
Proceedings of the 31st International Conference on Computational Linguistics, pages 9780–9792
January 19–24, 2025. ©2025 Association for Computational Linguistics

9780

Analyzing Offensive Language Dataset Insights from
Training Dynamics and Human Agreement Level

Do-Kyung Kim1, Hyeseon Ahn1, Youngwook Kim2 and Yo-Sub Han1*

1Department of Computer Science, Yonsei University, Seoul, South Korea
2 KT, Seoul, South Korea

{kdky95, hsan, emmous}@yonsei.ac.kr
young-wook.kim@kt.com

Abstract

Implicit hate speech detection is challenging
due to its subjectivity and context dependence,
with existing models often struggling in out-
of-domain scenarios. We propose CONELA,
a novel data refinement strategy that enhances
model performance and generalization by in-
tegrating human annotation agreement with
model training dynamics. By removing both
easy and hard instances from the model’s per-
spective, while also considering whether hu-
mans agree or disagree and retaining ambigu-
ous cases crucial for out-of-distribution gener-
alization, CONELA consistently improves per-
formance across multiple datasets and models.
We also observe significant improvements in
F1 scores and cross-domain generalization with
the use of our CONELA strategy. Addressing
data scarcity in smaller datasets, we introduce
a weighted loss function and an ensemble strat-
egy incorporating disagreement maximization,
effectively balancing learning from limited data.
Our findings demonstrate that refining datasets
by integrating both model and human perspec-
tives significantly enhances the effectiveness
and generalization of implicit hate speech de-
tection models. This approach lays a strong
foundation for future research on dataset refine-
ment and model robustness. 1

1 Introduction

Implicit hate speech is subtle and often hidden in
seemingly harmless language, requiring nuanced
interpretation to detect. This makes implicit hate
speech detection a challenging problem in natural
language processing due to its inherent subtlety
and context-dependent nature. Unlike explicit hate
speech, which can be easily identified through ap-
parent offensive language, implicit hate speech of-
ten relies on indirect expressions, metaphors, and

*Corresponding Author.
1Our code is available at https://github.com/

kdkcode/CONELA.

coded language, making it more difficult to detect
accurately (Wiegand et al., 2021; ElSherief et al.,
2021). The ambiguity and subjectivity associated
with implicit hate speech further complicate the
task, leading to inconsistencies in human annota-
tions and reduced performance in detection mod-
els (MacAvaney et al., 2019).

Although there has been substantial progress in
detecting explicit hate speech, language models
still struggle to generalize themselves when ap-
plied to implicit cases, especially in out-of-domain
scenarios (Bourgeade et al., 2023). Many exist-
ing models exhibit fair results when tested on in-
domain datasets; however, they often fail to main-
tain similar performance on external datasets. This
lack of generalization is particularly concerning
in implicit hate speech detection, where context
and subtle cues can vary greatly between datasets,
making it critical for models to effectively handle
unseen data (Mathew et al., 2021).

These challenges motive us to propose a better
data selection and refinement strategy to enhance
the generalizability of implicit hate speech detec-
tion models. Swayamdipta et al. (2020) focused
on improving the data quality to enhance model
performance based on training dynamics—the be-
havior of a model throughout the training process.
Training dynamics are determined by model confi-
dence and variability during the training step, and
are used to characterize the learning difficulty of
data instances. For our task, we utilize training
dynamics to split the training dataset into three
parts—Easy-to-Learn (EtL), Ambiguous-to-Learn
(AtL), and Hard-to-Learn (HtL). Then, we quantify
the agreement level among annotators for each data
sample, and separate the instances into two cases—
consensual and non-consensual cases. Consensual
instances are the ones that annotators largely agree
on the data label, which implies a clear judgment.
Non-consensual instances are the ones that annota-
tors give differing labels, which implies ambiguity
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Figure 1: An overview of our data selection strategy. CONELA categorizes data into Easy, Hard, and Ambiguous-
to-Learn sets using model dynamics and human agreement. It retains consensus instances, especially ambiguous
ones, while discarding disagreements in Easy and Hard sets. This refinement enhances data quality for implicit hate
speech detection models.

or subjectivity of the data sample. We discuss the
concept of consensuality in detail in Section 3.2.

Figure 1 illustrates an overview of our approach.
By removing instances from Easy-to-Learn (EtL)
and Hard-to-Learn (HtL) categories where annota-
tors disagree, we retain ambiguous cases that are
crucial for out-of-distribution generalization. We
call the approach CONELA: Consensual elimina-
tion Of Non-Consensual EtL and HtL Annotations.
In addition, we adopt a weighted loss function that
incorporates the existing adversarial disagreement
maximization (ADM) method (ADM, Lee et al.,
2023) alongside an ensemble strategy to cope with
the case when the training data size is relatively
small. This combination helps mitigate the negative
impact of removing too much data from smaller
datasets while still leveraging the benefits of exclud-
ing non-consensual instances. The experimental
results show that CONELA consistently improves
model performance across multiple datasets.

Our contributions are threefold:

1. We introduce CONELA, a refined data selec-
tion methodology that incorporates training
dynamics and human annotation agreements
to improve model robustness.

2. We conduct extensive experiments across var-
ious model and dataset combinations to deter-
mine the most effective approach, providing
robust insights into the optimal methodology.

3. We propose a weighted loss function and an
ensemble strategy to address data scarcity is-
sues and maintain balanced learning when
working with smaller datasets.

2 Related Works

2.1 Hate Speech Detection

Hate speech detection has evolved significantly,
from early lexicon-based methods (Ding et al.,
2008; Bonta et al., 2019) to context-aware ap-
proaches (Gao and Huang, 2017; Pérez et al., 2023).
Recent focus has shifted towards improving gener-
alization (Kim et al., 2022; Hong and Gauch, 2023;
Ahn et al., 2024) through data augmentation and
reannotation techniques (Zhou et al., 2021; Tal and
Vilenchik, 2022). Advancements in large language
models and transfer learning have led to more com-
prehensive datasets like HateXplain (Mathew et al.,
2021) and ToxiGen (Hartvigsen et al., 2022). Im-
plicit hate speech detection remains challenging,
driving the development of advanced techniques
like DeepHate (Cao et al., 2020) and benchmarks
designed to capture subtle forms of hatred (Sap
et al., 2020; ElSherief et al., 2021). While these
efforts have made meaningful progress, we believe
that tackling the difficulties of implicit hate speech
detection requires a closer examination of both
model performance and human interpretation. This
perspective aligns with recent studies exploring im-
plicitly abusive language (MacAvaney et al., 2019;
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Vidgen et al., 2021; Caselli et al., 2020; Wiegand
et al., 2021). Our work introduces a new approach
that incorporates model training dynamics and hu-
man annotation agreement to improve the general-
izability of implicit hate speech detection systems.

2.2 Data Maps

Data maps are a visualization tool that leverages
training dynamics to characterize different regions
of a dataset (Swayamdipta et al., 2020; Zhang and
Plank, 2021). Swayamdipta et al. (2020) consid-
ered the following three key regions in a map:

• Easy-to-Learn (EtL): Instances quickly
learned by the model

• Ambiguous-to-Learn (AtL): Instances con-
tributing to out-of-distribution generalization

• Hard-to-Learn (HtL): Challenging instances
that are often mislabeled

These regions are determined by confidence and
variability. We utilize these regions by dividing
each region further into two sub-regions based on
the degree of human annotation agreements. We
establish six distinct zones that enable to have a
more nuanced analysis of how different types of
instances impact the model learning and general-
ization.

By combining model-based measures (from
training dynamics) with human-based measures
(annotation agreement), we aim to provide a more
comprehensive understanding of dataset charac-
teristics and their influence on model behavior.
This granular segmentation may offer new insights
into dataset quality, model learning patterns, and
strategies for dataset curation and model train-
ing (Toneva et al., 2019; Pleiss et al., 2020; Paul
et al., 2021; Kwon and Zou, 2023).

We observe that the distribution of data in-
stances varies significantly between a general
dataset (SNLI) and an implicit hate speech dataset
as depicted in Figure 2.

2.3 Subjectivity and Disagreement in Data
Annotations

Recent research focuses on the importance of em-
bracing subjectivity and disagreement in data anno-
tations for complex tasks including hate speech
detection. Leonardelli et al. (2023) and Uma
et al. (2021) examined a softer approach to sub-
jective labels instead of the traditional pursuit of

Figure 2: The data map of the SBIC dataset (top) and the
SNLI dataset (bottom). The triangular area is expected
to remain empty because the dataset is divided into
three regions based on confidence and variability. If the
triangular area is populated, then it indicates ambiguity
in the boundaries between confidence and variability.

perfect inter-annotator agreement. Pavlick and
Kwiatkowski (2019) and Basile et al. (2021) argued
that disagreement often reflects genuine linguis-
tic ambiguity and should be preserved. Sap et al.
(2020) highlighted how annotator beliefs can bias
toxic language detection, while Röttger et al. (2022)
proposed contrasting annotation paradigms for sub-
jective NLP tasks. Previous studies (Solorio and
Liu, 2008; Zhou and Li, 2010; Leonardelli et al.,
2021) showed that training on multiple annotations
even with disagreement can improve the model per-
formance and generalization. Meissner et al. (2021)
and Hartvigsen et al. (2022) demonstrated how to
use disagreement information to improve model
performance in subjective tasks. We adopt the ap-
proach that embraces annotation subjectivity using



9783

data maps (Swayamdipta et al., 2020) to classify
instances based on the model confidence and the
human annotator agreement.

3 CONELA: Our Data Selection Strategy

We propose CONELA to consider both consensual
and non-consensual aspects of human annotations.
As depicted in Figure 1, CONELA first divides
the dataset into three regions–EtL, AtL, and HtL–
based on training dynamics. Then, according to
the agreement level among annotators, CONELA
further divides each region into two subregions—
consensual and non-consensual areas—and gives
rise to six regions in the end. We explain the train-
ing dynamics in Section 3.1 and how the agreement
level is quantified in Section 3.2.

3.1 Training Dynamics Analysis

Training dynamics reveal learning characteristics
that enable the division of instances into Easy-to-
Learn (EtL), Ambiguous-to-Learn (AtL), and Hard-
to-Learn (HtL) categories. These boundaries are
defined using confidence C in Equation (1) and
variability V in Equation (2):

C =
1

N

N∑
i=1

P (yi | xi), (1)

V =

√√√√ 1

N − 1

N∑
i=1

(P (yi | xi)− C)2, (2)

where P (yi|xi) is the model’s probability for the
correct label yi given ith data sample xi over N
epochs. These metrics help differentiate EtL, AtL,
and HtL data points, improving dataset integrity
and model performance. Figure 2 illustrates these
categories on our constructed data map.

Song et al. (2023) introduced a novel approach
to identify noisy labels using training dynamics.
Zhou et al. (2022) proposed a debiased training
method based on data map analysis, and Min et al.
(2022) presented a comprehensive study on the re-
lationship between training dynamics and model
generalization. In these trends, our research also
leverages training dynamics for data analysis, pro-
viding insights into model behavior and dataset
characteristics.

3.2 Consensual vs. Non-Consensual
We define the degree of human agreements to be

Degree of human agreement ={
Consensual, if all agreed;
Non-Consensual, otherwise.

In other words, among three possible labels (offen-
sive, non-hate and ambiguous). being consensual
means that all annotators give the same label and
being non-consensual means that the correspond-
ing instance reflects subjectivity.

Our approach focuses on selectively removing
data that introduces noise due to the lack of consen-
sus between models and humans. Table 1 provides
a comprehensive overview of all the categories used
in this study, including their descriptions and the re-
lationship between model and human perceptions.
Specifically, we remove EtL-Non-Consensual and
HtL-Non-Consensual instances, based on their po-
tential to introduce misleading patterns during train-
ing.

• EtL Non-Consensual: These examples are
learned quickly by the model but fail to align
with human understanding, likely because
they involve subtle nuances, such as implicit
hate speech or biases. Excluding them helps
prevent the model from becoming overly con-
fident in misleading patterns.

• HtL Non-Consensual: These examples are
difficult for both the model and human anno-
tators to classify, often due to mislabeling or
extreme complexity. Removing them reduces
confusion during training, allowing the model
to focus on more reliable instances.

We keep ambiguous instances in which both the
model and humans show variability in classifica-
tion. These instances are crucial for improving
out-of-distribution generalization as demonstrated
by works like Swayamdipta et al. (2020) and Kocon
et al. (2023).

Categories Description
EtL Consensual Easy for both models and humans.
EtL Non-Consensual Easy for models but difficult for humans.
AtL Consensual Unclear for models but easy for humans.
AtL Non-Consensual Unclear for both models and humans.
HtL Consensual Difficult for models but easy for humans.
HtL Non-Consensual Difficult for both models and humans.

Table 1: Description of data categories used in the study.
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Dataset Train Refined Train (ours) Test
SBIC 35,424 28,322 4,691
OLID 19,826 18,401 2,479
ETHOS 798 568 100
DYNAHATE - - 4,120
ToxiGen - - 8,960

Table 2: SBIC, OLID, ETHOS (with human agreement
levels) for training; ToxiGen and DYNAHATE (without
human agreement data) for evaluation only.

4 Addressing Data Scarcity

Addressing data scarcity in implicit hate speech
detection is particularly challenging for smaller
datasets (Rahman et al., 2021; Pal et al., 2022). In-
spired by the adversarial disagreement maximiza-
tion loss (Chen et al., 2024), we adopt and modify
it in our approach and combine an ensemble of
models to mitigate the issue.

Our method aims to simultaneously maximize
model accuracy while increasing disagreement
among ensemble models, thereby improving gen-
eralization across limited data. This approach is
particularly effective for small datasets where over-
fitting is a significant risk (Li et al., 2021; John-
son and Khoshgoftaar, 2019). Our loss function
consists of two components: the traditional cross-
entropy loss and a disagreement loss. This combi-
nation ensures that different models within the en-
semble make diverse predictions (Lee et al., 2023;
Goodfellow et al., 2014). The overall loss is formu-
lated as:

Loverall = LCE + λ · LDisagreement, (3)

where LCE is the cross-entropy loss for the pri-
mary classification task. The disagreement loss is
defined as:

LDis = − 1

NC

N∑
i=1

C∑
k=1

softmax(yki )·softmax(y′ki ),

(4)
where N is the number of models in the en-

semble, C is the number of classes, and yi and y′i
represent the predictions of different models (Lak-
shminarayanan et al., 2017; Zhang et al., 2018).

Ensemble Strategy We incorporate an ensem-
ble strategy (Xu et al., 2022; Dietterich, 2000) to
improve the performance on small datasets. We
generate predictions from two models: one trained
on EtL non-consensual and HtL non-consensual

data, and another on EtL consensual, AtL, and HtL
consensual data. We then apply a majority vot-
ing mechanism defined as ŷ = mode ({ŷ1, ŷ2}) ,
where ŷ1 and ŷ2 represent the predictions from each
model, and the final prediction ŷ is determined by
the majority vote.

5 Experimental Setup

We evaluate CONELA on five implicit hate speech
datasets and use three of them for training. Our
experimental results are averaged over five runs to
ensure reliability and show significant performance
improvements across various models.

For training, we use three implicit hate
speech datasets together with the degree of hu-
man agreements—the Social Bias Inference Cor-
pus (SBIC, Sap et al., 2020), Offensive Lan-
guage Identification Dataset (OLID, Zampieri
et al., 2019), and Online Hate Speech Detection
Dataset (ETHOS, Mollas et al., 2022). Detailed
information about the datasets can be found in Ap-
pendix A.

Then we evaluate both traditional transformer-
based models and widely used large language mod-
els. We employ BERT (Devlin et al., 2019), Hate-
BERT (Caselli et al., 2020), and RoBERTa (Liu
et al., 2019) for transformer-based LMs, and
LLaMA-3.1-8B2, GPT-3.5-turbo3, GPT-4o4 and
GPT-4o-mini5 for LLMs. For these LLMs, we
employ zero-shot prompting to adapt them to our
hate speech detection task without fine-tuning. The
prompt we used is provided in Appendix D.

6 Experimental Results and Discussion

Our experimental results demonstrate the effective-
ness of CONELA in improving the performance
of implicit hate speech detection models. In the
following, we provide a detailed analysis of our
findings focusing on the impact of removing EtL-
non-consensual and HtL-non-consensual instances
from the training data.

6.1 Performance Comparison

Table 3 presents the F1 scores of models trained on
different datasets, comparing the baseline approach

2https://www.llama.com/
3https://platform.openai.com/docs/models/

gpt-3-5-turbo
4https://openai.com/index/hello-gpt-4o/
5https://openai.com/index/

gpt-4o-mini-advancing-cost-efficient-intelligence/

https://www.llama.com/
https://platform.openai.com/docs/models/gpt-3-5-turbo
https://platform.openai.com/docs/models/gpt-3-5-turbo
https://openai.com/index/hello-gpt-4o/
https://openai.com/index/gpt-4o-mini-advancing-cost-efficient-intelligence/
https://openai.com/index/gpt-4o-mini-advancing-cost-efficient-intelligence/
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Test
Train

SBIC OLID ETHOS
baseline Ours baseline Ours baseline Ours

SBIC 85.52 ± 0.4 87.56 ± 0.3 58.97 ± 1.8 61.49 ± 2.2 58.93 ± 3.9 66.59 ± 1.1

OLID 83.64 ± 0.9 90.35 ± 1.2 97.21 ± 0.1 97.28 ± 0.1 59.51 ± 6.2 72.39 ± 2.5

ETHOS 72.47 ± 1.8 76.59 ± 1.3 60.07 ± 1.3 61.06 ± 2.3 68.56 ± 4.7 71.99 ± 7.2

DYNAHATE 72.21 ± 0.3 73.47 ± 0.3 53.51 ± 3.0 55.57 ± 2.4 58.47 ± 3.3 61.31 ± 4.3

ToxiGen 61.67 ± 0.7 64.08 ± 1.0 38.82 ± 3.2 39.63 ± 2.6 40.06 ± 4.2 48.22 ± 2.5

Table 3: F1 Score performance comparison of BERT-uncased trained on SBIC, OLID, ETHOS dataset across
different datasets and conditions. Note that both DynaHate and ToxiGen datasets below the dashed line are not used
for training.

with our CONELA strategy. The results show sev-
eral key insights regarding both in-domain (ID) and
out-of-domain (OOD) performance.

For ID performance, CONELA yields marginal
improvements in F1 scores across all datasets. This
shows that the removal of non-consensual instances
does not negatively impact the model’s ability to
classify data within the same domain. When eval-
uating OOD performance, CONELA significantly
enhances the results particularly for certain dataset
combinations. A detailed study of these dataset
combinations is reported in Section 7. Models
trained on SBIC exhibit the highest improvement
with a maximum gain of 6.71%p in F1 score for
test on ETHOS. OLID-trained models achieve up
to a 2.52%p increase while models trained on
ETHOS show the most substantial gain of 12.88%p
when tested on OLID. This consistent improvement
across different datasets highlights the enhanced
generalization capability of models trained with
our data selection strategy.

6.2 Quantitative Analysis

Model SBIC DYNA ETHOS OLID ToxiGen
Llama3.1-8B 73.23 66.67 65.77 90.72 66.49

GPT-3.5-turbo 84.23 75.59 73.00 78.95 74.47
GPT-4o 81.32 83.19 74.00 81.55 70.73

GPT-4o-mini 76.40 83.50 72.00 56.47 67.53

S
BERT 87.56 73.47 76.59 90.35 64.08
HateBERT 84.66 59.54 68.82 83.97 66.59
Roberta 84.95 62.02 72.08 82.97 74.37

O
BERT 61.49 55.57 61.06 97.28 39.63
HateBERT 58.78 51.75 61.26 95.57 62.10
Roberta 59.25 55.92 60.84 95.63 63.17

E
BERT 66.59 61.31 71.99 72.39 48.22
HateBERT 62.35 60.52 78.00 71.07 66.83
Roberta 61.34 60.13 78.37 70.00 66.86

Table 4: F1 comparison between LLMs and traditional
language models. S, O and E refer to models trained
on the SBIC, OLID and ETHOS datasets, respectively.
The highest score is highlighted in bold.

In Table 4, we conduct additional experiments
using RoBERTa and HateBERT to assess the ro-
bustness of our CONELA strategy. We compare
its performance against large language models
(LLMs) using zero-shot inference and observe that
our strategy often outperforms them.

For instance, traditional models trained on the
SBIC dataset, such as BERT, exhibit superior per-
formance with an F1 score of 87.56, outperform-
ing LLMs like GPT-3.5-turbo (84.23) and GPT-
4o (81.32) on the same dataset. This trend is fur-
ther observed for models like RoBERTa, which
achieves an F1 score of 84.95 on SBIC, surpass-
ing LLMs like GPT-4o-mini (76.40). For the Dy-
naHate dataset, GPT-4o achieves an F1 score of
83.19, which notably surpasses traditional models
such as BERT (73.47) and RoBERTa (62.02). We
notice that the GPT-4o’s performance is compara-
ble to that of traditional models on several datasets.
For example, GPT-4o achieves 83.19 on DynaHate
and 81.55 on OLID, which are competitive with or
surpass the performances of BERT and RoBERTa
in some cases. These results indicate that our
CONELA strategy, particularly when applied to in-
domain datasets like SBIC, improves performance
and generalization compared to LLMs, confirming
the effectiveness of our approach.

Model SBIC DYNA ETHOS OLID ToxiGen
base 58.93 58.47 68.56 59.51 40.06
CONELA 66.59 61.31 71.99 72.39 48.22
CONELA-s 61.84 61.54 73.18 69.08 47.04
CONELA-s-ens 61.55 62.12 77.00 49.53 66.59

Table 5: F1 results of CONELA-s trained with ETHOS.
The highest score is highlighted in bold.

6.3 The Data Scarcity Case
Our analysis reveals that the ETHOS training
dataset shows less performance improvements
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due to its limited data resources compared to
other learning datasets. Addressing this limita-
tion, we implement the disagreement loss in Equa-
tion (4), which results in notable performance en-
hancements reported in Table 5. Specifically, the
CONELA-s-ens model achieves the highest F1
score of 77.00 on the ETHOS dataset, significantly
surpassing both the base model (68.56) and other
CONELA variants. This result highlights the ef-
fectiveness of the ensemble approach in improving
model performance when trained on small datasets
like ETHOS, where data scarcity is a challenge.

Rather than eliminating the ETL-non-consensual
and HTL-non-consensual components, we use an
ensemble technique to dynamically assign weights,
leveraging useful information while mitigating neg-
ative impacts. This is particularly evident in the
ToxiGen dataset, where the CONELA-s-ens model
achieves 66.59. The combination of Equation (3)
and the ensemble method yields substantial perfor-
mance improvements, addressing data scarcity in
the ETHOS dataset and enhancing model perfor-
mance across diverse hate speech categories. This
approach proves effective in scenarios with limited
training data, offering a more adaptive solution for
hate speech detection tasks.

6.4 Linguistic Analysis
We perform a linguistic analysis to investigate
the differences between the instances retained by
CONELA and those discarded according to our
strategy. Using the NLTK library, we extract fea-
tures such as token count, unique token ratio, noun
ratio, verb ratio, adjective ratio, sentence length, av-
erage word length, and unique lemma ratio. We ap-
ply the Mann-Whitney U test (Mann and Whitney,
1947; Wilcoxon, 1992) to compare these features
between the two datasets.

The analysis shows clear differences in token
count and unique token ratio that highlight varia-
tions in lexical diversity between the two datasets.
The verb and adjective ratios differ as well and
suggest that discarded instances tend to use these
parts of speech more often. In contrast, features
like noun ratio and average word length show no
significant differences. Sentence length and unique
lemma ratio vary noticeably and reflect differences
in sentence structure and lexical variety.

These findings confirm that the two datasets ex-
hibit clear linguistic differences, particularly in lex-
ical diversity and sentence complexity. This sug-
gests that the discarded instances may introduce

Figure 3: Word frequency distribution following Zipf’s
law for the CONELA dataset and its complement. The
plot demonstrates the relationship between word rank
and frequency on a log-log scale

noise into the model, making them more challeng-
ing for the model to learn from effectively.

6.4.1 Linguistic Diversity
We visualize the word frequency distribution in Fig-
ure 3 based on Zipf’s law (Zipf, 2016)—the word
frequency in a natural language corpus is inversely
proportional to its rank. The ratio of the top 100
most frequent words in the CONELA dataset is
49.92% whereas it is 50.75% in the complement
dataset. Additionally, the Type-Token Ratio (TTR)
for CONELA is 6.16% whereas it is 10.12% for
the complement dataset.

While the difference in the ratio of top 100 words
between the two datasets is minimal, the higher
TTR in CONELA’s complement indicates greater
lexical diversity in the discarded instances. This
suggests that instances with more varied vocabu-
lary tend to be more complex and nuanced; in other
words, they are harder for both humans and models
to classify as offensive. The linguistic diversity in
CONELA’s complement likely contributes to the
model’s difficulty in learning from these instances.
This finding underscores the challenge of training
models on lexically diverse and ambiguous data
and highlights the need for more advanced strate-
gies to handle such instances in natural language
processing tasks.

6.4.2 Kolmogorov-Smirnov Test Results
The Kolmogorov-Smirnov test is a non-parametric
statistical method used to assess whether two
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Condition SBIC (ID) DYNA (OOD) ETHOS (OOD) OLID (OOD) ToxiGen (OOD) Average
*Baseline (100% train) 85.52 72.21 72.47 83.64 61.67 75.10
w/o EtL Non-Consensual & HtL Non-Consensual (CONELA) 87.56 73.47 76.59 90.35 64.08 78.41
w/o All Non-Consensual 86.56 72.47 75.59 89.35 63.08 77.41
w/o EtL Non-Consensual 85.53 72.24 71.87 84.23 61.77 75.13
w/o HtL Non-Consensual 86.63 72.57 76.62 89.29 63.06 77.63
w/o AtL Non-Consensual 86.06 72.34 72.75 85.83 63.06 76.01
w/o HtL Non-Consensual & AtL Non-Consensual 85.69 72.10 72.08 84.50 62.78 75.43
w/o EtL Non-Consensual & AtL Non-Consensual 86.41 72.18 75.22 88.42 62.60 76.97

Table 6: Performance Comparison of BERT uncased Model Trained on the SBIC Dataset Across 7 Categorized
Datasets and Conditions. The F1 scores are compared to a baseline; scores surpassing the baseline are highlighted
in bold. Standard deviations are provided next to each score. The ID column represents the dataset used for training.

(a) Log-Likelihood (b) Log-Rank

Figure 4: Comparison of Log-Likelihood and Log-Rank
distributions between CONELA and CONELA’s com-
plement datasets.

datasets follow the same distribution. As shown
in Figure 4, both the Log-Likelihood and Log-
Rank distributions reveal significant differences
between the CONELA and CONELA’s comple-
ment datasets. The particularly large value for the
Log-Rank statistic suggests the presence of dis-
tinct patterns in the data, which likely influence the
model’s learning process. These differences in dis-
tribution highlight the challenges the model faces
when learning from the complement data, where
lexical and structural diversity appear to be more
pronounced.

7 Ablation Studies

We conduct ablation studies to analyze the impact
of different data categories on model performance.
Table 6 presents the results of systematically ex-
cluding subsets of non-consensual data derived
from model training dynamics (EtL, AtL, HtL).

The results show that excluding both EtL
Non-Consensual and HtL Non-Consensual data
(CONELA condition) leads to the best overall per-
formance. In this case, the model achieves an av-
erage F1 score of 78.41, showing a clear improve-
ment over the baseline of 75.10. This condition
also generalizes well to OOD datasets with particu-

larly strong results on OLID.
When excluding HtL Non-Consensual data

alone, the model sees notable gains especially on
ETHOS where the F1 score reaches 76.62. This
suggests that HtL contributes meaningfully to im-
proved robustness. On the other hand, excluding
EtL Non-Consensual alone provides only mod-
est benefits with results showing smaller and less
consistent improvements. Removing AtL Non-
Consensual data leads to slight performance in-
creases but falls short of the gains observed in the
CONELA condition. For example, while the av-
erage score improves compared to the baseline, it
remains below what is achieved by excluding both
EtL and HtL.

These findings highlight that HtL Non-
Consensual data plays a more critical role in en-
hancing performance, while EtL and AtL have lim-
ited impact. The combination of EtL and HtL ex-
clusions stands out as the most effective strategy
for training models that perform well both ID and
OOD datasets.

8 Conclusion

We notice the inherent noise present in hate speech
datasets largely due to the subjective nature of an-
notations. We tackle this issue by enhancing the
quality of the dataset. Based on the initial em-
pirical analysis, we have identified major factors
that contribute to the degradation of model per-
formance by developing a datamap that illustrates
the agreement level among annotators across three
categories: easy-to-learn, hard-to-learn, ambigu-
ous. Our findings have suggested that sentences
categorized as easy-to-learn, while having low-
agreement among human annotators–indicating in-
stances where human judgment finds difficulty, yet
model does not–constitute poor-quality data. By
excluding posts that annotators have different per-
spectives, we have observed a notable improvement
of model performance. Our experimental results
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have confirmed that the proposed data selection
approach CONELA improves model performance
substantially.

Limitations

We propose a data refinement strategy that concur-
rently considers model confidence and the degree
of human annotation agreement, promoting learn-
ing through meticulous analysis. However, the
reliability of human annotations remains a critical
concern. The degree of human agreement is calcu-
lated as the mean of the values provided by multi-
ple annotators. As a result, a single extreme outlier
can significantly skew the average even when there
is uniformity among other annotators. This sen-
sitivity to outliers highlights the need for robust
methods to manage such cases. Nonetheless, our
data selection strategy demonstrates that excluding
EtL-Non-Consensual and HtL-Non-Consensual in-
stances facilitates improvements in model perfor-
mance particularly in out-of-distribution general-
ization.

Ethical Considerations

Hate speech detection systems face challenges in
balancing freedom of expression and effective mod-
eration as overly aggressive detection risks cen-
sorship while misclassifications can lead to unjust
outcomes. These systems may perpetuate societal
biases, struggle with context, nuance, and cultural
sensitivity, and raise concerns about privacy, trans-
parency, and power dynamics. Moreover, evolving
language and the need for scalability versus accu-
racy complicate their development, requiring con-
tinuous updates to address these issues responsibly.
Addressing these ethical considerations requires
ongoing collaboration between technologists, ethi-
cists, policymakers, and diverse community repre-
sentatives to ensure hate speech detection systems
are effective, fair, and respectful of fundamental
rights.
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A Dataset Details

• SBIC (Sap et al., 2020) dataset provides a rich collection of social media posts annotated with
structured implications about a wide range of demographic groups.

• OLID (Zampieri et al., 2019) is a hierarchical dataset that aims to classify offensive texts on social
media into various categories and targets, which is collected on Twitter.

• ETHOS (Mollas et al., 2022), derived from YouTube and Reddit comments, offers both binary
and multi-label classification challenges, showcasing the varied dimensions of hate speech across
different platforms.

• DYNAHATE (Vidgen et al., 2021) employs a human-and-model-in-the-loop process for dynamically
generating datasets over four rounds of dynamic data creation.

• ToxiGen (Hartvigsen et al., 2022) presents a large-scale machine-generated dataset focused on
adversarial and implicit hate speech detection, leveraging advanced language models for data
generation.

B Word Analysis of CONELA and CONELA’s Complement

In our analysis, we explore the linguistic patterns inherent, subdividing it into ’CONELA’ and ’CONELA’s
complement’ based on the degree of human agreements, with t-SNE (Van der Maaten and Hinton, 2008).
We extract the top keywords from each subset to understand the thematic content and linguistic intensity
of the discussions.

The CONELA dataset is marked by terms that often relate to societal and racial topics, as well as
common discourse elements. Examples of the top keywords in this dataset include:

• Race-related terms: ‘black’, ‘white’, ‘jews’, ‘person’

• General terms: ‘people’, ‘know’, ‘does’, ‘did’, ‘common’

• Contextual terms: Frequently neutral in isolation, but gaining significance within broader discus-
sions, such as ‘say’.

This dataset reflects discussions that often involve sensitive social and racial issues, with more factual or
neutral expressions, often emphasizing descriptive or explanatory tones.

The CONELA’s complement dataset, on the other hand, is characterized by more explicit and emotion-
ally charged language. The top keywords in this subset include:

• Explicit content: ‘f*cking’, ‘f*ck’, ‘n*gga’, ‘hate’

• General terms: ‘don’, ‘just’, ‘people’, ‘say’

• Emotive expressions: ‘like’, ‘want’, ‘hate’

This group is more representative of overt and emotionally intense discourse. The use of explicit language
and emotionally charged terms reflects a higher degree of hostility and aggression, which can make the
content more sensitive and challenging to moderate.

The CONELA dataset tends to focus more on factual and contextually significant terms, often revolving
around social issues, with less emotionally intense language. In contrast, the CONELA’s complement
dataset features more explicit and emotionally driven terms, reflecting a greater degree of hostility and
aggression. This contrast highlights the linguistic differences between the two datasets, with CONELA
demonstrating a more neutral and descriptive tone, while CONELA’s complement is characterized by
heightened emotional intensity and explicit language. These differences underscore the challenges in
identifying and moderating harmful content, especially when context plays a crucial role in determining
its severity.
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C Experimental Setup

Our experimental framework leverages the BERT-based architectures such as BERT-uncased and Hate-
BERT, along with domain-specific models like RoBERTa, to address the task of implicit hate speech
detection across various datasets including SBIC, OLID, DYNAHATE, ETHOS, and ToxiGen. The
training configurations are meticulously set to ensure consistency and reproducibility across evaluations.

• Hardware Configuration: All models are trained on systems equipped with NVIDIA RTX4090
GPUs with operations performed on CUDA-enabled devices unless specified otherwise.

• Training Parameters: The models are trained for up to 10 epochs, with a learning rate of 5× 10−6

and a batch size of 30. These parameters were selected to balance training speed and system
capabilities.

This setup enables rigorous analysis of model performance across varied and complex hate speech
scenarios, ensuring that findings are robust and broadly applicable.

C.1 Datamap Setup
The configuration for the data mapping via training dynamics is outlined as follows. The settings were
chosen to optimize the performance of the BERT model in classifying textual data into predefined
categories based on their ease of learning:

• Learning Rate (LR): 5× 10−6

• Number of Training Epochs: 6

• Patience for Early Stopping: 3

• Model Name: bert-base-uncased

• Random Seed: A random seed was used to ensure reproducibility of the results.

These parameters were set to fine-tune the model on the dataset, considering both the complexity of the
language understanding task and the computational efficiency.

D Prompt-Based Binary Classification

English Prompt Template

Hate Speech Detection:
You are a hate speech detection model. Analyze the given text.
Respond with "offensive" if the text contains hate speech or offensive content,
and "not offensive" otherwise. Respond in English only. Input text: [TEXT]

Table 7: Hate Speech Detection Prompt Template

In this experiment, binary classification was conducted using the models LLaMA 3.1, GPT-4o, GPT-
3.5-turbo, and GPT-4o-mini, based on the provided prompt (see Table 7). For the test set, a uniform
random sample of 100 instances was drawn from the original dataset for evaluation purposes.
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