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Abstract

In medical question-answering, traditional
knowledge triples often fail due to superflu-
ous data and their inability to capture com-
plex relationships between symptoms and treat-
ments across diseases. This limits models’
ability to provide accurate, contextually rel-
evant responses. To overcome this, we in-
troduce MedEx, which employs First-Order
Logic (FOL)-based reasoning to model intri-
cate relationships between diseases and treat-
ments. We construct FOL-based triplets that
encode the interplay of symptoms, diseases,
and treatments, capturing not only surface-level
data but also the logical constraints of the med-
ical domain. MedEx encodes the discourse
(questions and context) using a transformer-
based unit, enhancing context comprehension.
These encodings are processed by a Knowl-
edge Injection Cell that integrates knowledge
graph triples via a Graph Attention Network.
The Logic Fusion Cell then combines medical-
specific logical rule triples (e.g., co-occurrence,
causation, diagnosis) with knowledge triples
and extracts answers through a feed-forward
layer. Our analysis demonstrates MedEx’s ef-
fectiveness and generalization across medical
question-answering tasks. By merging logical
reasoning with knowledge, MedEx provides
precise medical answers and adapts its logical
rules based on training data nuances. 1

1 Introduction

The remarkable achievements of large pre-trained
language models (PLM) (Devlin et al., 2019;
Radford et al., 2019; Yang et al., 2019; Liu
et al., 2019) have propelled extractive Question-
Answering (QA) systems to unprecedented lev-
els, matching and even surpassing human-level
performance (Hermann et al., 2015; Rajpurkar
et al., 2016; Lai et al., 2017). Nevertheless, these
successes encounter a significant stumbling block

1Code: https://github.com/aizanzafar/MedEx

when applied to the intricate domain of medical
question-answering. This domain presents a unique
challenge, demanding an understanding of the intri-
cate dependencies between various medical symp-
toms and their corresponding treatments across
different diseases. The limitations of the existing
approaches are rooted in their reliance on conven-
tional knowledge triples, which tend to introduce
extraneous information and overlook the nuanced
interplay of medical variables (Smith et al., 2020).
For instance, in Figure 1, it can be seen that knowl-
edge triples are not sufficient enough to convey
the relationship between symptoms and solutions,
whereas logical rules are efficiently able to extract
the intricate relationship.

To address this challenge, QA systems must first
recognize logical units, such as sentences, clauses,
or other meaningful text spans, and subsequently
discern the logical relationships between these
units (Huang et al., 2021). Unfortunately, these
logical structures often remain concealed within
textual data and pose a considerable extraction chal-
lenge, aggravated by the fact that most datasets lack
annotations for such structures. In recent years,
there has been a growing interest in combining
Pre-trained Language Models (PLMs) with logic
reasoning, particularly in the context of address-
ing logical problems (Manhaeve et al., 2018; Dong
et al., 2019).

Present knowledge triples fusion with PLMs
fall short in providing the necessary reasoning
capabilities, while symbolic reasoners face diffi-
culties when applied to unstructured text. While
Graph Neural Network (GNN)-based reasoning
methods like DAGN (Huang et al., 2021) have
shown promise, but they grapple with two notable
limitations. First, despite its graph representation,
it predominantly relies on neural techniques over
discourse relations, raising questions about its abil-
ity to effectively approximate symbolic reasoning
involving logical relations, such as implication and
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Figure 1: Example of QA system based on KG triples alone and KG+FOL triples.

Rule Condition Implication
1 If X co-occurs with Y and Y

affects Z
then X affects Z

2 If X prevents Y and Y causes
Z

then X prevents Z

3 If X treats Y and Y is a type of
Z

then X can be used to treat Z

4 If X is diagnosed with Y and
X interacts with Z

then Z can be used for the di-
agnosis of Y

5 If X co-occurs with Y and X
affects Z

then Y co-occurs with Z

6 If X prevents Y or Y causes Z then X can either prevent or
cause Z

Table 1: Proposed Logical Rules in the Medical Do-
main.

negation. Second, the resulting graph often exhibits
loose connections and consists of long paths, po-
tentially hindering the interaction between context
and options, a critical aspect of answering multiple-
choice questions. To confront this challenge, we
propose MedEx (Medical Expertise) which lever-
ages the First-Order Logic (FOL)-based reason-
ing to unravel intricate disease-solution dependen-
cies. At its core, MedEx fuses FOL-based triples
with traditional knowledge triples, to enrich the
the surface-level data with the nuanced logical con-
straints defining the medical landscape. Employ-
ing six FOL-based rules viz. Co-occurrence, Pre-
vention and Causation, Treatment and Classifica-
tion, Diagnosis and Interaction, Conjunction and
Disjunction, we first construct logic triples captur-
ing intricate symptom-disease-treatment relation-
ships using GNN. Second, contextual understand-
ing is achieved by encoding context and questions
through a PLM. Now we build our novel architec-
ture employing two cells viz. Knowledge Injection
Cell - integrating knowledge graph (KG) triples

seamlessly through a Graph Attention Network,
and Logic Fusion Cell - infusing domain-specific
logical rules, encompassing co-occurrence, causa-
tion, treatment, diagnosis, and interaction. Lastly,
answers are extracted from the context via a feed-
forward layer. By uniting logical reasoning with a
rich knowledge base, MedEx delivers precise re-
sponses while aligning with nuanced training data
patterns. Our extensive experiments and empirical
analysis demonstrate state-of-the-art results validat-
ing MedEx’s effectiveness and adaptability across
diverse medical question-answering tasks. Our key
contributions are summarized as follows:

1. Proposed a novel extractive medical question-
answering system MedEx designing two cells
viz. Knowledge Injection Cell and Logic Fu-
sion Cell to facilitate logical reasoning with
contextual reasoning.

2. Introduced six novel FOL based logical rules
(Table 1) and constructed corresponding logic
graphs resulting into logic triples which can
be employed in Medical extractive Question
Answers systems effectively.

3. Demonstrated the effectiveness of MedEx
through extensive empirical analysis with
state-of-the-art results across diverse medical
question-answering tasks.

2 Related Work

The achievements of large pre-trained language
models (PLM) (Devlin et al., 2019; Radford et al.,
2019; Yang et al., 2019; Liu et al., 2019) have
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led to remarkable progress in extractive Question-
Answering (QA) systems, often reaching or ex-
ceeding human-level performance (Hermann et al.,
2015; Rajpurkar et al., 2016; Lai et al., 2017). How-
ever, the domain of medical question-answering
poses unique challenges, requiring a deep under-
standing of intricate relationships between medical
symptoms and treatments across diseases (Smith
et al., 2020).

Knowledge-Based Medical QA Systems: Early
approaches in medical question-answering relied
on curated knowledge bases and rule-based sys-
tems. Notable systems like AskHERMES (Cao
et al., 2017) and EON (Abacha et al., 2015) demon-
strated the effectiveness of leveraging structured
medical knowledge for answering questions. While
informative, these systems often struggled with
handling nuanced and context-specific queries.

Semantic Graphs and Medical Ontologies:
The use of semantic graphs and medical ontolo-
gies, such as SNOMED CT (Donnelly, 2006) and
UMLS (Bodenreider, 2004), has been explored to
enhance medical QA systems. These approaches
excel at capturing relationships between medical
concepts but may face challenges in scaling to han-
dle complex and diverse medical queries.

Deep Learning-Based QA Systems: Recent
advancements in deep learning have led to the de-
velopment of neural network-based medical QA
systems. Models like BioBERT (Lee et al., 2020)
and ClinicalBERT (Huang et al., 2019) leverage
pre-trained language models to understand medical
text better. While these models offer improved con-
text understanding, they often lack explicit logic
reasoning capabilities.

Logic-Based Reasoning in QA: Logic-based
reasoning has gained traction in the broader field of
question-answering. Systems like Prolog (Colmer-
auer and Roussel, 1991) and Neural-Symbolic In-
tegration (Garcez et al., 2015) have demonstrated
the power of logic in answering complex questions.
However, their application in medical QA has been
limited.

Graph Neural Networks (GNNs): Graph-
based approaches, particularly GNNs, have shown
promise in combining structured knowledge with
unstructured text. Methods like MedGNN (Zhang
et al., 2020) have leveraged GNNs to navigate med-
ical knowledge graphs effectively. MedEx builds
upon this idea, integrating GNNs for knowledge
injection, thereby enhancing the model’s under-
standing of medical relationships.

Hybrid Models: Hybrid models that combine
deep learning with logical reasoning have recently
emerged. Systems like MedQA (authors , not spec-
ified in the provided context) aim to bridge the
gap between neural networks and logical inference,
showcasing the potential for more context-aware
medical QA.

Question Decomposition and Answer Extrac-
tion: Another approach involves breaking down
complex medical queries into subtasks. The use of
question decomposition (Shrivastava et al., 2021)
and answer extraction (Jin et al., 2020) techniques
has demonstrated improvements in handling intri-
cate medical questions.

Present approaches combining PLMs with
knowledge triples have limitations, and sym-
bolic reasoners struggle with unstructured text.
While GNN-based reasoning methods, like DAGN
(Huang et al., 2021), show promise, they may not
fully address logical relations involving implica-
tion and negation. Additionally, GNNs can create
loosely connected graphs, hindering interaction be-
tween context and options. MedEx stands at the
intersection of these research directions, incorpo-
rating FOL-based reasoning to navigate the com-
plexities of medical knowledge while harnessing
the power of deep learning for context-awareness
and knowledge triples to capture relationship be-
tween medical variables. By employing six FOL-
based rules, we construct logic triples, capturing
symptom-disease-treatment relationships, and inte-
grate it with knowledge graph triples, resulting in
improved accuracy and adaptability across diverse
medical question-answering tasks.

3 Methodology

Our proposed model, MedEx consists of three com-
ponents, namely a PLM-encoding, Knowledge In-
jection Cell and Logic Fusion Cell. MedEx takes
as input: question q - the query posed by the user,
context cxt - supporting paragraphs/documents
containing the information needed to extract out
the answer a - the output. PLM-encoding is a
pre-trained LLM which encodes the given input.
knowledge injection cell employs Graph Attention
Networks to generate knowledge triples (h, r, t),
enabling MedEx to focus on pertinent entities and
their relationships. Logic Fusion Cell employs FOL
based rules to steer the MedEX in conducting ad-
vanced reasoning to grasp the intricate relationships
within medical data. This helps MedEx to tackle
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the complex QA tasks within the medical domain.
Integrating external knowledge is a crucial com-

ponent of MedEx, facilitated through the utiliza-
tion of knowledge graphs (KG) (Wang et al., 2014)
to establish links among each question, answer, and
supporting paragraph triplet < Q,A, P >. A KG
is defined as a multi-relational graph G = (V,E),
where V denotes the entity nodes in the KG, and
E ⊆ V ×R×V represents the set of edges (triples)
connecting nodes in V , with R representing the set
of relation types. The structured information within
the KG is depicted as triples (τ1, τ2, ..., τNg ), each
consisting of a head (h), a relation (r), and a tail
entity (t), where Ng indicates the total number of
triples. In this context, we employed the Unified
Medical Language System (UMLS) (Bodenreider,
2004) to construct the KG. The primary aim of
MedEx is to seamlessly merge unstructured infor-
mation from the context with structured knowledge
from the KG to extract accurate answers.

3.1 PLM Encoding
In constructing our architecture, we carefully select
the pre-trained language models tailored to the spe-
cific datasets employed. We utilize RoBERTa (Liu
et al., 2019) for MASH-QA (Zhu et al., 2020) and
COVID-QA (Möller et al., 2020) datasets, and Bi-
oLinkBERT (Yasunaga et al., 2022b) for BioASQ
(Nentidis et al., 2022) and MedQA-USMLE (Jin
et al., 2021) datasets. These pre-trained models
serve as the foundational components of our archi-
tecture. We employ the selected PLM to encode
the concatenated context cxt and question q.

Tenc = LM(cxt; q) (1)

where Tenc ∈ Rn×d is the encoded output. d
is the PLM’s hidden representation and n is the
total number of words. For more details about the
selection of pre-trained language models, refer to
Appendix A.

3.2 Knowledge Injection Cell
Medical Knowledge Graph Creation: We con-
struct the Medical Knowledge Graph (MKG) using
the Unified Medical Language System (UMLS) to
overcome the limitations of medical datasets lack-
ing comprehensive information about medical enti-
ties. Following the methodology outlined by (Zafar
et al., 2024), which involves knowledge-infused
abstractive question answering, we employ Quick-
UMLS to extract medical entities and relationships

from the Metathesaurus and the Semantic Network.
Our approach involves two strategies: merging all
supporting paragraphs into a single document or
processing each paragraph individually to create a
smaller, more relevant KG. We focus on extracting
meaningful triples by filtering medical entities and
relationships, resulting in a concise and contextu-
ally relevant MKG. This process reduces overhead
and enhances the efficiency of MKG creation, facil-
itating accurate medical question answering within
the MedEx system. For more details, refer to Ap-
pendix B.
Knowledge Injection Cell (KI Cell): The Knowl-
edge Injection Cell (KI Cell) enriches the system’s
understanding of medical concepts and relation-
ships by injecting relevant medical knowledge. We
use Graph Attention Networks (GATs) (Velivck-
ovic et al., 2017) within this cell to analyze the
knowledge graph, which consists of interconnected
nodes representing various medical entities and
their relationships.

Within the KI Cell, GATs allow the model to
learn the significance of different medical concepts
and their interconnections. By focusing on relevant
nodes in the knowledge graph and considering their
links, the model gains a deeper understanding of
the medical question’s context, leading to more
informed and accurate answers.

The output of this cell is an attention mechanism,
i.e., AttKI , which plays a crucial role in determin-
ing the relevance and importance of the encoded
output Tenc (as described in § 3.1), allowing the
model to focus on specific nodes in the knowledge
graph that are most relevant to the current medical
query. The output is AttKI ∈ Rn×d :

AttKI = Attention(Tenc,GAT_enc) (2)

The AttKI in the Knowledge Injection Cell of
MedEx regulates how domain-specific knowledge
is integrated into the encoded output Tenc, ensur-
ing that the injected information complements the
existing contextual representation effectively.

3.3 Logic Fusion Cell

The Logic Fusion Cell is a crucial component in
our architecture, responsible for integrating logi-
cal rules into the model’s decision-making process.
This cell enhances the model’s reasoning capabili-
ties, enabling it to comprehend complex relation-
ships and dependencies within the data. It leverages
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Figure 2: Overall architecture of the proposed system MedEx.

logical inference based on predefined rules specifi-
cally tailored for the medical domain, as illustrated
in Table 1. These logical rules are seamlessly incor-
porated into the MedEx decision-making process,
empowering it to provide informed and context-
aware responses.

After evaluating multiple FOL-based rules, we
finalized six that were most relevant and effective
in enhancing the model’s reasoning and inference
capabilities. These rules, which serve as essential
knowledge for the model, are as follows:

1. Co-occurrence Impact Rule: Captures the
relationship where X co-occurs with Y , and
Y affects Z, thus X also affects Z.

co_occurs_with(X,Y ) ∧ affects(Y,Z)

⇒ affects(X,Z) (3)

2. Causal Prevention Rule: If intervention X
prevents event Y, and Y causes event Z, then
X also prevents Z.

prevent(X,Y ) ∧ causes(Y,Z) ⇒
prevent(X,Z) (4)

3. Treatment Inheritance Rule: If X treats Y
and Y is a type of Z, then X can be used to
treat Z too.

treat(X,Y )∧ is_a(Y,Z) ⇒ treat(X,Z) (5)

4. Diagnostic Correlation Rule: If X is diag-
nosed with Y and interacts with Z, then Z can
assist in diagnosing Y.

diagnosis(X,Y )∧interacts_with(X,Z) ⇒
diagnosis(Z, Y ) (6)

5. Co-occurrence Propagation Rule: If X co-
occurs with Y and affects Z, then Y also co-
occurs with Z.

co_occurs_with(X,Y ) ∧ affects(X,Z) ⇒
co_occurs_with(Y,Z) (7)

6. Conditional Outcome Rule: If X prevents
Y or Y causes Z, then X either prevents or
causes Z.

prevent(X,Y ) ∨ causes(Y,Z) ⇒
(prevent(X,Z) ∨ causes(X,Z)) (8)
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These rules are integrated with knowledge graph
(KG) triples extracted from the UMLS. Each rule
generates a new set of KG triples, which are then
compared pairwise using standard tri-linear atten-
tion mechanisms (Seo et al., 2016) with AttKI

(as described in § 3.2). This fusion process en-
sures the effective incorporation of logical rules
into MedEx’s reasoning framework. For more de-
tails on the derivation of these logical rules, please
refer to Appendix C.

Further, Tri-linear attention is a critical mecha-
nism that enables the model to capture interactions
between the encoded context and the fused logical
rules. It identifies the most relevant parts of the
context and rules, allowing for better integration of
logical rules into the reasoning process.

AttRi(u, v) = W1 · u+ W2 · v + (W3 ⊙ v) · u
(9)

where, W1,W2,W3 ∈ Rd are trainable
weights and u ∈ Rx×d, v ∈ Rn×d are input matri-
ces; x and n here are generic placeholder for input
lengths; matrix multiplication and element-wise
multiplication are denoted by (·) and (⊙), respec-
tively.

The tri-linear attention outputs, AttRi , for each
rule are combined into a fused representation,
Rfuse. This merging process aggregates the rel-
evance scores of each rule with respect to the en-
coded context, ensuring that the model considers
the combined influence of all rules during reason-
ing.

Rfuse = MLP (concat(AttRi)
6
i=0) (10)

The concatenated output is then passed through
a feed-forward layer with d neurons to learn com-
plex representations and capture intricate patterns,
mapping the output to a d-dimensional space for
further processing.

After merging, Co-attention (Xiong et al., 2016)
mechanisms are subsequently applied to refine
the hidden representation Tenc using the fused
rule-correlation features. Specifically, co-attention
mechanisms Atr and Art are computed between
and Tenc and Rfuse, allowing the model to recal-
ibrate Tenc based on the weighted sum of Rfuse.
This ensures the model focuses on the most rele-
vant aspects of both the context and the fused rule
representations.

Atr = Att(Tenc, Rfuse) (11)

Art = Att(Rfuse, Tenc) (12)

Rt = Art · [Tenc;Atr ·Rfuse] (13)

R̂t = ReLU(Wp([Rt;Rfuse])) (14)

The concatenated vector [Rt;Rfuse] is passed
through a feed-forward layer with parameters Wp

of size R3d×d, followed by a ReLU activation func-
tion. This process enables the model to capture
complex relationships, enhancing its reasoning and
decision-making capabilities.

Finally, self-attention (Wang et al., 2017) is ap-
plied to compute the final rule representation, R̂f .
This step captures relationships within the rule rep-
resentation R̂f , further refining the model’s under-
standing of the injected logic.

Rs = R̂t · Att(R̂t, R̂t) (15)

Rf = [R̂t;Rs, R̂t −Rs, R̂t ◦Rs] (16)

R̂f = ReLU(Wf ·Rf ) (17)

Here, Rs represents the self-attention output,
and (R̂f ) is the final rule representation, which
the model uses for more informed decision-making
by capturing relationships and dependencies within
the rules.

The purpose of applying self-attention is to allow
the model to focus on different aspects of the rule
representation R̂t and learn complex dependencies
within the rules. By capturing relationships and
interactions within the rule representation, the fi-
nal rule representation R̂f enhances the model’s
understanding of the injected logic. It facilitates
more informed decision-making during the reason-
ing process.

4 Dataset

To check the robustness of the proposed model,
we train and test MedEx on four diverse medical
question-answering datasets: (i.) MASH-QA (Zhu
et al., 2020), encompasses consumer healthcare
questions from WebMD, with a broad spectrum
of health topics and approximately 25K question-
answer pairs, (ii.) COVID-QA (Möller et al., 2020),
focuses on COVID-19 with 2,019 curated question-
answer pairs related to the pandemic, (iii.) BioASQ
Task 10b Phase B (QA Task) (Nentidis et al., 2022)
is designed as part of the BioASQ challenge, em-
phasizing biomedical question-answering in the life
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sciences domain, (iv.) MedQA-USMLE (Jin et al.,
2021) comprises 4-way multiple-choice questions
from USMLE practice tests, providing a rigorous
assessment of the model’s medical knowledge with
a total of 12,723 questions. Detailed dataset details
and statistics, please refer to the Appendix D.

5 Experiments

5.1 Baselines
We evaluated the MedEx model’s performance
against eleven strong baseline models (fine-tuned
on all considered datasets): BERT (Devlin et al.,
2019), SpanBERT (Joshi et al., 2020), XLNet
(Yang et al., 2019), MultiCo (Zhu et al., 2020),
RoBERTa (Liu et al., 2019), BioBERT (Lee et al.,
2020), ClinicalBERT (Huang et al., 2019), Bi-
oLinkBERT (Yasunaga et al., 2022b), QA-GNN
(Yasunaga et al., 2021), GreaseLM (Zhang et al.,
2021), and DRAGON (Yasunaga et al., 2022a).
These baselines were selected for their diverse rep-
resentation capabilities and relevance to the med-
ical domain. Each model offers unique strengths,
such as capturing contextual relationships, empha-
sizing span representations, using autoregressive
techniques for bidirectional context, or specializing
in biomedical and clinical text analysis. Detailed
descriptions of these baselines are provided in sec-
tion E of the Appendix.

5.2 Implementation Details
We implement all the models on a train:test split
of 80:20. For all the models, we used ran-
dom_seed=40, learning rate = 1e-5, dropout =
0.2, Adam optimizer (Kingma and Ba, 2014), and
n_epochs = 15. The implementation utilized the
A100-PCIE-40GB with CUDA version 11.2 for
GPU acceleration. Each training epoch lasted ap-
proximately 1.5 hours. Additional information
about hyperparameters can be found in Appendix
F.

5.3 Evaluation Metrics
For MASH-QA and COVID-QA datasets, all mod-
els are assessed employing two evaluation metrics:
Exact Match (EM)

EM = E[cxt+q],a1{
∑

pθ(y|[cxt+ q]) = a)}
(18)

and F1-score (F1).
For BioASQ and MedQA-USMLE datasets, we

evaluated all models using accuracy ACC mea-
sure.

6 Results and Analysis

We perform both quantitative analysis and qual-
itative analysis to assess the the performance of
proposed model on fours datasets viz. MASH-QA,
COVID-QA, BioASQ and MedQA-USMLE.

6.1 Quantitative Analysis

Table 2 presents the performance of MedEx on the
MASH-QA and COVID-QA datasets, compared to
eleven baseline models. MedEx achieved the high-
est scores, with an EM of 39.52 and F1 of 69.17 on
MASH-QA, and an EM of 32.72 and F1 of 61.98 on
COVID-QA, outperforming all baselines, including
the state-of-the-art DRAGON model. Specifically,
MedEx surpassed DRAGON by 3.63 EM and 2.19
F1 on MASH-QA, and by 2.15 EM and 4.26 F1 on
COVID-QA.

The superior performance of MedEx can be at-
tributed to its innovative integration of First-Order
Logic (FOL) with domain-specific knowledge, en-
hancing its ability to capture intricate medical re-
lationships. Notably, using RoBERTa-large as the
PLM encoder in MedEx contributed to these im-
proved results.

Further results in Table 3 on the BioASQ and
MedQA-USMLE datasets show that MedEx main-
tained its lead, scoring 96.6 on BioASQ and 48.3
on MedQA-USMLE. On BioASQ, MedEx edged
out DRAGON by 0.2, while on MedQA-USMLE,
it outperformed all baselines, including the special-
ized models like BioLinkBERT and GreaseLM.

Statistical significance testing using the t-test
confirmed that the performance improvements
of MedEx over DRAGON on MASH-QA and
COVID-QA were statistically significant with 95%
confidence (p < 0.05). This indicates that the ob-
served gains were not due to chance, underscoring
the effectiveness of MedEx in handling both gen-
eral and specialized biomedical queries.

6.2 Qualitative Analysis

6.2.1 Impact of Each Module in MedEx:
The impact of each module within the MedEx
framework is evident from the ablation study re-
sults in Table 4. The baseline model, PLM-enc
(RoBERTa for MASH-QA and COVID-QA, Bi-
oLinkBERT for BioASQ and MedQA-USMLE),
shows moderate performance across all metrics.

Incorporating the Knowledge Injection (KI)
module, denoted as PLM-enc+KI, leads to im-
proved scores across all datasets, enhancing the
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Model MASH-QA COVID-QA
EM F1 EM F1

BERT 3.83 27.93 20.93 40.44
SpanBERT 5.62 31.47 23.01 44.14

XLNet 22.70 56.46 28.54 55.45
MultiCo 29.34 64.94 na na

RoBERTa 34.77 66.08 25.9 59.53
BioBERT 27.81 56.73 23.41 44.29

ClinicalBERT 24.90 53.85 23.10 44.33
BioLinkBERT 32.53 64.52 24.83 51.52

QA-GNN 33.87 65.23 25.41 52.51
GreaseLM 34.37 66.03 26.11 54.09
DRAGON 35.89 66.98 30.57 57.72

MedEx 39.52 69.17 32.72 61.98

Table 2: Result on MASH-QA and COVID-QA dataset

Model BioASQ MedQA-USMLE
BioBERT 84.1 36.7

PubmedBERT 87.5 38.1
BioLinkBERT 94.2 44.6

QA-GNN 95.0 45.0
GreaseLM 94.9 45.1
DRAGON 96.4 47.5

MedEx 96.6 48.3

Table 3: Result on BioASQ and MedQA-USMLE
dataset

model’s performance compared to the baseline.
Further integration of the Logic Fusion (FOL) mod-
ule, as seen in the PLM-enc+FOL configuration,
results in additional performance gains, surpassing
the PLM-enc+KI configuration.

The combined use of both KI and FOL in
the PLM-enc+KI+FOL configuration achieves the
highest performance across all metrics, highlight-
ing the synergy between knowledge injection and
logical fusion in enhancing model accuracy and
effectiveness for complex medical queries. A de-
tailed analysis of the impact of each logical rule on
model performance is provided in section H of the
appendix due to space constraints.

6.3 Error Analysis

To assess MedEx’s strengths and limitations, we
analyzed cases where the model underperformed
across different datasets. In the MASH-QA and
COVID-QA datasets, we examined 200 incorrect
predictions based on EM scores, categorizing the
errors into two types:

1. Ambiguously Defined Answer Spans (50%):
These errors arose when ground truth spans were
overly extended, creating ambiguity. For exam-
ple, in Table ??, the model generated a concise
and accurate answer, while the ground truth was
lengthy and redundant. Despite a low EM score, the

model’s response was logically sound and more rel-
evant. 2. Semantic Inadequacies (28%): Here, the
model’s answers were semantically better than the
ground truth. For instance, when asked, "How can
you recover from delusional disorder?" the model
provided a recovery-focused response, while the
ground truth described the disorder itself, highlight-
ing challenges with medical terminology interpre-
tation.

For BioASQ and MedQA-USMLE, we reviewed
50 and 100 incorrect predictions, respectively. A
key issue was incomplete KG triples. For instance,
in BioASQ, missing details in KG triples prevented
the model from answering, "Is the protein Papilin
secreted?" accurately. In MedQA-USMLE, miss-
ing or inaccurately labeled triples similarly im-
pacted performance. This analysis pinpoints areas
where MedEx struggles, providing insights for tar-
geted improvements in medical QA tasks. Detailed
comparison studies are provided in Appendix G.

7 Conclusion

In this study, we proposed MedEx, a medical
question-answering system that effectively ad-
dresses complex medical queries by leveraging
FOL-based reasoning, knowledge injection, and
logic infusion cells. We assessed its perfor-
mance across multiple datasets, including MASH-
QA, COVID-QA, BioASQ, and MedQA-USMLE,
comparing it against 11 baselines. MedEx
demonstrated remarkable proficiency in address-
ing biomedical and healthcare-related queries. On
MASH-QA and COVID-QA datasets, it surpassed
state-of-the-art baselines, achieving EM scores of
39.52 and 32.72, and F1 scores of 69.17 and 61.98,
respectively. For BioASQ and MedQA-USMLE
datasets as well, it outperformed all baselines,
achieving an impressive EM score of 96.6 and 48.3,
respectively. These results underscore MedEx’s
effectiveness in handling both general biomedical
questions and specialized medical queries. The
confluence of knowledge and FOL-based reasoning
exhibited a synergistic effect, enhancing MedEx’s
ability to provide precise, context-aware answers.
In future, we aim to refine logical rules and address
ambiguous questions while exploring a transitivity
relevance measure to classify inference require-
ments, enhancing MedEx’s reasoning evaluation
and understanding transitivity’s impact on perfor-
mance.
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Model MASH-QA COVID-QA BioASQ MedQA
EM F1 EM F1 Acc Acc

PLM-enc 34.77 66.08 25.90 59.53 94.2 44.6
PLM-enc+KI 36.75 66.82 27.35 60.41 94.9 45.8

PLM-enc+FOL 37.34 67.53 28.22 61.01 95.6 47.1
PLM-enc+KI+FOL 39.52 69.17 32.72 61.98 96.6 48.3

Table 4: Ablation study results for MedEx, where ’PLM-enc’ represents RoBERTa for MASH-QA and COVID-QA,
and BioLinkBERT for BioASQ and MedQA-USMLE.

Limitations

Despite its impressive performance in medical
question-answering, MedEx comes with it’s lim-
itations. As it relies on the knowledge graphs,
hence, it is susceptible to inaccuracies when ex-
ternal knowledge is missing or inadequately com-
plements contextual information, potentially im-
pacting response accuracy. Additionally, due to
computational constraints, the model primarily ac-
cesses information within two-hop neighborhoods
of the knowledge graph, which can limit its re-
sponses to queries requiring data beyond this range.
Furthermore, addressing highly complex or multi-
faceted queries remains a challenge. Improving
the model’s logical reasoning, especially for com-
plex First-Order Logic (FOL) rules, is a potential
area for future research. These limitations high-
light the need for enhancing knowledge coverage,
scalability, domain adaptability, knowledge graph
accuracy, and the model’s handling of complex
queries to maximize MedEx’s utility and robust-
ness in medical question-answering tasks. This
constitutes towards future directions of our work.
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A Selection of Pre-trained Language Models

The decision to utilize RoBERTa for the MASH-QA and COVID-QA datasets and BioLinkBERT for the
BioASQ and MedQA-USMLE datasets is primarily guided by their performance and suitability for the
respective tasks.

1. RoBERTa for MASH-QA and COVID-QA:

• General Language Understanding: RoBERTa’s extensive pre-training captures diverse lin-
guistic patterns and context, suitable for varied topics in MASH-QA and COVID-QA.

• Fine-Tuning Capabilities: Its architecture allows efficient adaptation to medical question-
answering tasks.

• Large Model Capacity: RoBERTa’s capacity enables capturing complex relationships, vital
for accurate responses.

2. BioLinkBERT for BioASQ and MedQA-USMLE:

• Biomedical Text Mining Specialization: BioLinkBERT is tailored for biomedical tasks, ideal
for the medical domain in BioASQ and MedQA-USMLE.

• Domain-Specific Vocabulary: Trained on biomedical literature, it effectively understands
medical terminology.

• Semantic Understanding: BioLinkBERT’s focus on biomedical text semantics ensures contex-
tually relevant answers.

These characteristics make RoBERTa and BioLinkBERT well-suited for their respective datasets, provid-
ing the necessary capabilities to address the challenges inherent in medical question-answering tasks.

B Medical Knowledge Graph

To overcome the limitation of medical datasets lacking comprehensive information about medical entities,
we leverage the Unified Medical Language System (UMLS) as a rich source of medical knowledge.
Specifically, we construct a self-built knowledge graph using Quick-UMLS (Soldaini and Goharian, 2016),
which is based on the UMLS (Bodenreider, 2004).

The UMLS comprises three primary knowledge sources: the Metathesaurus, the Semantic Network,
and the Specialist Lexicon and Lexical Tools. For our purposes, we focus on two of these sources:
the Metathesaurus and the Semantic Network. The Metathesaurus contains an extensive collection of
biomedical concepts and their relationships, with each concept associated with one or more Semantic
Types. The Semantic Network provides detailed information about semantic types and relationships
between them, including examples such as ’‘disease’, ‘symptom’, and ‘laboratory test’, as well as
relationships like ‘is-a’, ‘part-of ’, and ‘affects’

B.1 Relevant KG Construction
There are two strategies for constructing knowledge graph (KG) triples. The first method involves merging
all supporting paragraphs into a single document, while the second method processes each supporting
paragraph individually.

In the first approach, all supporting paragraphs, such as those in the COVID-QA dataset with 147
contexts, are merged into a unified document. This document is then processed through the UMLS
(Bodenreider, 2004) to generate a large KG. However, this method has drawbacks, including significant
computing time and the risk of introducing irrelevant or unwanted triples into the KG.

Conversely, the second method processes each supporting paragraph separately through the UMLS
(Bodenreider, 2004) to generate a smaller and more pertinent KG. For example, the head entity "Relugolix"
may generate approximately 500-600 tail entities using this method. By focusing on individual contexts,
this approach ensures that the KG contains only meaningful triples relevant to the specific question and
context at hand.

Our approach for constructing the Medical Knowledge Graph involves the following steps:
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1. Medical Entity Extraction: Identifying medical entities from each context using the Metathesaurus.
Each distinct concept found in the UMLS is represented as a node in our knowledge graph.

2. Relation Extraction: Sourcing relations from both the Metathesaurus and the Semantic Network of
UMLS.

3. Graph Construction: Using the extracted relations, we establish connections between the fil-
tered medical concepts retrieved from UMLS. This process results in the construction of a smaller
Knowledge Graph, which functions as a pertinent subgraph of UMLS.

By leveraging UMLS and following these steps, we create a Medical Knowledge Graph that enriches
our understanding of medical concepts and their relationships. This facilitates more accurate and context-
aware medical question answering within the MedEx system.

The decision to utilize the second method, which involves processing each supporting paragraph
individually, was guided by several key considerations:

• Precision and Relevance: Ensuring that the KG contains only relevant information directly related
to the specific context of each medical question.

• Efficiency and Scalability: Enhancing computational efficiency and scalability by processing each
supporting paragraph separately.

• Risk Mitigation: Reducing the risk of introducing irrelevant or unwanted triples into the KG, thereby
improving its quality and reliability.

• Contextual Relevance and Tailoring: Capturing the unique context of each medical question to
tailor the KG construction process accordingly.

• Enhanced Understanding: Creating a KG that enriches our understanding of medical concepts and
their relationships, facilitating more accurate and context-aware medical question answering.

C Derivation of Logical Rules

The derivation of the six logical rules was a multi-step process designed to ensure their effectiveness
across various medical knowledge domains. We began by constructing a medical knowledge graph (KG)
using the Unified Medical Language System (UMLS), which includes a vast array of semantic relations
between medical entities. From the 54 available semantic relations in UMLS, we carefully selected seven
key relations— "co-occurs-with," "prevent," "treat," "diagnosis," "interacts-with," "affects," and "causes."

This selection was guided by the need to balance computational efficiency with relevance, as incorporat-
ing too many relations could overburden computing resources and introduce unnecessary information into
the KG. The KG was then built using this curated set of relationships, drawing on contextual information
from medical documents.

For example, when analyzing content related to the treatment of uterine fibroids with Relu-
golix, the KG included triples like ["androgen_deprivation_therapy", "affects", "uterine_fibroids"] and
["heavy_menstrual_bleeding", "co-occurs-with", "uterine_fibroids"]. After analyzing these triples, we
identified patterns that suggested logical relationships, such as a rule "co-occurs-with(X, Y) ∧ affects(Y,
Z) leads to affects (X, Z)." Medical experts validated the initially derived rules to ensure accuracy and
domain relevance. Out of an initial set of twelve candidate rules, six were ultimately retained, as the others
did not produce valid logical triples. Through this thorough cross-verification with medical professionals,
the final six rules provided an optimal balance between interpretability and practical relevance for medical
QA tasks, achieving accuracy without exhaustive manual intervention. This framework thus ensures
reliable, end-to-end question-answering performance with minimal manual oversight.
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D Datasets

To check the robustness of the proposed model, we train and test MedEx on four diverse medical
question-answering datasets:

1. MASH-QA (Zhu et al., 2020): It comprises of consumer healthcare questions collected from
the well-known health website WebMD, which includes content from a wide range of consumer
healthcare sectors like general health, mental health, and nutrition, among others. These sections
cover questions regarding frequent healthcare difficulties that people confront, such as symptoms,
treatment options, and general health advice. It is the largest available dataset with approximately
25K question-answer pairs. The answers to the questions are generally non-factoid in nature, with
longer answer spans. Statistics of MASH-QA are shown in Table 5

MASH-QA
Contexts 5,574
QA pairs 34,808
Train QA 27,728
Dev QA 3,493
Test QA 3,587

Table 5: MASH-QA Dataset statistics

2. COVID-QA (Möller et al., 2020): It consists of 2,019 question-answer pairs related to COVID-19,
curated by volunteer biomedical experts. This dataset is unique in its focus on COVID-19 and
differs from typical open-domain Machine Reading Comprehension (MRC) datasets. Statistics of
COVID-QA are shown in Table 6.

COVID-QA
Contexts 147
QA pairs 2019
Train QA 1414
Dev QA 404
Test QA 201

Table 6: COVID-QA Dataset statistics

3. BioASQ Task 10b Phase B (QA Task) (Nentidis et al., 2022): It had been explicitly designed as
part of the BioASQ challenge, an initiative dedicated to advancing the state of the art in biomedical
semantic indexing and question-answering systems. Task 10b Phase B focuses on the question-
answering aspect and is an integral component of BioASQ’s multifaceted challenges in the biomedical
and life sciences domain. Statistics of BioASQ are shown in Table 7.

BioASQ
Contexts 1148
QA pairs 1148
Train QA 861
Dev QA 172
Test QA 115

Table 7: BioASQ Dataset statistics
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4. MedQA-USMLE (Jin et al., 2021):The MedQA-USMLE dataset serves as a specialized benchmark
for evaluating medical question-answering systems, particularly in the context of preparing for the
United States Medical Licensing Examination (USMLE). It encompasses a meticulously curated
assortment of medical questions and corresponding answers designed to gauge candidates’ under-
standing of medical concepts pertinent to the USMLE. These questions cover a wide spectrum of
medical domains, mirroring real-world clinical scenarios and requiring candidates to apply medical
reasoning and problem-solving skills. It consists of 4-way multiple-choice questions that require
deep biomedical and clinical knowledge. Its specialized nature and focus on USMLE-style questions
make it an invaluable resource for benchmarking the performance of medical question-answering
systems. It comprises of 12,723 questions. Statistics of MedQA are shown in Table 8

MedQA
QA pairs 12,743
Train QA 10,195
Dev QA 1,274
Test QA 1,274

Table 8: MedQA-USMLE Dataset statistics

Examples from different datasets are shown in Tables 9 and 10.

Dataset Example
MASH-QA Q: What should I do if I smoke and have prediabetes? Context: When your doctor tells you that

you have prediabetes, you might think there’s no reason to take action just yet. Or you might
assume that you’re definitely going to get diabetes. Not so! You do need to take prediabetes
seriously, but there’s still time to turn things around – if you start now. The goal is to get your
blood sugar level out of the prediabetes range, and keep it that way. What you do every day
makes a big difference. Making lifestyle changes may be even more powerful than just taking
medication.. (truncated) A: Smoking is strongly linked to diabetes: People who smoke are
30% to 40% more likely to develop type 2 diabetes than those who don’t. And people with
diabetes who continue smoking are more likely to develop complications such as heart disease
and blindness. So the sooner you ditch the cigarettes, the better.

COVID-QA Q: What cells are infected by the PED virus? Context: Mucosal immune responses induced
by oral administration recombinant Bacillus subtilis expressing the COE antigen of PEDV in
newborn piglets. Abstract: Porcine epidemic diarrhea (PED) is a highly contagious disease in
newborn piglets and causes substantial economic losses in the world. PED virus (PEDV) spreads
by fecal oral contact and can be prevented by oral immunization. Therefore, it is necessary
to develop an effective oral vaccine against PEDV infection. Currently, Bacillus subtilis as
recombinant vaccine carrier has been used for antigen delivery and proved well in immune
effect and safety. The present study evaluated the immunogenicity of recombinant A: intestine
epithelial cells

Table 9: Examples from Different Datasets

E Baseline

We compared MedEx’s performance with eleven strong baselines due to their recognition within the NLP
community, their capacity to represent a wide range of approaches and their relevance to the medical
domain.

1. BERT (Devlin et al., 2019): It’s an encoder based transformer employing attention mechanism to
capture contextual relationships between words in a text. For extractive question-answering tasks,
we utilize a BERT model with a span classification head, which includes a linear layer for predicting
span start and end logits.

2. SpanBERT (Joshi et al., 2020): It’s a variant of the BERT model that emphasizes span represen-
tations. It is trained by masking contiguous token spans and optimizing two objectives: masked
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Dataset Example
MedQA-USMLE A 57-year-old man presents to his primary care physician with a 2-month history of right upper

and lower extremity weakness. He noticed the weakness when he started falling far more
frequently while running errands. Since then, he has had increasing difficulty with walking and
lifting objects. His past medical history is significant only for well-controlled hypertension,
but he says that some members of his family have had musculoskeletal problems. His right
upper extremity shows forearm atrophy and depressed reflexes while his right lower extremity is
hypertonic with a positive Babinski sign. Which of the following is most likely associated with
the cause of this patients symptoms? (A) HLA-B8 haplotype (B) HLA-DR2 haplotype (C) A:
Mutation in SOD1 (D) Mutation in SMN1

BioASQ Q: Has FTY720 been considered for the treatment of stroke? Context: FTY720 (Fingolimod)
Ameliorates Brain Injury through Multiple Mechanisms and is a Strong Candidate for Stroke
Treatment Many researchers have recognized the positive effects of FTY720 and launched basic
and clinical experiments to test the use of this agent against stroke. Although the mechanism
of FTY720 has not been fully elucidated, its efficacy against cerebral stroke is becoming clear,
not only in animal models, but also in ischemic stroke patients through clinical trials. In this
article, we review the data obtained from laboratory findings and preliminary clinical trials using
FTY720 for stroke treatment. (A) A: yes (B) no

Table 10: Examples from Different Datasets

language modeling to predict its own vector representation, and the span boundary objective, which
predicts each masked token based on representations from unmasked tokens at the span’s start and
end.

3. XLNet (Yang et al., 2019): It’s a pre-trained version of the Transformer-XL model, leveraging
an autoregressive technique to maximize expected likelihood across all permutations of the input
sequence factorization order, enabling the learning of bidirectional contexts.

4. MultiCo (Zhu et al., 2020): It addresses the extended context challenge by identifying and composing
phrases that span the document. It combines a query-based contextualized phrase selection technique
with a sparse self-attention mechanism.

5. RoBERTa (Liu et al., 2019): It shares the same model architecture as BERT but varies in tokenization,
pre-training data, and training techniques. It adjusts critical hyperparameters, including the removal
of the next-sentence pre-training objective and training with significantly larger mini-batches and
learning rates. It had been pretrained on five English-language corpora2.

6. BioBert (Lee et al., 2020): It’s based on BERT architecture pre-trained on a large biomedical corpus.

7. ClinicalBert (Huang et al., 2019): This is also based on BERT architecture, designed to enhance
performance in biological and clinical NLP tasks. Basically, it had been tailored for clinical text
mining applications.

8. BioLinkBERT(Yasunaga et al., 2022b): It is a specialized pre-trained model designed for biomedical
NLP tasks, and is notable for its significant contributions to biomedical question answering.

9. QA-GNN (Yasunaga et al., 2021): This is an end-to-end question answering model that leverages
relevance scoring for graphs and performs joint reasoning over the QA context and graph to harness
the representation capabilities of language models and knowledge graph data.

10. GreaseLM (Zhang et al., 2021): GreaseLM utilizes multiple layers of modality interaction operations
to combine pretrained language model representations with GNN-based information.

11. DRAGON (Yasunaga et al., 2022a): It’s a self-supervised model, trained on a deep fusion of text
and KG (Knowledge Graph) data, enhancing the potential for joint representations and reasoning in
downstream NLP tasks.

2BookCorpus (Zhu et al., 2015), CC-NEWS, OpenWebText, Stories (Trinh and Le, 2018) and English Wikipedia
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F Implementation Details

We employed the RoBERTa-large (24 layers, 1024 hidden units, 16 attention heads, 355M parameters)
(Radford et al., 2019) for PLM-encoding and fine-tuned it on MASH-QA and COVID-QA datasets. After
thorough experimentation with learning rates ranging from [1e-5, 2e-5, 3e-5, 4e-5], we opted for the
Adam optimizer (Kingma and Ba, 2014) with a learning rate of 2e-5. This choice was made based on
its superior performance in terms of both convergence speed and training stability. The maximum token
limit for input was set to 512, encompassing 384 tokens for context and 128 tokens for the query. For
BioASQ and MedQA-USMLE dataset, we used BioLinkBERT-Large(Yasunaga et al., 2022b) (24 layers,
512 hidden units, 16 attention heads, 340M parameters) for PLM-encoding and fine-tuning.

For MASH-QA and COVID-QA datasets, we adopted RoBERTa-large with 24 layers, 1024 hidden
units, 16 attention heads, and a total of 355 million parameters, as detailed in (Radford et al., 2019).
Similarly, for BioASQ and MedQA-USMLE datasets, we adopted BioLinkBERT-Large(Yasunaga et al.,
2022b) with 24 layers, 512 hidden units, 16 attention heads, and a total of 340M parameters. We
used baselines BERT-large uncased (24-layer, 1024 hidden dimension, 16 attention heads and 336M
parameters), SpanBERT (24-layer, 1024 hidden dimension, 16 attention heads and 340M parameters),
XLNet (24-layer, 1024 hidden dimension, 16 attention heads and 340M parameters), MultiCo (24-layer,
1024 hidden dimension, 16 attention heads and 340M parameters), BioBERT (24-layer, 1024 hidden
dimension, 16 attention heads and 345M parameters), ClinicalBERT (24-layer, 1024 hidden dimension,
16 attention heads and 345M parameters), QA-GNN (24 layers, 1024 hidden units, 16 attention heads,
and 360M parameters), and DRAGON (24 layers, 1024 hidden units, 16 attention heads, and 360M
parameters).

To fine-tune MedEx and all baselines, we utilized the Adam optimizer (Kingma and Ba, 2014) with a
learning rate selected from the range [1e-5, 2e-5, 3e-5, 4e-5]. The model was trained over various epochs,
including 10, 20, 30, 40, and 50, to optimize performance. The input token limit was set to 512 tokens,
allocating 384 tokens for context and 128 tokens for the query. Additionally, we utilized a training batch
size of 16 with gradient accumulation steps set to 8 to ensure efficient training.

The computational infrastructure used was the A100-PCIE-40GB with CUDA version 11.2. Each
training epoch had a duration of approximately 1.5 hours. To ensure robustness, the experiment was
repeated ten times, and the final result was determined by computing the average score across these runs.

G Comparision of MedEx

MedEx represents a significant advancement in medical question-answering systems compared to existing
models. Unlike traditional QA systems relying solely on pre-trained language models and graph neural
networks, MedEx introduces a novel approach integrating knowledge injection and logic fusion cells.
This integration allows MedEx to leverage domain-specific knowledge and logical rules, resulting in
more accurate and contextually relevant answers. Furthermore, our ablation study reveals that MedEx
outperforms baseline models across multiple datasets, including MASH-QA, COVID-QA, BioASQ,
and MedQA-USMLE. Specifically, MedEx achieves higher scores in terms of Exact Match (EM), F1-
score, and accuracy (Acc) compared to models relying solely on pre-trained language models. The
comprehensive model configuration of MedEx, incorporating both knowledge injection and logical rules,
demonstrates its efficacy in delivering precise and context-aware responses in the challenging domain of
medical question-answering.

Model
MASH-QA COVID-QA
EM F1 EM F1

ChatGPT NA 25.82 NA 37.29
Llama2-7b NA 22.36 NA 34.34

Table 11: Automatic result comparision for ChatGPT and Llama2 with our proposed model Medex.
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Model Fluency Adequacy Medical Entity Relevance
ChatGPT 4.58 4.15 4.15

Llama2-7b 4.12 3.97 3.5
MedEx 4.46 4.48 4.42

Table 12: Human assessment result comparison of ChatGPT and Llama2 with our proposed model MedEX for 200
randomly selected QA pair.

G.1 Comparision with ChatGPT and Llama2-7b

Since ChatGPT 3 and Llama2-7b (Touvron et al., 2023) operate as a generative model, while our proposed
model follows an extractive approach, the systems inherently involve different evaluation metrics, making
direct comparisons challenging across all metrics. In our current experiments, we focused on comparing
results using the F1-score. Additionally, we conducted human evaluations to assess adequacy and fluency.
Adequacy gauges the acceptability of responses, while fluency measures grammatical correctness. The
findings indicate that our model excels in terms of the F1-score and adequacy in comparison to ChatGPT
and Llama2, as demonstrated in Table-11 and Table-12. Notably, our model’s fluency is reflective of the
context’s fluency, given its extractive nature. Despite ChatGPT exhibiting superior fluency, our model
outperforms it in terms of adequacy, particularly in capturing correct answers containing medical entities.
This distinction arises from our model’s ability to detect text spans from the context, ensuring the inclusion
of crucial medical entities in responses. While we refrain from asserting overall superiority over ChatGPT,
we emphasize the efficacy of a specialized model, like ours, within its trained domain, highlighting its
enhanced capability over a general-purpose model.

H Logical Rules Analysis

To evaluate the influence of individual logical rules within the MedEx framework, we analyzed various
model configurations as detailed in Table 13.

When integrating individual rules (PLM-enc+KI+R1 to PLM-enc+KI+R6), the model’s performance
varied across datasets, with some rules contributing more significantly to improvements in EM, F1, and
accuracy. For instance, the rule R2 consistently led to better performance across most datasets.

Combining multiple rules further enhanced the model’s performance. The configuration with all
rules integrated (PLM-enc+KI+R1+R2+R3+R4+R5+R6) achieved the highest metrics, showcasing the
cumulative benefit of incorporating diverse logical rules. This underscores the importance of leveraging
multiple logical inferences to improve MedEx’s capability to generate accurate responses in medical
question-answering tasks.

Model MASH-QA COVID-QA Bio ASQ Med QA
EM F1 EM F1 Acc Acc

PLM-enc+KI+R1 36.85 66.86 27.97 58.03 94.4 44.6
PLM-enc+KI+R2 38.51 68.12 30.26 61.24 95.6 47.7
PLM-enc+KI+R3 37.11 67.27 28.23 59.66 93.1 46.1
PLM-enc+KI+R4 38.29 68.82 29.92 59.98 95.3 47.9
PLM-enc+KI+R5 37.89 67.10 28.74 59.41 93.3 46.5
PLM-enc+KI+R6 36.69 66.25 27.66 58.88 94.2 44.8

PLM-enc+KI+R1+R2 38.77 68.83 29.68 60.87 95.7 47.8
PLM-enc+KI+R1+R2+R3 37.34 67.53 28.22 61.01 95.6 47.1

PLM-enc+KI+R1+R2+R3+R4 39.01 68.98 32.14 61.28 96.0 47.9
PLM-enc+KI+R1+R2+R3+R4+R5 39.12 66.05 32.45 61.44 96.3 48.2

PLM-enc+KI+R1+R2+R3+R4+R5+R6 39.52 69.17 32.72 61.98 96.6 48.3

Table 13: Performance metrics of different models for MedEx, where ’PLM-enc’ represents RoBERTa for MASH-
QA and COVID-QA, and BioLinkBERT for BioASQ and MedQA-USMLE.

3https://openai.com/chatgpt

https://openai.com/chatgpt


9719

I Error Analysis

Error Type Question Ideal Answer Predicted Paragraph
Ambiguous Answer
Spans

What are some signs
of processing issues
in people with autism
spectrum disorder
(ASD)?

That’s because some
researchers estimate
that eight out of
10 children with
autism have problems
processing sensory
input. For example,
they can’t filter out
background noise.
Other signs of pro-
cessing issues include:
Problems with bal-
ance, body position,
and oversensitivity
to touch and certain
types of clothing,
such as socks with
seams. With autism,
social, behavioral, or
attention problems
can be partly a result
of these sensory
challenges.

Other signs of pro-
cessing issues include:
Problems with bal-
ance, body position,
and oversensitivity
to touch and certain
types of clothing,
such as socks with
seams. With autism,
social, behavioral, or
attention problems
can be partly a result
of these sensory
challenges.

A person with autism
spectrum disorder
(ASD) often has trou-
ble communicating
and interacting with
others; their interests,
activities, and play
skills may be limited.
Occupational therapy
may help them de-
velop these skills at
home and in school.
Occupational thera-
pists study human
growth and develop-
ment and a person’s
interaction with the
environment through
daily activities. They
are experts in the
social, emotional, and
physiological effects
of illness and injury.
This knowledge helps
them promote skills
for independent living
in people ...(trun-
cated)

Semantic Inadequa-
cies

How can you recover
from delusional disor-
der?

Delusional disorder
is typically a chronic
condition, but with
proper treatment,
many find relief.
Recovery varies de-
pending on the person,
disorder type, and
life circumstances.
Unfortunately, some
with this disorder
don’t seek help.

It varies, depending
on the person, disor-
der type, and life cir-
cumstances, including
support and willing-
ness to stick with treat-
ment.

Delusional disorder,
previously called
paranoid disorder, is a
serious mental illness.
People with it can’t
distinguish reality
from imagination
...(truncated)

Model Error How does surgery
treat a deviated sep-
tum?

Sometimes, rhino-
plasty is combined
with septoplasty
for appearance im-
provement. Surgery,
usually outpatient,
takes one to one
and a half hours.
Internal splints or
packing stabilize the
septum. Swelling or
bruising is normal
after septorhinoplasty.

Septoplasty may also
be combined with si-
nus surgery.

Most people have
some sort of im-
balance in the size
of their breathing
passages. Estimates
indicate that 80% of
people have some
...(truncated)

Table 14: Semantic Inadequacies and Model Error
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Frequently Asked Questions (FAQ)

* What is the primary goal of the methodology used in this study?
The primary goal of the methodology is to develop and evaluate MedEx, a medical question-answering
system that integrates knowledge graphs (KGs) and logical rules with pre-trained language models (PLMs).
This integration aims to enhance the accuracy and contextual relevance of answers provided by the system
in various medical domains.

* How does MedEx leverage knowledge graphs and logical rules to improve medical
question-answering?
MedEx utilizes knowledge graphs to incorporate structured medical information and logical rules to apply
this information effectively. This approach enables the system to understand complex medical queries by
combining structured knowledge with reasoning capabilities, thus improving the accuracy and relevance
of the answers.

* What role do pre-trained language models (PLMs) play in MedEx, and how do they interact with
knowledge graphs and logical rules?
In MedEx, pre-trained language models (PLMs) are employed to process and generate natural language
text. They are fine-tuned with medical datasets to enhance their ability to handle medical queries. PLMs
work alongside knowledge graphs and logical rules to ensure that the responses are not only accurate but
also contextually appropriate, leveraging both language understanding and structured knowledge.

* Why were knowledge graphs and logical rules specifically chosen for MedEx, and how do they
complement each other?
Knowledge graphs and logical rules were chosen for MedEx because they provide complementary
strengths. Knowledge graphs offer structured, comprehensive medical information, while logical rules
facilitate reasoning and application of this information. Together, they allow MedEx to deliver more
precise and contextually relevant answers than systems relying solely on either approach.

* What are the advantages of MedEx over existing medical question-answering systems?
MedEx distinguishes itself from existing systems by integrating knowledge graphs, logical rules, and
pre-trained language models. This multi-faceted approach enhances the system’s ability to generate
accurate and contextually relevant answers, addressing the limitations of systems that depend on only one
of these components. The integration ensures a more robust handling of medical queries and improves
overall answer quality.
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