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Abstract

Graph-enhanced large language models
(LLMs) leverage LLMs’ remarkable ability
to model language and use graph structures
to capture topological relationships. Existing
graph-enhanced LLMs typically retrieve
similar subgraphs to augment LLMs, where
the subgraphs carry the entities related to
our target and relations among the entities.
However, the retrieving methods mainly focus
solely on accurately matching subgraphs
between our target subgraph and the candidate
subgraphs at the same scale, neglecting that
the subgraphs with different scales may also
share similar semantics or structures. To tackle
this challenge, we introduce a graph-enhanced
LLM with multi-scale retrieval (MSG-LLM). It
captures similar graph structures and semantics
across graphs at different scales and bridges
the graph alignment across multiple scales.
The larger scales maintain the graph’s global
information, while the smaller scales preserve
the details of fine-grained sub-structures.
Specifically, we construct a multi-scale
variation to dynamically shrink the scale of
graphs. Further, we employ a graph kernel
search to discover subgraphs from the entire
graph, which essentially achieves multi-scale
graph retrieval in Hilbert space. Additionally,
we propose to conduct multi-scale interactions
(message passing) over graphs at various scales
to integrate key information. The interaction
also bridges the graph and LLMs, helping with
graph retrieval and LLM generation. Finally,
we employ a Chain-of-Thought-based LLM
prediction to perform the downstream tasks.
We evaluate our approach on two graph-based
downstream tasks and the experimental results
show that our method achieves state-of-the-art
performance.

†These authors contributed equally to this work.
*Corresponding author.

1 Introduction

Large language models (LLMs) have demonstrated
remarkable capabilities in understanding and gen-
eralizing unstructured text. Given the powerful rep-
resentation ability of graphs for structured data, it
is natural to combine LLMs with graphs to achieve
better performance in the field of natural language
processing, including both classification and gener-
ation tasks(Li et al., 2024; Chen et al., 2024; Zhang
et al., 2024).

Recently, there has been a surge in investi-
gating effective methods for leveraging graph-
structured information to enhance LLMs’ capabil-
ities. These methods typically employ subgraphs
obtained through exact matching to augment the
structural information available to LLMs. Some of
these studies incorporate graph embeddings with
LLM. GNP (Tian et al., 2024) uses soft prompts
to provide GNN-modeled structured information
to LLMs, and GraphAdapter (Huang et al., 2024)
incorporates GNNs as adapters to combine with
LLMs. While other studies enable LLMs to reason
according to the graph structure and integrate struc-
tured information into the reasoning process. ToG
(Sun et al., 2023) and MD-QA (Wang et al., 2024)
query graphs directly through LLMs. However, the
precise matching of the target graph only utilizes
local information in the large graph, ignoring more
globally related information in the entire graph.

To address these issues, some approaches aim to
retrieve multiple relevant subgraphs from the entire
graph, rather than relying solely on a single sub-
graph obtained through exact matching to enhance
LLMs. Graph RAG (Edge et al., 2024) suggests
partitioning a knowledge graph into community
graphs and generating community summaries as re-
trieval targets. G-retriever (He et al., 2024) frames
subgraph retrieval as a prize-collecting Steiner tree
(PCST) optimization problem, aiming to include
the maximum number of relevant nodes and edges.
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Additionally, GRAG (Hu et al., 2024) encodes k-
hop subgraphs around each node as the target sub-
graph, retrieving subgraphs similar to the target
graph according to the graph embeddings. How-
ever, although existing retrieval methods identify
more relevant subgraphs, they mainly focus on
matching the target subgraph with candidate sub-
graphs at the same scale. In reality, small and large
subgraphs may also match when viewed across
different scales. Current approaches overlook the
potential for subgraphs of varying scales to share
similar semantics or structures, which could pro-
vide valuable contextual information. This limita-
tion prevents capturing more comprehensive rela-
tionships within the graph and limits the model’s
ability to leverage the graph’s multi-scale semantic
richness fully.

In this paper, we introduce a graph-enhanced
LLM with multi-scale retrieval (MSG-LLM) and
evaluate its effectiveness on two of the most com-
mon NLP tasks: text classification (emotion recog-
nition in conversation) and text generation (citation
generation). MSG-LLM captures similar graph
structures and semantics across different scales, en-
abling alignment and interaction of graphs at mul-
tiple scales. The graphs also interact with LLMs to
accomplish some NLP tasks. Specifically, we first
construct a multi-scale variation to dynamically
adjust the scale of graphs by abandoning unimpor-
tant nodes (subgraphs). We employ a graph kernel
search to discover subgraphs from the entire graph,
where the subgraphs match our target subgraphs
across different scales in Hilbert space. Further, we
propose a multi-scale interaction module to con-
duct message passing over graphs at various scales
to integrate key information. The interaction mod-
ule also bridges graphs and LLMs: the graphs step-
by-step arouse LLMs via CoT, while LLMs pro-
vide textual descriptions about the graphs’ semantic
information to help graph retrieval. This bidirec-
tional flow allows the graphs to provide structured
data that enhances LLM reasoning, while the LLM
offers unstructured textual information to guide
graph retrieval, ensuring a more comprehensive un-
derstanding of the graph’s semantics. Finally, we
construct a CoT-based LLM prediction module to
perform the downstream tasks. The experiments
show that our model achieves state-of-the-art per-
formance on two graph-based downstream tasks.
We summarize our contributions as follows:

• We propose a novel method to convert and

preserve multi-scale graph information, allow-
ing LLMs to effectively utilize structured data
across different graph scales.

• We enable full bidirectional interaction be-
tween the graph and LLM, where graph re-
trieval supplies structured information and the
LLM’s text generation complements this with
unstructured data.

• We conduct experiments on datasets for two
tasks, demonstrating that our method outper-
forms both traditional graph-based and lan-
guage model-based methods.

2 Related work

2.1 Graph-enhanced Text Generation

Graph Retrieval-Augmented Generation is a tech-
nique that integrates graph retrieval and generative
models to improve the performance of generation
tasks, particularly those requiring extensive back-
ground knowledge and contextual understanding.
By integrating graph structural information into
generative models, these approaches improve both
the quality and relevance of the generated outputs.
To better capture the topological information of
graphs, Kang et al. (2023) and Kim et al. (2023)
focus on retrieving triples, aiming to represent com-
plex relational data. CBR-KBQA (Das et al., 2021)
combines the query and the retrieved pairs for gen-
eration. These approaches rely on subgraphs ob-
tained through strict matching to enhance retrieval,
but these subgraphs do not necessarily enhance
the generation performance of language models.
In addition, some methods attempt to improve in-
formation coverage by retaining multiple retrieval
results. For example, Edge et al. (2024) employs
a community detection algorithm to partition the
graph into multiple communities, retrieving and
aggregating relevant ones to generate the final an-
swer to the query. Similarly, GMT-KBQA (Hu
et al., 2022) re-ranks retrieved entities and rela-
tions, performing relationship classification and
entity disambiguation before generation. Although
these methods preserve multiple matching results,
they fail to leverage the potential multi-scale in-
formation in the graph and do not fully explore
relationships across different levels, limiting the
model’s comprehensive understanding and effec-
tive utilization of the graph’s information.
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Figure 1: The framework of MSG-LLM with four parts: Multi-Scale Variations, Graph Kernel Search, Multi-Scale
Interaction Module, and CoT-based LLM Prediction Module. The green arrows in the figure represent operations of
Scale Variations. The sub-figure in the upper-left part shows the Graph Kernel Search module. The sub-figure in the
bottom-left part shows the Interaction Module. We feed the subgraphs retrieved at multiple scales into the LLM in
the form of Chain-of-Thought, as shown on the right side.

2.2 Emotion Recognition in Conversation

Emotion Recognition in Conversation (ERC) can
be broadly categorized into three groups: The
first category is graph-based methods, which uti-
lize nodes and edges to model relationships be-
tween dialogues and speakers(Ghosal et al., 2019;
Ishiwatari et al., 2020). The second category is
transformer-based methods, which utilize or adapt
transformer blocks to establish long-range emo-
tional dependencies (Zhong et al., 2019; Song et al.,
2022; Lei et al., 2023). The third category is graph-
transformer methods, which combine the advan-
tages of both graph structures and transformer ar-
chitectures. S+PAGE (Liang et al., 2022) uses a
two-stream conversational Transformer to extract
both the self and inter-speaker contextual features
for each utterance and employ SPGCN to model
the speaker dependency and position information.
MFAM (Hou et al., 2023) treats the pre-trained
conversation model as a prior knowledge base and
forms the weights of edges in the graph neural
network. MKFM (Tu et al., 2023) integrates knowl-
edge generated by LLMs and builds a directed
graph to model context dependencies. This pa-
per incorporates multi-scale graph information to
enhance LLMs. The large-scale graph preserves
conversations that are similar to the current con-
versation and can be used for topic understanding,
thereby narrowing down the range of emotional
labels; The small-scale only focuses on the con-

text closely related to the current conversation, re-
taining details that can directly affect emotional
judgment.

2.3 Context-Specific Citation Generation

In recent years, the growing volume of scientific
literature has increased the demand for citation gen-
eration. Previous studies approach this task as a
specialized form of text summarization (Hoang and
Kan, 2010; Hu and Wan, 2014; Chen and Zhuge,
2019). However, citation generation differs from
text summarization, as it requires a context-specific
description of the cited paper relative to the cit-
ing paper. PTGEN-Cross (Xing et al., 2020) en-
hances citation generation by embedding citation
sentences within specific contexts of the document.
AutoCite (Wang et al., 2021) employs a multi-task
model to simultaneously infer relevant work and
generate citation contexts. DisenCite(Wang et al.,
2022) integrates paper text and citation relation-
ships to automatically generate citations tailored to
specific contexts. Şahinuç et al. (2024) proposes
to systematically explore the task of citation text
generation with LLMs. This paper proposes the
use of multi-scale citation relationship graphs. The
larger-scale identifies papers that are similar to the
current paper in only one aspect, such as task back-
ground, base model, or experimental setup, which
can be used to determine the citation perspective;
The smaller scale pays attention to the similarities
and differences between the citing and cited pa-
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per, which can be directly used for citation content
generation.

3 Method

3.1 Overview

Given a large graph G and a target subgraph gt,
our task is to infer the task-specific information p
for gt, leveraging LLM and the information from
retrieved subgraph gr in G. As illustrated in Fig-
ure 1, the proposed Multi-Scale Graph-Enhanced
LLM (MSG-LLM) involves Multi-Scale Varia-
tions, Graph Kernel Search, Multi-Scale Inter-
action Module and CoT-based LLM Prediction
Module. MSG-LLM scales the large graph G to
generate scaled graphs G̃ = {G̃1, G̃2 · · · G̃k} at
different scales, which retain the key information
across various scales. The multi-scale interaction
module enables the target subgraph gt to absorb in-
formation from different scales and LLMs, yielding
ginter. To leverage multi-scale information, MSG-
LLM uses graph kernels to retrieve subgraphs simi-
lar to ginter across various scales from G̃, resulting
in the retrieved subgraphs gr. MSG-LLM provides
gt and gr in the form of Chain-of-Thought (CoT)
to the LLM, resulting in the final prediction. Al-
gorithm 1 illustrates the overall framework of the
model.

We define the crucial notations as follows: The
text-attributed graphs are defined as G = (V,A, S),
where V represents the set of nodes, A is the
adjacency matrix, S represents the natural lan-
guage attributes of V . Given a target subgraph
gt = (Vt, At, St), our task is to infer the task-
specific information p for gt by the LLM. We apply
scale variations to G, yielding K scaled graphs,
denoted as G̃ = {G̃1, G̃2 · · · G̃k}. For the target
subgraph gt, let gkr denote the retrieved subgraphs
from G̃k at the k-th scale. Thus, gr = {g1r , g2r ·gKr }
represents the set of retrieved subgraphs across all
scales.

3.2 Multi-Scale Variations

To capture the multi-scale information of the graph,
we apply K scale variations to the entire graph. The
scale of a graph refers to the total number of nodes
and edges it contains, which can be regarded as its
size or capacity. For the initial graph G, we retain
the important nodes and aggregate the remaining
nodes based on the scaling factor rk, transforming
G into a graph at k-th scale, denoted as G̃k. Since
text embeddings are used to calculate similarity

Algorithm 1: MSG-LLM Algorithm
Input: G = (V,A, S);

Target graph: gt = (Vt, At, St);
Number of scale: K;
Intra transformation matrix: Wintra;
Cross transformation matrix: Wcross

Output: Task-specific prediction of gt
1 for k = 1, 2, 3, . . . ,K do
2 Scale variation:
3 G̃k = ScaleV ariation(G, k)
4 Absorb information from LLM:
5 ek ← (LLM, gt)
6 W ′

intra ← (ek,Wintra)
7 if k = 1 then
8 Bidirectional interaction:
9 Hk

inter = σ(Aintra ·Hk
t ·W ′

intra)

10 end
11 if k! = 1 then
12 // Construct cross-scale edge

connections Across

13 Across ← (gt, g
k−1
r )

14 Bidirectional interaction and scale
interaction:

15 Hk−1
r ← gk−1

r

16 Hk
inter = σ(Aintra ·Hk

t ·W ′
intra +

Across ·Hk−1
r ·Wcross)

17 end
18 Graph kernel search:
19 gkr = KS(At, H

k
inter, G̃k)

20 end
21 LLM predictor:
22 P = LLM(prompt, g1r , g

2
r , . . . , g

K
r )

during aggregating, we leverage a pre-trained lan-
guage model (PLM) to convert text attributes of
nodes in G, denoted as X .

To preserve key information in the graph, we
first score the nodes based on an importance func-
tion, which evaluates the nodes using task-specific
indicators, such as information entropy, degree, or
other relevant metrics. We retain the top-k nodes
with the highest scores based on the scaling factor
rk, denoted as V k

imp, which denotes the set of im-
portant nodes retained after scaling. The remaining
unimportant nodes are represented as V k

unimp.

To mitigate the graph information loss due to
scale variation, we aggregate the features of nodes
in V k

unimp to those in V k
imp based on the matching

relationships Mk between them:
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Dk
ii =

∑
j

mij (1)

X ′
k = (Dk)−1MkXunimp

k (2)

Mk
sim =

Ximp
k X ′

k

|Ximp
k ||X ′

k|
(3)

X̃k = Ximp
k + IMk

simX ′
k (4)

where Mk
ij = 1 indicates a matching relationship

between the i-th node in V k
imp and j-th node in

V k
unimp, while Mk

ij = 0 indicates no such rela-
tionship. X ′

k represents the aggregated features
of Xunimp

k based on the matching relationships.
Mk

sim is the similarity matrix between Ximp
k and

X ′
k. I is the identity matrix, and X̃k is the fea-

ture matrix of G̃k. The adjacency matrix Ãk of
G̃k is obtained by the corresponding edges in V k

imp.
The matching strategy is also tailored to the down-
stream task. For instance, in conversational con-
texts, unimportant nodes are matched with similar
nodes within the same conversation, whereas in
citation networks, unimportant nodes are matched
with paper nodes involved in citation relationships.

3.3 Graph Kernel Search

To fully leverage information across different
scales, we employ graph kernel to retrieve similar
subgraphs at K scales with respect to the target sub-
graph gt. Before being sent to the graph kernel for
retrieval at each scale, gt is first processed through
the interaction module to obtain ginter, which in-
corporates information from LLM and other scales.
Details of the interaction module will be discussed
in subsequent sections. We use random walk graph
kernel for search, which measures the structural
similarity between graphs by counting the number
of common paths and evaluates feature similarity
through node attributes:

gr = KS(ginter, G̃) (5)

where KS(·) denotes the graph kernel retrieval
function, and gr represents the retrieved subgraph.
Given ginter and a subgraph g′ϵG̃, We use M ′

sim

to encode the similarity between the attributes of
ginter and g′, while A× denotes the adjacency ma-
trix of the direct product graph. Then, we can
compute the kernel that counts the number of com-
mon walks of length p between the two graphs as

follows:

A× = Ainter ⊗A′ (6)

m = vec(M ′
sim) = vec(HinterX

′T) (7)

Kp(ginter, g
′) =

|V×|∑
i,j=1

mimj [A×
p]ij = mTA×

pm

(8)

where Hinter and X ′ represent the feature matrices
of ginter and g′. M ′

sim denotes the node similarity
matrix, where the (i, j)-th element represents the
similarity between the i-th node in ginter and the
j-th node in g′. The (i, j)-th element of A×

p repre-
sents the number of paths between the i-th and j-th
nodes in the direct product graph. Kp(ginter, g

′)
denotes the similarity score derived from the ran-
dom walk graph kernel. Based on the similarity
scores, we can obtain the retrieved subgraphs gr
at different scales, which will be used to enhance
the output of the LLM in the form of CoT. (See
Section 3.5 for details).

3.4 Multi-Scale Interaction Module

To facilitate comprehensive information flow be-
tween components, we introduce a multi-scale in-
teraction module, which includes both bidirectional
interaction and scale interaction components. As
previously mentioned, the interaction module al-
lows the target subgraph gt to absorb additional
information and obtain ginter.

Bidirectional interaction. The bidirectional in-
teraction module enables information flow between
the graph model and the LLM, allowing their out-
puts to complement each other for enhanced col-
laboration. We utilize a PLM to embed the specific
information generated by LLM at the current scale,
denoted as ek.

We integrate the information generated by the
LLM for the target subgraph gt into the message ag-
gregation process of GNN. Traditional GNN mod-
els utilize a shared transformation matrix Wintra

to aggregate information. However, since each tar-
get subgraph gt contains distinct information, the
globally shared matrix Wintra may fail to provide
optimal feature aggregation for different target sub-
graphs. Therefore, we use Wintra to capture the
common global structure of the graph, while incor-
porating personalized information ek generated by
the LLM to create specific intra-scale transforma-
tion matrix W ′

intra. Specifically, we modulate the
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shared weight Wintra by a scale-specific transfor-
mation through scaling and shifting. The localized
weight matrix of gt is given by

a = σ(Mae
k) + 1, b = σ(Mbe

k) ∈ Rd (9)

W ′
intra = Wintra ⊙ [(a)×d] + [(b)×d] (10)

where Ma and Mb are learnable parameters, Here
the notation [(X)×n] represents a matrix with n
columns, all of which are identical to the vector x,
and ⊙ denotes element-wise multiplication.

Scale interaction. We employ the scale inter-
action module to ensure that the target subgraph
gt can fully utilize the graph topology at the cur-
rent scale while also absorbing crucial information
from the subgraph g

(k−1)
r retrieved at the previous

scale. By incorporating information from different
scales, we can supplement the current scale with
important details that may be overlooked.

For the information at the current scale, we use
the topology of gt for message propagation to high-
light the importance of its structure. For cross-
scale information, since different scales employ
varying node aggregation ratios, discrepancies may
arise between scales. So We compute the simi-
larity between the target node at the current scale
vt ∈ gt and the nodes from the previous scale
V k−1
r ∈ gk−1

r . We then select the top-k most simi-
lar nodes to establish connections with vt, denoted
as Topknodes(vt). Then we establish edges between
vt and Topknodes(vt), resulting in the cross-scale
adjacency matrix Across, where i is the index of
vt, and j is the index of nodes in Topknodes. We
utilize the GNN model to aggregate information
from neighboring nodes from different scales using
different transformation matrices:

Hk
inter = σ(Aintra ·Hk

t ·W ′
intra

+Across ·Hk−1
r ·Wcross)

(11)

where Aintra and Across represent the adjacency
matrix of the intra-scale and cross-scale, W ′

intra

and Wcross represent the intra and cross transfor-
mation matrices. Hk

t and Hk−1
r are the feature

matrices of gt and gk−1
r

For the training of the interaction module, we
employ the binary cross-entropy loss as the objec-
tive function:

L = − 1

N

N∑
i=1

[yi · log(pi) + (1− yi) · log(1− pi)]

(12)
where N is the number of training data, yi is the
task-specific ground truth label.

3.5 CoT-based LLM Prediction Module
Through the multi-scale interaction module and
graph kernel search module, We obtained sub-
graphs gr retrieved at various scales and LLM-
processed text related to the target graph. To fully
leverage this information, we utilize the strong text
comprehension capabilities of LLMs to process the
rich topological information in the retrieval sub-
graph and make predictions about the target graph.

Specifically, we adopt the CoT method, which
explicitly models the reasoning flow, enabling the
LLM to gradually understand the multi-scale graph
structure through predefined inference steps. We
draw inspiration from the human learning process:
Reflecting on the learning process, we first summa-
rize the subject to gain a preliminary understand-
ing. Based on this, we refine the specific definition.
Through the study of relevant examples, our un-
derstanding is corrected and deepened, ultimately
enabling a more accurate judgment of the subject’s
nature. We formulate CoT as four parts: Back-
ground understanding, Label scope definition, Ex-
ample learning, and Context learning.
[Background understanding] The text informa-
tion obtained from the first bidirectional interaction
is used as background information.
[Label scope definition] Use the larger-scale re-
trieval subgraph to simulate the label scope of the
target subgraph and utilize the text information ob-
tained from the second bidirectional interaction to
explain the emotional label.
[Example learning] Use the smaller-scale retrieval
subgraph as an example to assist LLM reasoning.
[Context learning] Use the historical conversation
of the target node as a supplement.

These prompts are fed into the LLM and enable
the LLM to progressively learn both textual and
structural information of the graph, leading to final
inference. For the citation generation task, we use
a similar approach. The prompt templates refer to
Appendix E.

4 Experiments

4.1 Dataset
We conduct experiments on two tasks: emotion
recognition in conversation (ERC) and citation gen-
eration. For the ERC task, we use IEMOCAP
(Busso et al., 2008), MELD (Poria et al., 2018), and
EmoryNLP (Zahiri and Choi, 2018) (only use the
textual modality of the multi-modal dataset). For
the citation generation task, we use GCite (Wang
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Model Class Model BLEU-1 BLEU-2 BLEU-3 BLEU-4 ROUGE-1 ROUGE-2 ROUGE-L

Graph-based Methods

AutoCite 0.4696 0.3348 0.2315 0.1650 0.1700 0.0375 0.1334
GAT 0.5131 0.3818 0.2684 0.1937 0.1548 0.0382 0.1339
HGT 0.5252 0.3920 0.2758 0.1982 0.1555 0.0388 0.1359
DisenCite 0.5418 0.4109 0.2951 0.2175 0.1756 0.0446 0.1515

Transformer-based Methods

SciGEN 0.4959 0.3975 0.2885 0.2110 0.1556 0.0102 0.1348
PTGEN-Cross 0.3139 0.2343 0.1669 0.1234 0.1641 0.0417 0.1454
Llama2 0.3884 0.3342 0.2599 0.2024 0.1866 0.0279 0.1200
Llama3 0.5640 0.4612 0.3464 0.2647 0.2035 0.0283 0.1315

Graph-Transformer Methods
6+A+IF+E(Llama2) 0.4403 0.3758 0.2946 0.2338 0.2170 0.0529 0.1477
6+A+IF+E(Llama3) 0.5947 0.4857 0.3683 0.2861 0.2214 0.0454 0.1503
MSG-LLM(Llama3) 0.6547 0.5407 0.4271 0.3504 0.2750 0.1238 0.2186

Table 1: Experimental results of citation generation task.

et al., 2022). More details of implementations can
be referred to Appendix A.

4.2 Baselines

For ERC task, the baselines are: 1) Graph-based
Methods: DialogueGCN (Ghosal et al., 2019),
RGAT (Ishiwatari et al., 2020), DAG-ERC (Shen
et al., 2021), DualGATs (Zhang et al., 2023a),
SIGAT (Jia et al., 2023). 2) Transformer-based
Methods: KET (Zhong et al., 2019), SPCL+CL
(Song et al., 2022), CoG-BART (Li et al., 2022),
MPLP (Zhang et al., 2023b), InstructERC (Lei
et al., 2023). 3) Graph-Transformer Methods:
S+PAGE (Liang et al., 2022), MKFM (Tu et al.,
2023), MFAM (Hou et al., 2023). We choose the
weighted-average F1 score as our evaluation met-
ric.

For citation generation task, the baselines are:
1) Graph-based Methods: GAT (Veličković
et al., 2018), HGT (Hu et al., 2020), AutoCite
(Wang et al., 2021), DisenCite (Wang et al., 2022).
2) Transformer-based Methods: PTGEN-Cross
(Xing et al., 2020), SciGEN (Luu et al., 2021).
3) Graph-Transformer Methods: 6+A+IF+E
(Şahinuç et al., 2024). We use widely adopted
metrics BLEU-1/2/3/4 and ROUGE-1/2/L to mea-
sure the similarity between the generated context
and the ground truth. For more details on the im-
plementation, please refer to Appendix B.

4.3 Main Results

Table 2 illustrates the results of ERC task. Graph-
based methods model conversations and speaker
relationships through graph structures, such as Du-
alGATs, which consider the complementary as-
pects of discourse structure and speaker-aware con-
text. However, these methods do not fully uti-
lize the rich textual information in conversations.
Transformer-based methods, like InstructERC, cap-
italize on powerful text understanding capabilities

Dataset IEMOCAP MELD EmoryNLP
Models W-F1 W-F1 W-F1

Graph-based Methods
DialogueGCN 64.18 58.10 -

RGAT 65.22 60.91 34.42
DAG-ERC 68.03 63.65 39.02
DualGATs 67.68 66.90 40.69

SIGAT 70.17 66.18 39.95
Transformer-based Methods

KET 59.56 58.18 34.39
SPCL+CL 69.74 66.35 40.25

CoG-BART 66.18 64.81 39.04
MPLP 66.65 66.51 -

InstructERC 71.39 69.15 41.37
Graph-Transformer Methods

S+PAGE 68.93 64.67 40.05
MKFM 68.88 65.66 39.76
MFAM 70.16 66.65 41.06
Llama2 29.60 19.50 24.70

Llama2+MSG-LLM 41.73 31.57 31.96
Llama3 33.26 42.26 29.89

Llama3+MSG-LLM 46.60 44.08 31.40
Llama2+LoRA 40.82 58.73 35.82

Llama2+LoRA+MSG-LLM 72.02 69.14 41.48

Table 2: Experimental results of ERC task.

by constructing instructions and fine-tuning LLMs,
outperforming graph-based methods across three
datasets. Graph-Transformer methods attempt to
combine the strengths of both approaches. For
instance, MFAM aligns the structural features of
graphs with the semantic features of transform-
ers, while MKFM enhances graphs using LLM-
based data augmentation. However, these exist-
ing approaches simply combine the two, result-
ing in suboptimal performance compared to stan-
dalone graph-based or transformer-based methods.
Our method fully leverages the powerful language
understanding of LLMs while integrating multi-
scale graph information, creating a more cohesive
combination. Our method achieves improvements
over the SOTA in IEMOCAP and EmoryNLP, and
achieves performance close to InstructERC on
MELD. Furthermore, when applied to mainstream
large language models like Llama2-7b and Llama3-
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Task ERC Citation generation
Dataset IEMOCAP MELD EmoryNLP GCite
Models W-F1 W-F1 W-F1 BLEU-1 BLEU-2 BLEU-3 BLEU-4 ROUGE-1 ROUGE-2 ROUGE-L

MSG-LLM 72.02 69.14 41.48 0.6547 0.5407 0.4271 0.3504 0.2750 0.1238 0.2186
w/o large-scale 68.01 68.36 38.89 0.6464 0.5324 0.4190 0.3424 0.2716 0.1160 0.2127
w/o small-scale 67.87 67.81 39.84 0.5756 0.4782 0.3783 0.3101 0.2715 0.1198 0.2120

w/o interaction(large) 67.84 67.50 38.85 0.6532 0.5394 0.4261 0.3496 0.2740 0.1215 0.2167
w/o interaction(small) 68.54 68.27 40.03 0.6461 0.5328 0.4195 0.3430 0.2685 0.1169 0.2119

Table 3: The ablation results of ERC and citation generation.

Yeah.

Uh-huh.

…

graph retrieval

Large-scale Retrieval Subgraph

Yeah, totally. 

So you're going to…

<excited>

<excited>

I know, I know, yea…
<excited>

…
graph retrieval

Small-scale Retrieval Subgraph

Yes. He finally 
proposed. I'm 
getting married.

I know. I'm so-

I'm invited, right. 

<excited>

Step 1：Understand the [Background]

CoT

Step 2：Here are the [Label definition]

Let's think about it step by step.

Step 3：Here are the [Example]
Step 4：Here is the conversation: [Historical 

content]. Please  choose the emotional label of 

<“ No way, XXX, when did it happen? “> 

from [Candidate labels ].

Excited

…
w/o MSG-LLM: Neutral

Target Graph

So can we hang out?

He asked you?

No way, 
when? when, 
when, when 

did it happen?

In this lively dialogue, an actress shares the 
exciting news of her recent engagement 
with an actor, sparking a heartfelt and 
humorous conversation about…

Background

Figure 2: A case study of ERC task.

8b, our approach delivers further improvements,
underscoring its effectiveness. The results of cita-
tion generation task are presented in Table 1. Simi-
lar to the results observed in ERC, our MSG-LLM
also achieves state-of-the-art performance.

4.4 Ablation Studies

We conduct an ablation study to investigate the
characteristics of the main components in our
method. Tabel 3 shows the ablation results, and
"w/o" denotes the model performance without a
specific module. We have the following observa-
tions: The performance of our method drops when
removing any one component, which suggests that
every part of the design is necessary. Removing any
large-scale retrieval subgraphs will cause a signifi-
cant drop in model performance. This is consistent
with our conjecture since large-scale subgraphs pre-
serve their global integrity, which restores the true
situation of the target subgraph. Taking away the
small-scale retrieval subgraphs resulted in a steady
decline on all three datasets, which indicates that
small-scale subgraphs preserve the essential sub-
structure details and are beneficial in assisting LLM
in reasoning. Removing the interaction module
causes obvious performance degradation, demon-
strating the critical role of interaction module in
enabling the target subgraph to absorb additional
information from other scales and the LLM.

4.5 Analyses on Graph Structure

To further verify the capability of our model in
effectively utilizing the graph structure, we con-
ducted experiments on both ERC task and the cita-
tion generation task. We do not consider the graph
structure, but only retrieve relevant sentences or
papers based on semantic features and send them
to LLM as described in the paper. The results are
reported in Figure 3. Performance drop is observed
across all datasets when the graph structure is not
utilized. This highlights the model’s ability to ef-
fectively leverage the graph structure.

Figure 3: The analyses results of graph structure.

4.6 Case Study

As shown in Figure 2, the target is to judge the emo-
tion of "No way, XXX, when did it happen?" It is
difficult to literally judge from the sentence. MSG-
LLM obtain two scales of retrieval subgraphs:
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The larger-scale contains the conversation with the
“hang out” topic, where the emotion is mostly “ex-
cited”. The small-scale concentrates on the current
conversation with the content of “married”, so the
emotion can be decided as “excited”.

5 Conclusion

In this paper, we introduce a Multi-Scale Graph-
Enhanced LLM (MSG-LLM). It captures similar
graph structures and semantics across graphs in
different scales. MSG-LLM first scales the large
graph to generate scaled graphs and then employs
multi-scale interaction module to enable the tar-
get subgraph to absorb information from different
scales and LLMs. Finally, we employ graph kernels
to retrieve similar subgraphs to the target subgraph
at multiple scales and send the retrieved results to
the LLM in the form of CoT. Experiment results
show that our method achieves state-of-the-art per-
formance on two graph-based downstream tasks.

6 Limation

One potential limitation of our approach is the use
of a fixed scale variation parameter, which may
not fully accommodate the dynamic or diverse na-
ture of certain graphs. Future work could investi-
gate adaptive scale variation techniques and explore
more flexible similarity metrics to further improve
the model’s performance in varied contexts.
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A Dataset

For the ERC task, we evaluate the efficacy of
our method on three standard benchmark datasets:
IEMOCAP, MELD, and EmoryNLP. We utilize
only the textual modality of the above datasets for
the experiments. For the citation generation task,
we evaluate the efficacy of our method on three
standard benchmark datasets: GCite.

IEMOCAP (Busso et al., 2008) is a dataset
recorded as dyadic conversational video clips with
eight speakers participating in the training set while
two speakers in the testing set.

MELD (Poria et al., 2018) is a multimodal
dataset extended from the EmotionLines dataset.
MELD is taken from the popular TV show Friends
and contains more than 1,400 dialogues and more
than 13,000 utterances, each of which is labeled
with emotion and sentiment categories.

EmoryNLP (Zahiri and Choi, 2018) is a dataset
also collected from the TV series Friends. The
dataset comprises utterances that are categorized
into seven distinct emotional classes.

GCite (Wang et al., 2022) is a dataset consist-
ing of 25K relationships with different types (7.5K
introduction, 8.0K related work, 4.9K model and
4.6K experiment citations) over 4.8K papers ex-
tracted from computer science domain of S2ORC
(Lo et al. 2020). We randomly select 80% of cita-
tion relations to constitute the training set and treat
the remaining 10%, 10% as the validation and test
set respectively.

B Baselines

For the ERC task, we selected several SOTA base-
lines for each method:

Graph-based: DialogueGCN (Ghosal et al.,
2019) leverage self and inter-speaker dependency
of the interlocutors to model conversational con-
text for emotion recognition and addresses con-
text propagation issues present in the current RNN-
based methods. RGAT (Ishiwatari et al., 2020)
propose relational position encodings that provide
RGAT with sequential information reflecting the
relational graph structure, which can capture both
the speaker dependency and the sequential informa-
tion. DAG-ERC (Shen et al., 2021) combines the
strengths of conventional graph-based neural mod-
els and recurrence-based neural models, provid-
ing a more intuitive way to model the information
flow between long-distance conversational back-
ground and nearby context. DualGATs (Zhang

https://doi.org/10.1145/3437963.3441739
https://doi.org/10.1145/3437963.3441739
https://doi.org/10.1145/3437963.3441739
https://doi.org/10.1609/aaai.v36i10.21397
https://doi.org/10.1609/aaai.v36i10.21397
https://doi.org/10.1609/aaai.v36i10.21397
https://doi.org/10.1609/aaai.v38i17.29889
https://doi.org/10.1609/aaai.v38i17.29889
https://aclanthology.org/2020.acl-main.550
https://aclanthology.org/2020.acl-main.550
https://aclanthology.org/2023.acl-long.408
https://aclanthology.org/2023.acl-long.408
https://doi.org/10.48550/arXiv.2306.06601
https://doi.org/10.48550/arXiv.2306.06601
https://doi.org/10.48550/arXiv.2306.06601
https://doi.org/10.18653/v1/2024.emnlp-main.91
https://doi.org/10.18653/v1/2024.emnlp-main.91
https://aclanthology.org/D19-1016
https://aclanthology.org/D19-1016


9698

et al., 2023a) concurrently consider the comple-
mentary aspects of discourse structure and speaker-
aware context, introduce DisGAT and SpkGAT
to model discourse dependencies between utter-
ances and capture speaker relationships. SIGAT
(Jia et al., 2023) modeling the speaker-aware and
sequence-aware information in a unified graph and
updating them simultaneously to model the interac-
tive influence of them and obtain the final represen-
tations.

Transformer-based: KET (Zhong et al.,
2019) propose a Knowledge-Enriched Transformer,
which interprets contextual utterances by hierar-
chical self-attention and using a context-aware
affective graph attention mechanism to dynami-
cally leveraged external commonsense knowledge.
SPCL+CL (Song et al., 2022) propose a Super-
vised Prototypical Contrastive Learning (SPCL)
loss to solve the imbalanced classification prob-
lem. It designs a difficulty-measure function based
on the distance between classes and introduces
curriculum learning to alleviate the impact of ex-
treme samples. CoG-BART (Li et al., 2022) em-
ploys supervised contrastive learning along with
an auxiliary response generation task to improve
the model’s ability to handle context information
and better differentiate between similar emotions.
MPLP (Zhang et al., 2023b) utilize a history-
oriented prompt, an experience-oriented prompt,
and the label paraphrasing mechanism to improve
the understanding of the conversational context,
the speaker’s background, and the label semantics,
respectively. InstructERC (Lei et al., 2023) de-
velops instruction-based strategies for ERC and
fine-tunes large language models.

Graph-Transformer Methods: S+PAGE
(Liang et al., 2022) employs GNN to capture
the speaker and position-aware conversation struc-
ture information, utilizing a two-stream conversa-
tional Transformer presented to extract both the
self and inter-speaker contextual features for each
utterance. MFAM (Tu et al., 2023) adopt super-
vised contrastive learning to align semantic-view
and context-view features, these two views of fea-
tures work together in a complementary manner,
contributing to ERC from distinct perspectives.
MKFM (Hou et al., 2023) leveraging large models
to gain additional knowledge and propose a Multi-
ple Knowledge Fusion Model to integrate knowl-
edge generated by LLMs for ERC.

For the citation generation task, we selected sev-
eral SOTA baselines for each method:

Graph-based: AutoCite (Wang et al., 2021)
involves a novel multi-modal encoder and a multi-
task decoder architecture. Based on the multi-
modal inputs, the encoder in AutoCite learns paper
representations with both citation network struc-
ture and textual contexts. DisenCite (Wang et al.,
2022) propose a novel disentangled representation-
based model DisenCite to automatically generate
the citation text through integrating paper text and
citation graph, empowering the generation of dif-
ferent types of citations for the same paper.

Transformer-based: PTGEN-Cross (Xing
et al., 2020) first train an implicit citation text ex-
traction model based on BERT and leverage the
model to construct a large training dataset for the
citation text generation task. Then it proposes
and trains a multi-source pointer-generator network
with a cross-attention mechanism for citation text
generation. SCIGEN (Luu et al., 2021) address
the task of explaining relationships between two
scientific documents using natural language text.

Graph-Transformer Methods: 6+A+IF+E
(Şahinuç et al., 2024) propose a three-component
research framework that consists of systematic in-
put manipulation, reference data, and output mea-
surement and uses this framework to explore cita-
tion text generation.

C Graph Construction

For the ERC task, we built a graph based on the
relationships between speakers. In this paper, the
nodes are the utterances in the conversation, i.e.,
V = {u1, u2 · · ·uN}, and for each utterance ui,
there is a previous utterance uτ that is spoken by
the same speaker as ui. We establish edges between
ui and all sentences between ui and uτ .

For the citation generation task, following (Wang
et al., 2022), we build a graph based on the citation
relationship between papers.

D Analyses on Retrieval Efficiency

To verify that scale variation improves retrieval
efficiency, we conducted experiments comparing
retrieval times at different scales, as shown in Fig-
ure 4. The scale variation parameter K indicates
the extent of scale variation, with larger values of
K retaining more nodes, and smaller values of K
resulting in fewer retained nodes. From figure 4,
we observe that as K decreases, the time required
for each retrieval also decreases. This demonstrates
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that scale variation leads to improved retrieval effi-
ciency.
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Figure 4: The analysis results of retrieval efficiency.

E Prompt Templates

For the ERC task, we formulate CoT as four parts:
Background understanding, Label range definition,
Example learning, and Context learning. For the
specific CoT template, please refer to Figure 5.

For citation generation, we formulate CoT as
three parts: Intention example learning, Citation
example study and Context learning. For the spe-
cific CoT template, please refer to Figure 6.

F Fine-tuning Implementation Details

Since large language models(LLM) is a generative
model and the ERC task is a discriminative task, in
order to make LLM familiar with our downstream
tasks, we designed an alignment task to fine-tune
LLM. It mainly includes three parts: conversation
background, label definition and historical content.
The conversation background and label definition
are generated by the LLM, and the historical win-
dow is set to 5.

We use Llama2-7B as our backbone model.
Considering the efficiency and effectiveness of
Parameter-Efficient-Fine-Tuning (PEFT), we adopt
LoRA (Hu et al., 2021) and insert lowrank adapters
after self-attention layers. We set the dimension of
adapters to 16 and the learning rate to 2e-4. We
train with BF16 precision on 80G Nvidia A100
GPUs.

G Citation Position Classification

To further demonstrate the generalization and ef-
fectiveness of our approach, following (Wang et al.,
2022), we conducted an additional task (Citation
Position Prediction) on the GCite dataset using
GPT-4o. Table 4 illustrates the results. Given a pair

of citing-cited nodes, the goal is to predict which
sections the citation could exist. We evaluate the
performance using both Micro F1 and Macro F1
scores. Experimental results show that our method
significantly outperforms GPT-4o, with improve-
ments of +6.17% in Micro-F1 and +8.1% in Macro-
F1% at the 2-scale level, and +7.93% in Micro-F1
and +19.57% in Macro-F1 at the 3-scale level, com-
pared to GPT-4o without MSG-LLM.

Method Micro-F1 Macro-F1
GPT-4o 0.4075 0.2721

GPT-4o+MSG-LLM(2 scales) 0.4692 0.3531
GPT-4o+MSG-LLM(3 scales) 0.4868 0.4678

Table 4: Position prediction performance.
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[SYSTEM]

You are an expert in emotional psychology and you can accurately assess 

people's emotional states. 

[CoT]

Assuming you are in the scene of [Background]:<background>.

Let's think about it step by step:

Step 1: Understand the [Background]

Step 2: Here are the [Label definition]:<label definition>.

Step 3: Here are the [Example]:<example>.

Step 4: Here is the conversation which involves several speakers: <historical 

content>.

Please choose the emotional label of <target utterance> from <candicate

labels>. Just give me the label.

Figure 5: Prompt template of ERC.

[SYSTEM]

As a master in academic writing, capable of digesting the information provided, imagine that dst (the citing 

paper) cites src (the cited paper) at a specific location in the paper (e.g., intro, method, related work, 

experiment). Please write a citation sentence for dst.

[CoT]

Let's think about it step by step:

Step 1: For the following examples of citation sentences [Comparative Examples], they all come from the 

same citation position <citation position>.Please focus only on the intentions behind the citation sentences 

and completely ignore the content itself (as the content itself is not what we need).[Comparative Examples]: 

<Comparative Citations>

Step 2: After understanding the citation's position and intent, refer to a specific example [citation example] 

(where cite_label indicates the citation position, and cite_text is the specific citation text). [citation example]: 

<citation example>. 

Step 3: Fully comprehend [citation position] and [citation example], integrate the following content [target 

content] (especially focusing on <section list >) and write a professional citation for dst (paying attention to 

citation length and quality), [target content ]: <target content>.

Please generate only the 'citation sentence’.

Figure 6: Prompt template of citation generation.
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