune
RAG

Retriever
Infoseek E-VQA

Text Image Unseen-Q Unseen-E Overall Overall

Previous SOTA method is RA-VQAv2 w/ PreFLMR (Lin et al., 2024c)
SoTA Result 30.65 54.45

Baselines: Zero-shot
(1) LLaVA-13B ✗ ✗ ✗ - 11.2 9.0 10.0 17.8
(2) VILA-13B ✗ ✗ ✗ - 14.2 11.3 12.6 19.3

Baselines: Fine-tune Without Knowledge Augmentation
(3) LLaVA-13B ✓ ✗ ✗ - 27.5 19.5 22.8 32.7
(4) VILA-13B ✓ ✗ ✗ - 28.8 20.9 24.3 32.1

Comparison: Impact of Knowledge Augmentation Modalities
(5) LLaVA-13B ✓ ✓ ✗ baseline 32.5 30.2 31.3 56.3
(6) VILA-13B ✓ ✓ ✗ baseline 37.0 30.9 33.7 57.2
(7) VILA-13B ✓ ✓ ✓ baseline 42.2 33.0 37.1 59.5

Comparison: Impact of Retrievers
(8) VILA-13B ✓ ✓ ✗ MuKA Retriever 42.1 37.7 39.8 60.2
(9) VILA-13B ✓ ✓ ✓ MuKA Retriever 44.6 40.6 42.5 63.1
(10) VILA-8B ✓ ✓ ✓ MuKA Retriever 39.8 37.3 38.5 60.6

Table 3: Results of LLaVA-1.5 and VILA models on visual information-seeking tasks across different settings. The
baseline retriever is the PreFLMR model with ViT-G in a zero-shot manner. All generators are trained using the
baseline retriever results to ensure a fair comparison. The best results are highlighted in bold.

tion can be found within the top-5 retrieved docu-
ments. To evaluate the generated answers, we use
the evaluation provided by InfoSeek and E-VQA.
For InfoSeek, each predicted answer is normalized
and evaluated based on the question type. An exact
match is required for questions expecting an an-
swer in string while a flexible range is allowed for
those expecting a time or a number. The InfoSeek
results include three scores: one for the subset of
unseen questions, another for unseen entities, and
an overall score. As for E-VQA, each predicted
answer is assessed using BERT Matching (Bulian
et al., 2022) against reference answers to determine
correctness. We report the average accuracy for
E-VQA.

4.2 Implementation Details

We implement our MuKA retriever based on
the state-of-the-art PreFLMR (Lin et al., 2024c)
that with a ViT-G vision encoder (Cherti et al.,
2022). We report the results of PreFLMR and
our MuKA retriever after fine-tuning for one epoch
on the training split, utilizing textual and multi-
modal knowledge bases respectively. During fine-
tuning, the vision encoder remains frozen. The
learning rate is set to 1e-4 for the mapping net-
works and 1e-5 for other trainable modules. The pa-
rameters are optimized using the Adam optimizer
with an in-batch contrastive loss. The training is

conducted on 4 GPUs, with a batch size of 8 and
gradient accumulation steps set to 8.

For the answer generators, we report results
based on two families of MLLMs: LLaVA-1.5 (Liu
et al., 2024a) and VILA (Lin et al., 2024a). LLaVA-
1.5, designed for using a single image as context,
supports textual RAG. VILA, in contrast, trained
to understand multiple images, can perform RAG
with both textual and multimodal documents.

To ensure a fair comparison across answer gener-
ators, we use the same retrieval results to construct
training examples, obtained from a zero-shot infer-
ence using the PreFLMR model aforementioned.
For both training and testing, we provide the top-
5 retrieved documents. We truncate each E-VQA
document to the first 100 words. We apply Low-
Rank Adaptation (LoRA) (Hu et al., 2021) to re-
duce trainable parameters, setting the LoRA rank
to 128 and the LoRA alpha to 256. The total batch
size is 512, following Wiki-LLaVA (Caffagni et al.,
2024). We use the Adam optimizer for fine-tuning,
making only the parameters of the multimodal pro-
jectors and the LoRA modules trainable, with learn-
ing rates set to 2e-5 and 2e-4, respectively.

4.3 Results

Evaluation on Knowledge Retrieval. We com-
pare our proposed retriever with previous baselines
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and present results in Table 2. The results show
that our retriever performs the best in terms of R@5
upon both datasets. It significantly outperforms the
best baseline PreFLMR by 9.3 points on the InfoS-
eek dataset and by 4.0 points on the E-VQA dataset.
By an ablation study, as shown in Table 2, we have
some findings on what works: 1) Our proposed
introducing document images in calculating rele-
vance exhibits immediate performance gain over
the baseline PreFLMR, i.e., from 60.1 to 66.6 on
InfoSeek and from 73.7 to 75.6 on E-VQA, even
without fine-tuning. 2) The performance has a drop
of 4% on InfoSeek and 2.7% on E-VQA if without
fune-tuning, indicating fine-tuning can continue
to improve the performance. 3) Ablating mask-
ing matching between patches features of query
images and global features of document images
brings consistent but slight drops, verifying our
idea. These findings strongly support our claims
on the well-calculated similarity between query im-
age and document image providing indispensable
evidence for judging they are the same entity.

Evaluation on Answer Generation. We con-
duct extensive experiments to evaluate our pro-
posed MuKA framework in terms of generation
results (See 3). Our findings reveal that the MuKA -
13B model, when combined with the MuKA re-
triever, achieves significant improvements over the
state-of-the-art results, with a 38.7% boost on In-
foSeek and 15.9% increases on E-VQA. We at-
tribute these gains to several factors. First, fine-
tuning on QA pairs enhances performance greatly,
as evidenced by comparing method (3) to (1) and
(4) to (2). Model augmented with additional knowl-
edge clearly outperform those without, indicat-
ing that visual information-seeking questions are
highly knowledge-intensive. VILA generally per-
forms better than LLaVA in the same setting. Sec-
ond, the model augmented with multimodal knowl-
edge, method (7), improves accuracy by about 2 - 3
points over its counterpart with textual knowledge
input, method (6). This suggests that visual infor-
mation in documents aids answer generation. Third,
improved retrieval results from our MuKA retriever
benefits both forms of augmentation, underscoring
the importance of high-quality retrieval in the vi-
sual information-seeking task. The combination
of the MuKA generator with the MuKA retriever,
method (9) clearly outperforms the combination
with the baseline retriever, method (7).

Figure 5: Accuracy of generated answers with dif-
ferent top-K documents on the InfoSeek and E-VQA
datasets. The multimodal documents are retrieved by
the MuKA retriever and the answers are generated by
answer generators based on VILA-13B.

Necessity of Multiple Documents. We analyze
the impact of feeding top-K multimodal documents
to the final score of generated answers in our
MuKA method. As shown in Figure 5, the per-
formance rises up with K increased only except
for one dot on two datasets. The best performance
is achieved when top five documents are fed into
the answer generator. The absolute improvement
over the result upon top one document is about 7
points on both datasets. This indicates augment-
ing multiple documents is necessary and effective
because the relevant may not be ranked at the top.
Due to the limitation of context length of VILA,
we cannot input more documents including images
and passages. However, according to the trend on
E-VQA where the curve goes flat at K equals to
five, we can expect that increasing K cannot bring
extra positive gain at some point because more doc-
uments may introduce more irrelevant documents
to confuse the generator model.

5 Conclusion

In this paper, we tackle the challenging visual
information-seeking task by leveraging multiple
multimodal documents. We propose MuKA re-
triever to enable multimodal retrieval from multi-
modal knowledge bases, and MuKA generator to
guide multimodal language models to utilize the
multimodal documents for answer generation. We
conduct extensive experiments to demonstrate the
effectiveness of our approaches, highlighting the
significance of multimodal knowledge and multiple
documents for this knowledge-intensive task.
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Limitations

While we conducted extensive experiments to vali-
date the significance of multimodal documents in
both knowledge retrieval and answer generation,
it is important to acknowledge several limitations.
Firstly, we consider a single image for each entity.
In reality, an entity may have various views under
different conditions and perspectives, which our
current approach does not account for. Secondly,
the sizes of the knowledge bases used in our exper-
iments are moderate. The efficiency and effective-
ness still need to be studied on larger knowledge
bases in real-world scenarios. Lastly, there is a lack
of clarity on how exactly the answer generators pro-
vide answers from the retrieved documents. Tech-
niques including chain-of-thought prompting (Wei
et al., 2022) could be explored to improve the trans-
parency of the answer generation process. In light
of these considerations, our research may be lim-
ited, and addressing these limitations could provide
valuable insights for future work.
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A Overlap Analysis of Document Images

To ensure that the collected entity images do not
overlap with the query images in the test sets of
InfoSeek and E-VQA, we utilize the imagehash
toolkit to determine whether the query image in a
test example is identical to its entity image. Specif-
ically, we use the perceptual hash with a hash size
of 8, considering images with a distance of 10 or
less to be identical. Our analysis reveals that 13
out of 4,708 (0.3%) testing examples in InfoSeek
and 47 out of 3,750 (1.25%) testing examples in E-
VQA are considered overlapped. Given these low
occurrence rates, we do not implement additional
processing steps.

B Prompt for Answer Generators

Here, we present the specific prompts used for an-
swer generation across various settings for refer-
ence purposes.

Zero-shot & Fine-tune w/o Knowledge Augmen-
tation This prompt is designed to test answer
generators without knowledge augmentation. Con-
sequently, the model relies solely on the knowl-
edge stored in its parameters. Fine-tuning without
knowledge augmentation ensures that the model
provides answers adhering to the format of a spe-
cific dataset.

Prompt for Zero-shot & Fine-tuning w/o
Knowledge Augmentation
<query image>
Question: {question}
Give a short answer.

Fine-tune w/ Textual Knowledge Augmented
This prompt is intended to supply the answer gen-
erator with retrieved textual passages. This proce-
dure is similar to Retrieval-Augmented Generation
(RAG) in language models, except it includes the
input of a query image. We also provide an addi-
tional instruction to guide the model in leveraging
the matched passages effectively.

Fine-tune w/ Multimodal Knowledge Augmen-
tation This prompt is designed for Multimodal
Large Language Models (MLLMs) that accepts
contexts with multiple images. We implement
our MuKA generators using this prompt. By pro-
viding multimodal documents (i.e. documents im-
ages and their texts), the MLLMs gains a clear
view of the entities while obtains relevant informa-
tion for answering the questions, thereby leading

to more accurate answers.
Prompt for Fine-tuning w/ Textual Knowl-
edge Augmentation
<query image>
Question: {question}
Retrieved passages:
1: <document text 1 >
2: <document text 2 >
3: <document text 3 >
4: <document text 4 >
5: <document text 5 >

Given the question, along with retrieved
passages, identify the matched passages and
use them to provide a short answer to the
question.

Prompt for Fine-tuning w/ Multimodal
Knowledge Augmentation
<query image>
Question: {question}
Retrieved passages:
1: <document image 1 ><document text 1 >
2: <document image 2 ><document text 2 >
3: <document image 3 ><document text 3 >
4: <document image 4 ><document text 4 >
5: <document image 5 ><document text 5 >

Given the query image and question,
along with retrieved passages and their
images, identify the matched passages and
use them to provide a short answer to the
question.

C Textual RAG with More Documents

We used top-5 multimodal documents in
our MuKA generator due to the limitation of the
context length of the models. However, for textual
RAG, the context length of MLLMs allows reading
more textual documents for answer generation.

To find out whether more textual documents
could contribute to answer accuracy, we fine-tuned
LLaVA-1.5 13B models with more documents fol-
lowing the settings in the paper and tested them
with the same number of documents from the
MuKA retriever. The final score is 31.0 for top-
1, 35.3 for top-3, 37.8 for top-5, 37.7 for top-10,
and 37.2 for top-15 passages. Our findings suggest
that using top-5 passages is sufficient, as more doc-
uments do not necessarily improve performance.
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