
Proceedings of the 31st International Conference on Computational Linguistics, pages 9824–9844
January 19–24, 2025. ©2025 Association for Computational Linguistics

9824

NESTOOLS : A Dataset for Evaluating Nested Tool Learning Abilities of
Large Language Models

Han Han, Tong Zhu, Xiang Zhang, Mengsong Wu, Hao Xiong, Wenliang Chen*

Institute of Artificial Intelligence, School of Computer Science and Technology,
Soochow University, China

{hhan,tzhu7,xzhangxzhang23,mswumsw,hxiongxionghao}@stu.suda.edu.cn
wlchen@suda.edu.cn

Abstract

Large language models (LLMs) combined with
tool learning have gained impressive results
in real-world applications. During tool learn-
ing, LLMs may call multiple tools in nested
orders, where the latter tool call may take the
former response as its input parameters. How-
ever, current research on the nested tool learn-
ing capabilities is still under-explored, since
the existing benchmarks lack relevant data in-
stances. To address this problem, we intro-
duce NESTOOLS to bridge the current gap
in comprehensive nested tool learning eval-
uations. NESTOOLS comprises a novel au-
tomatic data generation method to construct
large-scale nested tool calls with different nest-
ing structures. With manual review and refine-
ment, the dataset is in high quality and closely
aligned with real-world scenarios. Therefore,
NESTOOLS can serve as a new benchmark to
evaluate the nested tool learning abilities of
LLMs. We conduct extensive experiments on
22 LLMs, and provide in-depth analyses with
NESTOOLS , which shows that current LLMs
still suffer from the complex nested tool learn-
ing task1.

1 Introduction

Large Language Models (LLMs) have shown pow-
erful abilities in natural language understanding
and reasoning (Achiam et al., 2023; Dubey et al.,
2024; Yang et al., 2024; Zhu et al., 2024). To ex-
tend such abilities into real-world systems, tool
learning (Inaba et al., 2023) has become a promis-
ing paradigm to solve complex problems and re-
duce hallucinations with external APIs, such as the
calculator and the search engine (Patil et al., 2023;
Schick et al., 2023). In a real-world application,
LLMs may interact with multiple tools (Song et al.,
2023; Ye et al., 2024; Basu et al., 2024; Huang

* Corresponding author
1Our code and dataset are available at https://github.

com/hhan1018/NesTools

API: get_top_selling_wine
Parameters: {location: “California”,
date: “2023-10-08”}
Responses: [“Ramey Chardonnay”, 1570]

API: get_product_origin
Parameters: {product: }
Responses: [“USA”]

API: get_export_quantity
Parameters: {location: , product: ,date:
“2023-10-08”}
Responses: [10783]

On October 8, 2023, what was the export volume of the
best-selling wine in California from its country of origin?

[Tool Calling…] The answer is 10783.

Nested Tool Calling

Complex Instruction

Figure 1: Example of nested tool calling.

et al., 2023). As shown in Figure 1, the multi-tool
calling process is nested, where the latter tool may
take the former one’s response as an input param-
eter. This scenario is prevalent in accomplishing
complex tasks with many execution steps.

However, the LLMs’ nested tool learning ability
is still under-explored, and corresponding bench-
marks are absent to provide comprehensive eval-
uations. Among current tool learning datasets,
some datasets completely ignore the nested tool
calls (Tang et al., 2023; Patil et al., 2023). Other
benchmarks only have a small quantity of nested
tool calls (Li et al., 2023; Huang et al., 2024; Wu
et al., 2024) or have low qualities with repetitive
patterns (Shen et al., 2023) and coarse evalua-
tions (Chen et al., 2024; Qin et al., 2023b). To this
end, it is hard to comprehensively assess LLMs’
performance on the real-world nested tool learning
scenario, and provide insights for further model
development.

To address the above challenges, we introduce
NESTOOLS , a high-quality nested tool learning
benchmark to provide comprehensive evaluations.
NESTOOLS offers an innovative automated data

https://github.com/hhan1018/NesTools
https://github.com/hhan1018/NesTools

9825

NESTOOLS
(Ours)

T-Eval
(Chen et al., 2024)

API-Bank
(Li et al., 2023)

ToolBench
(Qin et al., 2023b)

UltraTool
(Huang et al., 2024)

BFCL
(Patil et al., 2023)

Tools Amount 3,034 50 73 16,464 436 1,618
Avg. params (required) 2.24 1.24 1.97 1.01♢ 4.22 2.11

Instances

Amount 1,000 553 485 126,486 1,000 2,000
Multiple-tool callings 1,000 553 122 85,330 ♢ 867 490
Nested-tool callings 830 N/A♠ 50 N/A♠ 227 0
Avg. tool call 3.04 5.81 1.53 unknown 2.38 unknown

Multiple-tool scenario? ✔ ✔ ✔ ✔ ✔ ✔

Evaluation of nesting? ✔ ✘ ✘ ✘ ✘ ✘

Table 1: Comparison of tool learning datasets for evaluation. ♠ The tool calling procedure is carried under a
multi-step setting and the exact number cannot be obtained. ♢ The statistics refer to Seal-Tools(Wu et al., 2024).

construction scheme, generating large-scale and
more diverse examples of nested tool learning com-
pared to existing datasets. The entire dataset con-
struction process includes tool & instance genera-
tion, query generation, and data review & refine-
ment. To ensure an accurate and consistent eval-
uation, we carefully select and cross-verify 1,000
data entries. For more comprehensive evaluations,
we assess models on four deterministic dimensions:
tool selection, tool calling order, parameter filling,
and nested parameter filling. Compared to exist-
ing benchmarks in Table 1, our dataset focuses on
the nested tool learning task and provides large-
scale tools with more nested calls. In addition, our
fine-grained assessment dimensions on nesting tool
calls could provide a set of more comprehensive
tool learning evaluations that are closely aligned
with real-world scenarios.

We conduct extensive experiments on
NESTOOLS with 22 popular LLMs, includ-
ing proprietary models and open-weight models.
We provide thorough analyses in terms of the
nesting depth, nesting structure, scaled model
sizes, and robustness effects. The results show that
although models benefit from size scaling, they
still suffer from the simple tool selection, and the
performance would degrade when tools are deeply
nested. Our core contributions are as follows:

• We propose a novel automatic data construc-
tion pipeline to easily generate large-scale
nested tool learning datasets.

• We introduce NESTOOLS , a high-quality
dataset with large-scale diverse examples for
comprehensive nested tool learning evalua-
tions.

• We conduct extensive experiments on 22
LLMs to verify their effectiveness and gener-
alization abilities, providing detailed analyses

and insights for LLMs in the field of nested
tool learning.

2 Related Work

Tool learning Early works (Yao et al., 2023;
Schick et al., 2023; Paranjape et al., 2023) have
incorporated straightforward tools such as search
engines and calculators to enhance LLMs’ access
to up-to-date information and precise mathemati-
cal reasoning. Following this, API-bank (Li et al.,
2023) constructs several tools and tool-use dia-
logues. ToolBench (Qin et al., 2023b) employs
real-world APIs to construct datasets capable of
addressing a broader spectrum of user queries. T-
eval (Chen et al., 2024) collects tools from com-
mon domains, leveraging a multi-agent paradigm
to resolve solution annotations. UltraTool (Huang
et al., 2024) starts with real-world queries that may
require the construction of new tools.

Tool Evaluation Conducting reasonable and ef-
fective evaluations of tool learning capabilities for
Large Language Models (LLMs) is essential (Qin
et al., 2023a; Qu et al., 2024). API-Bank (Li
et al., 2023) evaluates from perspectives of the
correctness of API calls and the quality of LLMs’
responses. ToolBench (Qin et al., 2023b) uses
coarse-grained evaluation metrics including pass
rate and win rate backed up by ChatGPT. Ultra-
Tool (Huang et al., 2024) evaluates from perspec-
tives of planning, tool creation, and tool usage. Al-
though these benchmarks include a limited number
of nested tool calling, researchers have not under-
taken a comprehensive analysis and evaluation of
this phenomenon. Consequently, the performance
of LLMs in handling nested tool calling remains
under-explored.

To address this gap, we introduce NESTOOLS ,
a dataset specifically constructed to feature a multi-
tude of nested tool calling scenarios across various

9826

Tool & Instance Generation Data Review & Refinement
Domain Wine/Sale

Tools

Call Chain
Task Query

data0, data1 =
get_top_selling_wine("California",
"2023-10-08")
data2 = get_product_origin(data0)
data3 = get_export_quantity(data2,
data0, "2023-10-08")

Query Generation

On October 8, 2023, what was the export volume of the best-
selling wine in California from its country of origin?

Call ChainIn-Context Examples

Manual Check & Refinement

def get_top_selling_wine(location: str, date: str) -> list:
 """get the name and sales of the top-selling wine
 Args:
 location (str): ..., date (str): ...
 Returns:
 name (str): ..., sales_value (int): ...
 """
 ...

AST Check

Python code
abstract syntax
tree check

Format Check

type check
arguments

return values

data

Instances
all pass

manual refinement

expert check
not agree

error

all pass

annotators

 ✔ argument linking

 ✔ calling order

 ✔ parameter mentions

check

error

Figure 2: The dataset construction process of NESTOOLS .

domains. The purpose of this dataset is to systemat-
ically evaluate the performance of LLMs in nested
tool learning abilities.

3 Dataset Construction

Leveraging large language models (LLMs) for data
generation has become quite common in various
domains (Wang et al., 2023; Yu et al., 2024). It
is very necessary to explore a feasible and com-
prehensive data generation scheme for nested tool
calling.

To obtain NESTOOLS , we propose an automatic
dataset generation pipeline with manual reviews.
As shown in Figure 2, the whole process starts
with tool and instance generation (§3.1), followed
by query generation (§3.2), and data review & re-
finement (§3.3). Lastly, we provide a comparative
analysis for NESTOOLS with other datasets (§3.4).

3.1 Tool & Instance Generation

In real-world applications with a limited number of
tools, call chains containing nested calls are rela-
tively restricted and homogenized, and there are not
too many non-duplicated and diverse call chains.
To get a wide range of tools and instances, existing
benchmarks mostly use a conventional two-round
generation scheme, including filtering or construct-
ing a portion of the tools first, and then filtering or
generating some instances (Qu et al., 2024; Chen
et al., 2024). However, the proportion of gener-
ated samples containing nested instances under this
scheme is very small because LLMs cannot synthe-
size as many candidate tools as possible to obtain
potential nested call chains under the limitations
of the context. If relying on manual brainstorming,
this is very costly and difficult to scale and ensure
diversification.

How to increase the frequency of nested calling
instances? LLMs are relatively unfamiliar with
nested tool calling. However, they are very famil-
iar with nested functions in code because the pre-
training process has already injected large amounts
of code knowledge into LLMs (Dubey et al., 2024).
The two types of nesting can be very similar to
some extent, with the common code pattern being
to define a number of Python functions and then
execute the calls in the main function. In this task,
we ask GPT-3.5 to generate fixed-format functions
as tools with annotation for necessary tool informa-
tion, and then generate a call chain to execute the
tools in the main function.

To ensure that the automated generation tools
can cover a wider range of domains and minimize
repetition rates as much as possible, we collect the
domains from Seal-Tools (Wu et al., 2024), includ-
ing 146 domains and 5,860 sub-domains, serving
as a reference guide for the generation of the sub-
sequent tools and instance.

When generating tools, we adopt a template with
functions in Python code, including comments that
describe the tool, required parameters, optional
parameters, and return parameters. Initially, we at-
tempt a nested call pattern using “func1(func2(...),
*args)”. However, this style is insufficient for more
complex nested examples, as it results in lengthy
expressions and lacks clarity in referencing specific
return parameters when dealing with multiple re-
turn values. The improved generation pattern is
as follows: “data0, ... = func1(...), data2, ... =
func2(data0, ...)”. This approach accommodates
more complex nesting and indicates specific return
values, as illustrated in Figure 2.

It is worth mentioning that the in-context exam-
ples are very important, there are different nested
structures for different nested calls, to ensure the

9827

diversity and rationality of the generation, we care-
fully select a portion of high-quality samples to
form the sample pool, and rotate these examples
during the iterative generation process. At the same
time, to minimize homogeneous generation, we set
the generation temperature to 0.95 to seek for more
diversified generation. The prompt and example
can be found in Appendix A.1.

3.2 Query Generation
While the tool and call chain are generated, we
reserve a comment to initially generate some raw
queries that refer to the logic and flow of the call
chain, although they may have flaws such as miss-
ing necessary parameter values. We then provide
the entire actual call chain and the raw query to
allow GPT-3.5 to generate the complete task, a step
that allows the big model to populate all neces-
sary parameters. Finally, we let GPT-4 (Achiam
et al., 2023) optimize and rewrite the query to make
it more complete and closer to the real require-
ments. Corresponding prompts can be found in
Appendix A.2 and Appendix A.3.

3.3 Data Review & Refinement
To ensure the data quality, we perform strict re-
viewing steps and make further refinements. We
first perform automatic checks. Given that nested
tool calling contains multiple tools where each tool
contains multiple return values, it is necessary to
ensure that each return value in the call chain has a
variable to receive it. As a result, we conduct the
format check to filter out abnormal output formats
and irregularities in generation. It is worth noting
that in addition to the format error, the automated
screening includes an abstract syntax tree (AST)
check to ensure the consistency of tools and call
chains. This process could align the return values
and parameters between the candidate tools and the
call chains.

After the automated check, we perform a man-
ual review for further quality control. For the call
chains, we mainly check whether the values of the
parameters are in accordance with the description
information in the golden tools. Besides, the most
critical aspect of this reviewing step is to deter-
mine whether the nested parameters are filled in
correctly. It requires manual tracing back to the
parent node tool that returns the parameter, and
carefully comparing the parent node’s return value
with the textual description of the parameter at this
position. Potential errors include the parameter be-

ing a non-nested parameter but being filled as a
nested one, or being a nested parameter but being
filled with an incorrect return value from a previous
tool.

For the task query review, we mainly check
whether the non-nested parameters in the call chain
are mentioned in the query, whether the query de-
scription conforms to the logic of the call chain, and
whether the low-quality samples are optimized to
meet real-world requirements. We employ two an-
notators to tag NESTOOLS from two perspectives:
consistency between the call chain and the tools,
and whether the query meets the requirements. Be-
sides, the annotators are required to refine the data
instances if there are errors. If there is a disagree-
ment between the two annotators, an expert would
help make a final annotation. The overall annota-
tion process shows a high agreement of 0.96. More
details can be found in Appendix A.4.

3.4 Dataset Summary

As shown in Table 1, we compare NESTOOLS in
detail with the currently available datasets, and
with the necessary number of tools and instances
guaranteed, NESTOOLS has a clear advantage in
terms of nested tool calling, which not only cov-
ers a higher percentage of nesting and includes a
new framework of evaluation LLMs for nested tool
calling.

4 Experiments

4.1 Experimental Setup

In order to evaluate the LLM’s understanding of
the whole call chain of nested tool calls, we use the
pattern of prompting for evaluation. For the param-
eter of the nested tools, the model is constrained to
generate a placeholder like "API_call_{number}"
to fill the parameter of nested position in the evalu-
ation prompt.

For each sample, in order to simulate the sce-
nario when the LLM faces similar tools, we utilize
the gte-large retriever 2 to retrieve 5 similar tools
for each gold tool from the tool pool. To minimize
the occurrence of ambiguous tools, we control for
the fact that the name of each retrieved tool must
meet a certain Levenshtein distance requirement
with the names of all gold tools.

We conduct experiments on NESTOOLS with
the latest proprietary and open-weight LLMs.

2https://huggingface.co/Alibaba-NLP/
gte-large-en-v1.5

https://huggingface.co/Alibaba-NLP/gte-large-en-v1.5
https://huggingface.co/Alibaba-NLP/gte-large-en-v1.5

9828

Model Selection Order Parameter Nested Param Avg.
P R F1 P R F1 P R F1 P R F1

Proprietary Models
GPT-4o 85.1 86.2 85.7 72.9 74.3 73.6 75.5 78.6 77.0 73.5 69.3 71.3 76.9
GPT-4o-mini 77.3 72.6 74.9 60.6 56.8 58.6 65.3 64.6 64.9 58.8 48.1 52.9 62.8
GPT-3.5 69.0 71.2 70.1 47.9 50.4 49.1 56.7 62.0 59.2 46.5 41.7 44.0 55.6
Claude-3.5 79.6 82.8 81.2 64.3 68.2 66.2 70.6 75.9 73.2 68.3 65.5 66.8 71.8

Open-Weight Models
LLaMA3.1-8B 65.8 71.7 68.6 44.3 50.7 47.3 44.3 51.1 47.5 40.8 42.7 41.7 51.3
LLaMA3.1-70B 82.3 81.9 82.1 68.9 68.8 68.8 57.7 60.3 59.0 67.6 61.1 64.1 68.5
LLaMA3.1-405B 87.9 87.2 87.5 77.3 77.4 77.3 66.4 68.5 67.4 78.8 72.7 75.7 77.0
Mistral-7B v0.2 49.6 44.1 46.7 22.0 21.8 21.9 35.2 33.0 34.1 21.9 14.1 17.1 29.9
Mixtral-8x7B 62.4 64.3 63.4 38.0 41.3 39.6 46.3 49.9 48.0 35.6 35.1 35.3 46.6
Mixtral-8x22B 70.4 75.1 72.7 49.6 54.7 52.0 59.4 66.8 62.9 53.0 52.3 52.6 60.1
Qwen2-0.5B 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0
Qwen2-1.5B 39.6 18.1 24.8 12.4 4.4 6.5 28.4 14.2 18.9 0.0 0.0 0.0 12.5
Qwen2-7B 59.4 58.9 59.1 34.9 35.5 35.2 41.1 43.1 42.1 29.5 14.1 19.1 38.9
Qwen2-57B 63.8 68.9 66.2 40.2 45.5 42.7 47.6 54.3 50.7 37.8 29.0 32.8 48.1
Qwen2-72B 78.4 79.2 78.8 62.9 64.2 63.6 67.0 69.9 68.4 57.9 58.6 58.3 67.3
Qwen1.5-0.5B 10.2 0.2 0.3 0.0 0.0 0.0 2.2 0.1 0.1 0.0 0.0 0.0 0.1
Qwen1.5-1.8B 21.2 3.4 5.8 2.5 0.4 0.8 9.8 1.7 2.9 0.0 0.0 0.0 2.4
Qwen1.5-7B 55.0 35.5 43.2 27.8 18.7 22.3 38.0 27.1 31.7 21.2 5.2 8.4 26.4
Qwen1.5-14B 61.8 56.9 59.3 37.0 35.3 36.1 46.4 45.8 46.1 34.2 21.4 26.3 41.9
Qwen1.5-32B 65.2 61.1 63.1 41.7 40.7 41.2 52.3 51.3 51.8 45.6 27.2 34.1 47.5
Qwen1.5-72B 66.0 59.7 62.7 43.1 40.0 41.5 49.4 47.4 48.4 31.6 21.5 25.6 44.6
Qwen1.5-110B 69.7 65.0 67.3 49.0 46.7 47.8 56.3 54.8 55.6 44.8 31.8 37.2 52.0

Table 2: The main results of NESTOOLS . Avg. is the average F1 score of all evaluation metrics. Bold represents
the best score among all models.

For the proprietary LLMs, we selected four rep-
resentative LLMs: GPT-4o, GPT-4o-mini and
GPT-3.5 from OpenAI and Claude3.5 from An-
thropic3. For the open-weight LLMs, we choose
the representative ones: LLaMA3.1 (Dubey et al.,
2024), Qwen1.5 (Bai et al., 2023), Qwen2 (Yang
et al., 2024), Mistral (Jiang et al., 2023) and Mix-
tral (Jiang et al., 2024). We perform detailed exper-
iments on each of their sizes.

The detailed evaluation prompt is shown in Ap-
pendix B.2.

4.2 Evaluation Metrics

For NESTOOLS , to standardize the evaluation, we
devise metrics for the following aspects: correct-
ness of tool selection, correctness of the order of
tool calls, correctness of parameter filling, and cor-

3The version for GPT-4o is gpt-4o-2024-08-06, for GPT-4o
-mini is gpt-4o-mini-2024-07-18, for GPT-3.5 is gpt-3.5-turbo-
0125 and for Claude3.5 is claude-3-5-sonnet-20240620.

rectness of nested parameter filling. Each evalua-
tion is a deterministic P/R/F1 metric.

Selection P/R/F1 measures the accuracy of
LLM’s tool selection, which is a common eval-
uation dimension.

Order P/R/F1 measures the accuracy of LLM’s
judgment of the previous and subsequent tools.
Since nested tool calling includes the use of the
return value of the previous tool, it is necessary to
evaluate the order of the tools before and after.

Parameter P/R/F1 measures the correctness of
LLM’s filling parameters, which is also a common
evaluation dimension.

Nested Param P/R/F1 is specific to nested calls
and evaluates the accuracy of parameters at nested
locations in the call chain.

Other metrics and details are listed in Ap-
pendix B.1.

9829

4.3 Main Results

In the field of tool learning, for a long time, the
GPT-4 series has occupied the position of the best
performance, and open-weight LLMs are once out
of reach (Huang et al., 2024; Chen et al., 2024).
However, as shown in Table 2, we are pleasantly
surprised to find that LLaMA3.1-405B slightly out-
performs GPT-4o on NESTOOLS , achieving the
best performance among all evaluated LLMs. This
signifies that open-weight and proprietary LLMs
are currently very competitive in tool learning.

We observe that the LLaMA3.1 series exhibits
significant advantages in Selection and Order.
Notably, LLaMA3.1-8B outperforms LLMs like
Mixtral-8x7B and Qwen2-57B, which are substan-
tially larger in size. Qwen2-72B reaches the best
performance in parameters among open-weight
LLMs. Mixtral-8x22B has the highest format ac-
curacy among open-weight LLMs, second only to
GPT-4o and Claude-3.5 in all LLMs.

However, in terms of parameter filling, the
LLaMA3.1 series shows an unusual disadvantage.
Analysis of sample cases reveals that LLaMA3.1
is less sensitive to parameter types, often gener-
ating incorrect parameter types in JSON outputs,
even though the extracted answer information may
be correct. This issue is most pronounced in
the LLaMA3.1 series. LLaMA3.1-70B is most
severely affected, resulting in a loss of nearly 10
percentage points in parameter metric. It is worth
noting that such problems are significantly less
prevalent in other LLMs, and they are entirely ab-
sent in Claude-3.5. This suggests that compared
to other LLMs, the LLaMA series may have un-
dergone relatively less training focused on JSON
format alignment.

Nested tool calling presents a certain level of
difficulty, and the stronger the LLM’s capabilities,
the better it performs in resolving nested tool call-
ing. Filling nested parameters requires the model to
truly understand the call chain and identify which
specific return value corresponds to each nested
parameter. Judging from the metrics of parame-
ters and nesting, LLM’s performance in nesting is
generally lower than that in parameters, but this
gap is narrowing as the LLM’s overall performance
improves.

7B 70B 405B
Size (billion parameters)

20

30

40

50

60

70

80

N
ES

TO
O

LS
 S

co
re

LLaMA3.1-8B

LLaMA3.1-70B

LLaMA3.1-405B

Mistral-7B

Mixtral-8x7B

Mixtral-8x22B

Qwen2-7B

Qwen2-57B

Qwen2-72B

Qwen1.5-7B

Qwen1.5-14B

Qwen1.5-32B Qwen1.5-72B

Qwen1.5-110B

GPT-4o

GPT-4o mini

Figure 3: Model scaling results on NESTOOLS .

5 Further Analysis

5.1 Scaling Analysis

Scaling law is common in LLMs. As shown in
Figure 3, we can conclude that most LLMs such
as Qwen2, LLaMA3.1, Mistral, and GPT-4o se-
ries follow the scaling law in NESTOOLS . The
larger the size, the stronger its performance in
tool calling, which is consistent with the previ-
ous research conclusions. However, it is worth
mentioning that the Qwen1.5 series does not fully
follow the scaling law. Compared with the ini-
tially released Qwen1.5 series, Qwen team released
Qwen1.5-32B two months later. We speculate that
this process may include more high-quality data
and more optimized iterative training.

5.2 Nesting Depth Analysis

Different call chains have different call depths. We
consider the entire call chain’s nesting depth to be 1
if the instance contains no nested calls. For nested
tool calling instances, each tool is at a specific
nesting depth. Tools that do not use the return
value of previous tools are at depth 1. If a tool
uses the return value of a previous tool, its depth is
the previous tool’s depth plus one, and so on. For
an instance, its overall nesting depth matches the
deepest level among the tools.

We analyze the performance of LLMs on
NESTOOLS with different nesting depths. As
shown in Figure 4, although the performance of
the different LLMs varies, each of them shows
a tendency that the deeper the nesting depth, the
worse the performance of LLMs. This undoubtedly
illustrates the difficulty of nested tool calling and
its importance for multiple tool calling.

This trend can be attributed to several factors.
Firstly, as the nesting depth increases, the complex-
ity of the task grows exponentially. Each additional
layer of nesting introduces new dependencies and

9830

Setting Selection Order Parameter Nested Param Avg.
P R F1 P R F1 P R F1 P R F1

base 65.8 71.7 68.6 44.3 50.7 47.3 44.3 51.1 47.5 40.8 42.7 41.7 51.3
w/o type 62.7 73.6 67.7 40.5 51.4 45.3 42.4 52.7 47.0 35.7 43.1 39.0 49.8
w/o conjunction 59.8 73.4 65.9 35.7 48.3 41.0 41.1 53.4 46.5 33.2 43.8 37.7 47.8

Table 3: Robustness analysis conducted on LLaMA3.1-8B, base represents the results of the original setting, w/o
type represents masking the type of response parameters of each tool, and w/o conjunction represents removing the
conjunctions of the query.

LLaMA3.1-8B LLaMA3.1-70B LLaMA3.1-405B GPT-4o mini GPT-4o

50

60

70

80

90

100

F1
 S

co
re

 o
f S

el
ec

tio
n

depth = 1
depth = 2
depth >= 3

Figure 4: The relation between nesting depth and Selec-
tion F1 among LLMs.

potential points of failure, making it more challeng-
ing for the LLM to maintain coherence and accu-
racy throughout the entire call chain. Secondly,
deeper nesting requires the model to retain and
process more contextual information over longer
sequences, which can lead to issues with memory
and attention span. This is particularly relevant
for LLMs that have fixed-length context windows,
where the ability to handle long-range dependen-
cies diminishes as the sequence length increases.

5.3 Nesting Structure Analysis

As shown in Figure 5, we observe a similar phe-
nomenon with the nesting depth experiment, where
shallow tool calls result in higher average perfor-
mance. However, the averaged performance would
be higher if there is a leading tool call (1→2,1→3)
that is followed by two separate calls (1→3,2→3).
Besides the long nesting call structure (1→2→3),
the additional nesting connection (1 → 3) at the
most right column obtain the lowest performance
among all the structures, which shows the adverse
effect of structure complexity.

1 2
3

1 3
2

1 2 3 1 2 3

Figure 5: The averaged performance of different nesting
structures. The arrow between two numbers indicates
the nesting shape. For example, the first structure type
(1→2,1→3) denotes that the 1st tool call’s response
contributes the input parameters for both the 2nd and
the 3rd tool calls.

5.4 Robustness Analysis

Although existing benchmarks have comprehen-
sively evaluated the tool calling ability of LLMs,
there is a lack of robustness analysis for tool calling
based on these benchmarks. We intend to analyze
the robustness of tool calls from both tool and query
perspectives on NESTOOLS .

From the query perspective, we notice that some
conjunctions that do not affect the meaning often
appear in the query of tool calls, such as "Then, Af-
ter that, Please", etc. We guess whether the model
works well because of the existence of a shortcut.
Considering that the rule-based screening cannot
completely cover the connectives in the query, we
intend to remove these additional words and re-
store an original direct query. Considering that the
rule-based screening cannot completely cover the
connectives in the query, we intend to ask LLMs
to remove these additional words. The prompt can
be found in Appendix B.3. To ensure that this
operation does not affect the core information of

9831

9%
7%

6%

27%

51%

(a) Error proportions of non-nested
parameters in Qwen2-7B

Type
Omission
Redundancy
Extraction
Others 27%

1%
9%

23%

39%

(b) Error proportions of non-nested
parameters in LLaMA3.1-8B

10%

61%

23%
6%

(c) Error proportions of nested
parameters in Qwen2-7B

Omission
Identification
Confusion
Hallucination

31%

37%

32%

(d) Error proportions of nested
parameters in LLaMA3.1-8B

Type
Omission
Redundancy
Extraction
Others

Omission
Identification
Confusion
Hallucination

Figure 6: Parameter error analysis for Qwen2-7B and LLaMA3.1-8B

the query, we check some samples and don’t find
biases caused by this process.

From the tool perspective, we would like to ex-
plore the impact of tool integrity on the experimen-
tal results when the tool is missing a small part of
the information, in order to keep consistency with
the original evaluation process, and to ensure that
the core information of the tool is complete, we
only mask out the type of the return value of the
tool to explore the impact of tool completeness on
the experimental results.

As shown in Table 3, In the case of masking off
the type of the tool return value, LLaMA3.1-8B
shows a slight decrease in all metrics. However, In
the case of removing the connectives in the query,
the performance drops more significantly, espe-
cially the Order metric, which proves that the con-
junction does help LLMs understand the order of
the call chain. An interesting observation is that af-
ter applying additional factors, the R-value metrics
generally increase, indicating that LLM tends to
call more tools to cover the gold standard answers.
In summary, it can be inferred that the robustness
of current LLMs in the field of tool calling is still
insufficient and worth exploring.

5.5 Error Analysis

We analyze the errors from LLMs during the evalu-
ation process, unfolding both the tool and parame-
ter perspectives.

5.5.1 Tool Error
We summarize the errors in the tool perspective
and divide them into five categories: tool selection,
tool omission, tool redundancy, hallucinations, and
generation format. Since these types of errors are
usually mixed, it is hard to provide quantitative
analysis. To this end, we provide each error cate-
gory with a case study in Appendix B.4.

Here are our overall findings: (1) Tool selection:
We find that similar tools may confuse the model,
leading to errors in tool selection. (2) Tool Omis-

sion: Although the golden tools corresponding to
each query are included in the evaluation prompt,
the model may still miss some key tools. (3) Tool
Redundancy: LLMs sometimes call redundant
tools that are not task-related. (4) Hallucinations:
When faced with some specific tasks, the model
may hallucinate and construct tools on its own that
do not exist in the tool pool. (5) Generation For-
mat: During the evaluation process, some LLMs
may generate results in the wrong format, which
cannot be parsed for evaluations. The results re-
garding the accuracy of the format, as presented in
Appendix B.1, reveal that smaller models are more
inclined to generate content in incorrect formats.

5.5.2 Parameter error
For errors in the parameter section, we analyze
the error types from two perspectives: (1)Non-
nested parameter errors include parameter omis-
sions (Omission), redundant parameters (Redun-
dancy), the parameter value is correct but the type
is incorrect (Type), the parameter value is wrongly
extracted (Extraction), and other errors (Others).
(2)Nested parameter errors include non-nested pa-
rameter mistaken for nested (Hallucination), nested
parameter not involved (Omission), nested param-
eter recognized as non-nested parameter (Identi-
fication), nested parameter identified but take an
incorrect value (Confusion).

As shown in Figure 6, we count the propor-
tion of different error categories of Qwen2-7B
and LLaMA3.1-8B. For non-nested parameters,
LLaMA3.1-8B tends to mispredict parameter types,
while Qwen2-7B makes fewer mistakes. For nested
parameters, the most common mistake made by
Qwen2-7B is recognizing nested parameters as non-
nested parameters. The errors made by LLaMA3.1-
8B are relatively average, and they are more likely
to fill in the wrong nested parameter values after
identifying them. This shows that LLaMA3.1-8B
is more capable of identifying nested tool calling
than Qwen2-7B to some extent.

9832

6 Conclusion

In this paper, we introduce NESTOOLS , a large-
scale dataset of high-quality for evaluating the
LLMs’ nested tool learning abilities. We propose a
novel automatic method to generate cases involv-
ing nested tool calls. Through a multi-step process
of manual review and refinement, we ensure the
quality of NESTOOLS . Statistical analysis reveals
that our dataset spans a wide range of domains.
Furthermore, experiments conducted on 22 LLMs
demonstrate the significance of this task. Our find-
ings indicate that LLMs still struggle with effec-
tively handling nested tool calls. We hope that
NESTOOLS , combined with our detailed experi-
ments, can provide valuable insights and inspire
future in-depth exploration of practical applications
in tool agents.

Limitations

This study mainly builds complex nested tool call-
ing instances, providing a new perspective on
nested tool calling. Although promising, in reality,
there may be situations where the necessary preced-
ing tools are missing, and the model needs to use its
own capabilities to perform additional processing
on the return value. Another limitation is that the
tools involved in this study cannot be executed. Al-
though these tools are not specific implementations,
they can be used as simulation representations to ac-
curately describe the functions of the tools, which
can be used to evaluate the capabilities of LLMs in
tool learning and provide guidance for the future
development of actual tools. Later, we will try to
design real execution interfaces for these tools to
better simulate nested tool calls in real situations.

Acknowledgments

This work is supported by the National Natural Sci-
ence Foundation of China (Grant No. 62376177,
62261160648) and Provincial Key Laboratory
for Computer Information Processing Technology,
Soochow University. This work is also supported
by Collaborative Innovation Center of Novel Soft-
ware Technology and Industrialization, Project
Funded by the Priority Academic Program Devel-
opment of Jiangsu Higher Education Institutions.
We would also like to thank the anonymous review-
ers for their insightful and valuable comments.

References
Josh Achiam, Steven Adler, Sandhini Agarwal, Lama

Ahmad, Ilge Akkaya, Florencia Leoni Aleman,
Diogo Almeida, Janko Altenschmidt, Sam Altman,
Shyamal Anadkat, et al. 2023. Gpt-4 technical report.
ArXiv preprint, abs/2303.08774.

Jinze Bai, Shuai Bai, Yunfei Chu, Zeyu Cui, Kai Dang,
Xiaodong Deng, Yang Fan, Wenbin Ge, Yu Han, Fei
Huang, et al. 2023. Qwen technical report. ArXiv
preprint, abs/2309.16609.

Kinjal Basu, Ibrahim Abdelaziz, Subhajit Chaudhury,
Soham Dan, Maxwell Crouse, Asim Munawar, Ver-
non Austel, Sadhana Kumaravel, Vinod Muthusamy,
Pavan Kapanipathi, and Luis Lastras. 2024. API-
BLEND: A comprehensive corpora for training and
benchmarking API LLMs. In Proceedings of the
62nd Annual Meeting of the Association for Compu-
tational Linguistics (Volume 1: Long Papers), pages
12859–12870, Bangkok, Thailand. Association for
Computational Linguistics.

Zehui Chen, Weihua Du, Wenwei Zhang, Kuikun
Liu, Jiangning Liu, Miao Zheng, Jingming Zhuo,
Songyang Zhang, Dahua Lin, Kai Chen, and Feng
Zhao. 2024. T-eval: Evaluating the tool utilization
capability of large language models step by step. In
Proceedings of the 62nd Annual Meeting of the As-
sociation for Computational Linguistics (Volume 1:
Long Papers), pages 9510–9529, Bangkok, Thailand.
Association for Computational Linguistics.

Abhimanyu Dubey, Abhinav Jauhri, Abhinav Pandey,
Abhishek Kadian, Ahmad Al-Dahle, Aiesha Letman,
Akhil Mathur, Alan Schelten, Amy Yang, Angela
Fan, et al. 2024. The llama 3 herd of models. ArXiv
preprint, abs/2407.21783.

Shijue Huang, Wanjun Zhong, Jianqiao Lu, Qi Zhu, Ji-
ahui Gao, Weiwen Liu, Yutai Hou, Xingshan Zeng,
Yasheng Wang, Lifeng Shang, Xin Jiang, Ruifeng
Xu, and Qun Liu. 2024. Planning, creation, usage:
Benchmarking LLMs for comprehensive tool utiliza-
tion in real-world complex scenarios. In Findings of
the Association for Computational Linguistics: ACL
2024, pages 4363–4400, Bangkok, Thailand. Associ-
ation for Computational Linguistics.

Yue Huang, Jiawen Shi, Yuan Li, Chenrui Fan, Siyuan
Wu, Qihui Zhang, Yixin Liu, Pan Zhou, Yao Wan,
Neil Zhenqiang Gong, et al. 2023. Metatool bench-
mark for large language models: Deciding whether
to use tools and which to use. ArXiv preprint,
abs/2310.03128.

Tatsuro Inaba, Hirokazu Kiyomaru, Fei Cheng, and
Sadao Kurohashi. 2023. MultiTool-CoT: GPT-3
can use multiple external tools with chain of thought
prompting. In Proceedings of the 61st Annual Meet-
ing of the Association for Computational Linguistics
(Volume 2: Short Papers), pages 1522–1532, Toronto,
Canada. Association for Computational Linguistics.

https://arxiv.org/abs/2303.08774
https://arxiv.org/abs/2309.16609
https://doi.org/10.18653/v1/2024.acl-long.694
https://doi.org/10.18653/v1/2024.acl-long.694
https://doi.org/10.18653/v1/2024.acl-long.694
https://doi.org/10.18653/v1/2024.acl-long.515
https://doi.org/10.18653/v1/2024.acl-long.515
https://arxiv.org/abs/2407.21783
https://doi.org/10.18653/v1/2024.findings-acl.259
https://doi.org/10.18653/v1/2024.findings-acl.259
https://doi.org/10.18653/v1/2024.findings-acl.259
https://arxiv.org/abs/2310.03128
https://arxiv.org/abs/2310.03128
https://arxiv.org/abs/2310.03128
https://doi.org/10.18653/v1/2023.acl-short.130
https://doi.org/10.18653/v1/2023.acl-short.130
https://doi.org/10.18653/v1/2023.acl-short.130

9833

Albert Q Jiang, Alexandre Sablayrolles, Arthur Men-
sch, Chris Bamford, Devendra Singh Chaplot, Diego
de las Casas, Florian Bressand, Gianna Lengyel, Guil-
laume Lample, Lucile Saulnier, et al. 2023. Mistral
7b. ArXiv preprint, abs/2310.06825.

Albert Q Jiang, Alexandre Sablayrolles, Antoine
Roux, Arthur Mensch, Blanche Savary, Chris Bam-
ford, Devendra Singh Chaplot, Diego de las Casas,
Emma Bou Hanna, Florian Bressand, et al. 2024.
Mixtral of experts. ArXiv preprint, abs/2401.04088.

Minghao Li, Yingxiu Zhao, Bowen Yu, Feifan Song,
Hangyu Li, Haiyang Yu, Zhoujun Li, Fei Huang,
and Yongbin Li. 2023. API-bank: A comprehensive
benchmark for tool-augmented LLMs. In Proceed-
ings of the 2023 Conference on Empirical Methods
in Natural Language Processing, pages 3102–3116,
Singapore. Association for Computational Linguis-
tics.

Bhargavi Paranjape, Scott Lundberg, Sameer Singh,
Hannaneh Hajishirzi, Luke Zettlemoyer, and
Marco Tulio Ribeiro. 2023. Art: Automatic multi-
step reasoning and tool-use for large language mod-
els. ArXiv preprint, abs/2303.09014.

Shishir G Patil, Tianjun Zhang, Xin Wang, and Joseph E
Gonzalez. 2023. Gorilla: Large language model
connected with massive apis. ArXiv preprint,
abs/2305.15334.

Yujia Qin, Shengding Hu, Yankai Lin, Weize Chen,
Ning Ding, Ganqu Cui, Zheni Zeng, Yufei Huang,
Chaojun Xiao, Chi Han, Yi Ren Fung, Yusheng Su,
Huadong Wang, Cheng Qian, Runchu Tian, Kunlun
Zhu, Shihao Liang, Xingyu Shen, Bokai Xu, Zhen
Zhang, Yining Ye, Bowen Li, Ziwei Tang, Jing Yi,
Yuzhang Zhu, Zhenning Dai, Lan Yan, Xin Cong,
Yaxi Lu, Weilin Zhao, Yuxiang Huang, Junxi Yan,
Xu Han, Xian Sun, Dahai Li, Jason Phang, Cheng
Yang, Tongshuang Wu, Heng Ji, Zhiyuan Liu, and
Maosong Sun. 2023a. Tool learning with foundation
models. Preprint, arXiv:2304.08354.

Yujia Qin, Shihao Liang, Yining Ye, Kunlun Zhu, Lan
Yan, Yaxi Lu, Yankai Lin, Xin Cong, Xiangru Tang,
Bill Qian, et al. 2023b. Toolllm: Facilitating large
language models to master 16000+ real-world apis.
ArXiv preprint, abs/2307.16789.

Changle Qu, Sunhao Dai, Xiaochi Wei, Hengyi Cai,
Shuaiqiang Wang, Dawei Yin, Jun Xu, and Ji-Rong
Wen. 2024. Tool learning with large language mod-
els: A survey. ArXiv preprint, abs/2405.17935.

Timo Schick, Jane Dwivedi-Yu, Roberto Dessì, Roberta
Raileanu, Maria Lomeli, Eric Hambro, Luke Zettle-
moyer, Nicola Cancedda, and Thomas Scialom. 2023.
Toolformer: Language models can teach themselves
to use tools. In Advances in Neural Information Pro-
cessing Systems 36: Annual Conference on Neural
Information Processing Systems 2023, NeurIPS 2023,
New Orleans, LA, USA, December 10 - 16, 2023.

Yongliang Shen, Kaitao Song, Xu Tan, Wenqi Zhang,
Kan Ren, Siyu Yuan, Weiming Lu, Dongsheng Li,
and Yueting Zhuang. 2023. Taskbench: Benchmark-
ing large language models for task automation. ArXiv
preprint, abs/2311.18760.

Yifan Song, Weimin Xiong, Dawei Zhu, Wenhao Wu,
Han Qian, Mingbo Song, Hailiang Huang, Cheng
Li, Ke Wang, Rong Yao, et al. 2023. Restgpt: Con-
necting large language models with real-world restful
apis. ArXiv preprint, abs/2306.06624.

Qiaoyu Tang, Ziliang Deng, Hongyu Lin, Xianpei
Han, Qiao Liang, Boxi Cao, and Le Sun. 2023.
Toolalpaca: Generalized tool learning for language
models with 3000 simulated cases. ArXiv preprint,
abs/2306.05301.

Yizhong Wang, Yeganeh Kordi, Swaroop Mishra, Alisa
Liu, Noah A. Smith, Daniel Khashabi, and Hannaneh
Hajishirzi. 2023. Self-instruct: Aligning language
models with self-generated instructions. In Proceed-
ings of the 61st Annual Meeting of the Association for
Computational Linguistics (Volume 1: Long Papers),
pages 13484–13508, Toronto, Canada. Association
for Computational Linguistics.

Mengsong Wu, Tong Zhu, Han Han, Chuanyuan Tan,
Xiang Zhang, and Wenliang Chen. 2024. Seal-
tools: Self-instruct tool learning dataset for agent
tuning and detailed benchmark. ArXiv preprint,
abs/2405.08355.

An Yang, Baosong Yang, Binyuan Hui, Bo Zheng,
Bowen Yu, Chang Zhou, Chengpeng Li, Chengyuan
Li, Dayiheng Liu, Fei Huang, et al. 2024. Qwen2
technical report. ArXiv preprint, abs/2407.10671.

Shunyu Yao, Jeffrey Zhao, Dian Yu, Nan Du, Izhak
Shafran, Karthik R. Narasimhan, and Yuan Cao. 2023.
React: Synergizing reasoning and acting in language
models. In The Eleventh International Conference
on Learning Representations, ICLR 2023, Kigali,
Rwanda, May 1-5, 2023. OpenReview.net.

Junjie Ye, Guanyu Li, Songyang Gao, Caishuang Huang,
Yilong Wu, Sixian Li, Xiaoran Fan, Shihan Dou,
Qi Zhang, Tao Gui, et al. 2024. Tooleyes: Fine-
grained evaluation for tool learning capabilities of
large language models in real-world scenarios. ArXiv
preprint, abs/2401.00741.

Junjie Yu, Xing Wang, and Wenliang Chen. 2024. Reli-
able data generation and selection for low-resource
relation extraction. In AAAI Conference on Artificial
Intelligence.

Tong Zhu, Xiaoye Qu, Daize Dong, Jiacheng Ruan,
Jingqi Tong, Conghui He, and Yu Cheng. 2024.
Llama-moe: Building mixture-of-experts from
llama with continual pre-training. ArXiv preprint,
abs/2406.16554.

https://arxiv.org/abs/2310.06825
https://arxiv.org/abs/2310.06825
https://arxiv.org/abs/2401.04088
https://doi.org/10.18653/v1/2023.emnlp-main.187
https://doi.org/10.18653/v1/2023.emnlp-main.187
https://arxiv.org/abs/2303.09014
https://arxiv.org/abs/2303.09014
https://arxiv.org/abs/2303.09014
https://arxiv.org/abs/2305.15334
https://arxiv.org/abs/2305.15334
https://arxiv.org/abs/2304.08354
https://arxiv.org/abs/2304.08354
https://arxiv.org/abs/2307.16789
https://arxiv.org/abs/2307.16789
https://arxiv.org/abs/2405.17935
https://arxiv.org/abs/2405.17935
http://papers.nips.cc/paper_files/paper/2023/hash/d842425e4bf79ba039352da0f658a906-Abstract-Conference.html
http://papers.nips.cc/paper_files/paper/2023/hash/d842425e4bf79ba039352da0f658a906-Abstract-Conference.html
https://arxiv.org/abs/2311.18760
https://arxiv.org/abs/2311.18760
https://arxiv.org/abs/2306.06624
https://arxiv.org/abs/2306.06624
https://arxiv.org/abs/2306.06624
https://arxiv.org/abs/2306.05301
https://arxiv.org/abs/2306.05301
https://doi.org/10.18653/v1/2023.acl-long.754
https://doi.org/10.18653/v1/2023.acl-long.754
https://arxiv.org/abs/2405.08355
https://arxiv.org/abs/2405.08355
https://arxiv.org/abs/2405.08355
https://arxiv.org/abs/2407.10671
https://arxiv.org/abs/2407.10671
https://openreview.net/pdf?id=WE_vluYUL-X
https://openreview.net/pdf?id=WE_vluYUL-X
https://arxiv.org/abs/2401.00741
https://arxiv.org/abs/2401.00741
https://arxiv.org/abs/2401.00741
https://api.semanticscholar.org/CorpusID:268716080
https://api.semanticscholar.org/CorpusID:268716080
https://api.semanticscholar.org/CorpusID:268716080
https://arxiv.org/abs/2406.16554
https://arxiv.org/abs/2406.16554

9834

A Dataset Construction details

A.1 Tool/Instance Generation
The corresponding prompt is presented in Table 4.
An example for the generation process can be found
in Table 5.

A.2 Query Normalization
The corresponding prompt is presented in Table 6.

A.3 Query Refinement
The corresponding prompt is presented in Table 7.

A.4 Other details
Based on predefined review criteria, the final agree-
ment is computed by averaging the concordance be-
tween query and call chain verification. NT means
that the data is considered error-free by all annota-
tors, and data with NF is considered to have errors
by all annotators. Noverall represents the total num-
ber of data. The final agreement is defined as:

p =
NT +NF

Noverall

B Evaluation details

B.1 Other Evaluation Metrics
In addition to the four metrics of Selection, Order,
Parameter, and Nested Param, we also consider
the following metrics:

Format measures the accuracy of LLM’s output
format.

Tree measures the pass rate of the entire call tree
of LLMs, requiring absolute correctness in the four
previous metrics of Selection, Order, Parameter,
and Nested Param to be considered a pass.

We provide the format accuracy and Tree pass
rate of all evaluated LLMs in Table 8.

B.2 Evaluation Prompt
The corresponding prompt is presented in Table 9.

B.3 Prompt of removing conjunctions
The corresponding prompt is presented in Table 10.

B.4 Error Examples
B.4.1 Tool Selection
The error examples for Tool Selection are shown
in Table 11.

B.4.2 Tool Omission
The error examples for Tool Omission are shown
in Table 12.

B.4.3 Tool Redundancy
The error examples for Tool Redundancy are shown
in Table 13.

B.4.4 Hallucinations
The error examples for Hallucinations are shown
in Table 14.

B.4.5 Generation Format
The error examples for Generation Format are
shown in Table 15.

9835

Tool/Instance Generation

Please generate several realistic functions with definitions in the given specific domain and
generate complete function calling statements in ‘main()‘, shaped like "data0,data1 = func0(*args)"
, "data2,data3,data4 = func1(*args)",etc. Do not add any additional python code in ‘main()‘.
The most important thing is that the former function’s return value should be latter ones’ input
argument, in other words, data1, data2, etc. should work as the arguments of subsequent function
calls.In this scenario, the subsequent function will use a return value of a preceding function
as its parameter, you need to ensure that the inner meaning of this parameter in both functions
should be consistent, with identical parameter type, while slight difference in parameter names and
descriptions are acceptable.
All required parameters must be filled in, by directly writing the actual values in order. Optional
parameters can be filled in or not filled in, but remember to add "parameter_name=" before the
value of the optional parameter if you are sure to fill in this optional parameter.
You need to write the task in natural language as a comment under the function calling statements
in ‘main()‘ to describe the entire calling process. Please ensure that it includes all the function
calling values.
Don’t use python’s intrinsic functions in your generation, such as lists and dictionaries (index
access, slicing, adding, deleting, etc.).
The generated API only needs to be related to the given domain and does not need to be completely
subordinate to the given domain.

Here are some examples.
{example}

It’s your turn to generate.
Domain: {}
Answer:

Table 4: Prompt of Tool/Instance Generation.

9836

An example for Tool/Instance Generation

Domain: Food and Beverage/Food product development
```python
def get_top_selling_wine(location: str, date: str):

"""Retrieve the top-selling wine in a specific location on a specific date.

required parameters:
location (str): the geographical location (country, region, city)
date (str): the date of the sales in 'YYYY-MM-DD' format

Returns:
wine_name (str): the name of the top-selling wine
sales_value (float): the sales value of the wine in dollars

"""
...

def get_product_origin(product: str):
"""Retrieve the origin of a specific product.

required parameters:
product (str): the name or code of the product

Returns:
origin (str): the geographical origin of the product

"""
...

def get_export_quantity(location: str, date: str, product: str):
"""Retrieve the export quantity of a specific product
from a specific location on a specific date.

required parameters:
location (str): the geographical location (country, region, city)
date (str): the date of the export in 'YYYY-MM-DD' format
product (str): the name or code of the product

Returns:
quantity (int): the export quantity of the product

"""
...

def main():
data0, data1 = get_top_selling_wine("California", "2023-10-08")
data2 = get_product_origin(data0)
data3 = get_export_quantity(data2, "2023-10-08", data0)
# I would like to know which wine sold the best in California on October 8th,
2023. Could you provide me with the origin of this wine and inform me about
the export data of this wine from the local area on that day?

if __name__ == "__main__":
main()

```

Table 5: An example for Tool/Instance generation process.

9837

Query Normalization

Below are some APIs, a task, and API call result for this task. You need to check if any values
of the API call result that are not present in the task, incorporate those values into the original
task without mentioning the specific APIs, rewrite the original task to ensure that it includes all
the values,which is very important.If the value is in the format of complex data type (such as a
dictionary, list, tuple, etc.), you need to incorporate each item from the value into the task in natural
language, rather than directly adding the value in the raw format to the task.
The instructions of the rewritten task do not need to be completely consistent with the information
in the given API such as the name and despcription, and some uniqueness of the real-life scenario
should be retained.
You only need to generate the rewritten task without adding any additional explanations.

Here is an example.
{example}

It’s your turn to generate.

APIs:
{gold apis}
Task:
{task}
API call result:
{call chain with gold apis}
rewritten task:

Table 6: Prompt of query normalization.

9838

Query Refinement

You are an excellent task rewriter. Next, I will give you a task query, and ask you to rewrite it in
high quality. Please follow the tips below.
Tips:
1. Please make sure that the actual name of the API(e.g., get_article_headline) involved in the call
does not appear in the rewritten task.
2. The API call result represents the golden tool calling process corresponding to the query.
Parameter value in the "API_call_" format represents a return value from a previous tool. Refer to
the provided APIs information to ensure that the rewritten task is consistent with the golden tool
calling process.
3. Please make sure that all regular parameters in the gold tool calling process, which are not in
the "API_call_" format, can be extracted or inferred from the rewritten task.
4. Without changing the core meaning and logic of the original task, and while adhering to the call
chain, appropriately modify the form of expression, make the task more coherent and aligned with
real-world scenarios.

Here’s an example:
{example}

It’s your turn to generate.

APIs:
{gold apis}
Task:
{original task}
API call result:
{call chain with gold apis}
rewritten task:

Table 7: Prompt of query refinement.

9839

Model Format Tree

Proprietary Models
GPT-4o 100.0 25.9
GPT-4o-mini 94.4 18.3
GPT-3.5 99.4 13.5
Claude-3.5 100.0 26.8

Open-Weight Models
LLaMA3.1-8B 98.0 6.9
LLaMA3.1-70B 99.1 9.7
LLaMA3.1-405B 97.5 14.7
Mistral-7B v0.2 68.8 2.9
Mixtral-8x7B 91.3 7.4
Mixtral-8x22B 99.5 17.5
Qwen2-0.5B 1.2 0.0
Qwen2-1.8B 66.5 0.0
Qwen2-7B 94.2 4.6
Qwen2-57B 97.5 9.2
Qwen2-72B 98.6 20.4
Qwen1.5-0.5B 3.2 0.0
Qwen1.5-1.8B 12.6 0.0
Qwen1.5-7B 59.4 2.4
Qwen1.5-14B 85.4 7.9
Qwen1.5-32B 85.6 10.7
Qwen1.5-72B 86.1 7.8
Qwen1.5-110B 88.8 13.0

Table 8: Format accuracy and Tree pass rate of NESTOOLS . Bold represents the best score among all models.

9840

Prompt of Evaluation

You have access to a list of APIs and the task description.You need to follow the given task
description and determine which API to call in sequence according to the order required by the
task description. API can be retrieved from the APIs list. Finally, you only need to return the API
call result without any other content.
The final result should be in the format of [{"api_name":__,"api_id":__,"parameters":{"arg0":"value0",
"arg1":"value1",...},"responses":{"arg0":"API_call_0", ... ,"argn":"API_call_n"}},{"api_name":__,
"api_id":__,"parameters":{"arg0":"value0","arg1":"value1",...},"responses":{"arg0":"API_call_{n+1}",
...}}, ...].
You don’t need to know the actual return value of the API call, just assign each return value as a
string "API_call_{number}" in "responses", such as "API_call_0","API_call_1","API_call_2" and
so on. The "number" in "API_call_{number}" should increase by one from 0 globally.
Please first determine which APIs to call in sequence based on the task, and then determine the
parameter values of each API depending on the specific details of the task. If you decide to call
the API, you need to fill in all this API’s required parameters which can be found in this API’s
"required" list. If you think the task does not include the actual value of a necessary parameter in
API’s "required" list, you can assign the necessary parameter a value of "UNK". The remaining
parameters are optional parameters, determine whether to fill them in according to the task. If
you think the parameter value to be filled in is the return value of a previous API call, set it as
"API_call_x", then the parameter value can be filled in with "API_call_x".

Now it is your turn to generate the API call result based on the APIs and task description below.
Remember that you only need to generate the API call result, not any additional explanations.
APIs:
{tools}
Task description:
{task description}
API call result:

Table 9: Prompt of evaluation.

Remove Conjunctions

Now there is a task description. I hope you can remove potential conjunctions like "Please", "then",
"subsequently", "After that" etc., while maintaining the core meaning. Ensure that the text remains
in natural language without punctuation errors and adjust the capitalization accordingly.

Here is an example:
{example}

Now its your turn:
Task description: {}
Result:

Table 10: Prompt of removing conjunctions.

9841

Model Query Response
Qwen2-7B I currently require a brand new red

medium-sized dress. Please assist in de-
signing the layout and selecting a luxuri-
ous silk fabric for this dress. Finally, ar-
range for Taylor Smith to bring the entire
design to life and maintain oversight of the
progress.

[{"api_name": "design_garment", "parameters":
{"garment_type": "dress", "color": "red", "size":
"medium"}, "responses": {}}, {"api_name":
"fabric_selection", "parameters": {"design": "A
red medium-sized dress", "fabric_type": "lux-
urious silk"}, "responses": {}}, {"api_name":
"choose_manufacturer", "parameters": {"de-
sign_sketch": "A red medium-sized dress made
of luxurious silk", "material_list": ["luxurious
silk"], "location": "Taylor Smith’s workshop"},
"responses": {}}]

LLaMA3.1-8B Please share the title of a piece in the pol-
itics division that incorporates the word
which is elections. Following this, extract
information concerning the author who
penned the aforementioned piece. Lastly,
suggest 5 articles that bear similarity about
elections.

[{"api_name": "request_article", "parameters": {"ar-
ticle_title": "piece in the politics division that
incorporates the word which is elections", "au-
thor": "UNK", "access_link": "UNK"}, "responses":
{"access_granted": "API_call_0", "download_link":
"API_call_1"}}, {"api_name": "get_author_info",
"parameters": {"author": "API_call_1"}, "re-
sponses": {"birthplace": "API_call_2", "arti-
cles_written": "API_call_3"}}, {"api_name": "rec-
ommend_similar_articles", "parameters": {"key-
word": "elections", "limit": "5"}, "responses": {"sim-
ilar_articles": "API_call_4"}}]

Table 11: Error examples for tool selection.

Model Query Response
LLaMA3.1-70B Scan the ISBN "978-3-16-148410-0" of a

book to extract comprehensive data and
verify its presence in the library. Upon
identifying the book situated, launch an
augmented reality interaction correlating
to the book.

[{"api_name": "scan_isbn", "parameters":
{"isbn": "978-3-16-148410-0"}, "responses":
{"book_details": "API_call_0", "availability":
"API_call_1"}}, {"api_name": "locate_book",
"parameters": {...}, "responses": [...]},{"api_name":
"engage_ar_experience", "parameters": {"availabil-
ity": "API_call_1", "exact_location": "API_call_0"},
"responses": {"ar_message": "API_call_2",
"ar_duration": "API_call_3"}}]

Qwen2-7B I would like to know which company is
responsible for producing the Smartphone
X10, and I am also interested in under-
standing the comprehensive development
value of the industrial zone it belongs to.

[{"api_name": "get_product_manufacturer", "param-
eters": {"product_name": "Smartphone X10"}, "re-
sponses": {"manufacturer_name": "API_call_0"}},
{"api_name": "get_factory_location", "parameters":
{...}, "responses": [...]},{"api_name": "eval-
uate_property", "parameters": {"location":
"API_call_0", "type_of_land": "industrial", "area":
100.0}, "responses": {"land_value": "API_call_1",
"development_potential": "API_call_2"}}]

Table 12: Error examples for tool omission.

9842

Model Query Response
LLaMA3.1-8B I’m planning a metro communication route

that needs to span about 50 km, and we’re
targeting a bandwidth capacity of 100
Gbps. Could you please provide a modu-
lation format that will work well over that
distance. Also, there’s the challenge of
compensating for a line loss of around 3.5
dB, so I’ll need to fine-tune the settings
accordingly. Once got the right settings,
Could you tell me how to set up a stable
connection between A1 and B1?

[{"api_name": "choose_modulation_format",
"parameters": {"route_type": "metro", "dis-
tance": 50, "bandwidth": 100}, "responses":
{"modulation_scheme": "API_call_0", "sys-
tem_settings": "API_call_1"}}, {"api_name":
"adjust_amplification", "parameters": {"format":
"API_call_0", "line_loss": 3.5}, "responses":
{"optimized_gain": "API_call_2", "amplifier":
"API_call_3", "signal_quality": "API_call_4"}},
{"api_name": "setup_receiver", "parameters":
{"trans_config": "API_call_3", "link_budget":
"API_call_2", "channel_type": "single-mode"},
"responses": {"receiver_status": "API_call_5",
"signal_quality": "API_call_6"}}, {"api_name":
"establish_connection", "parameters": {"ampli-
fier_type": "API_call_3", "end_points": "A1-B1"},
"responses": {"connection_status": "API_call_7",
"connection_details": "API_call_8"}}]

Qwen2-7B I’m working on a project called "Alien
Planet", which is a VFX scene I aim to cre-
ate. It should last about 120 seconds and
I want it to be in 4K resolution to ensure
high quality. I’d like to include SFX fea-
turing alien creatures and spacecraft in a
mysterious atmosphere. Once everything
is put together, I need the scene to be in
MP4 format. Could you guide me with the
whole process?

[{"api_name": "create_vfx_scene", "parame-
ters": {"scene_name": "Alien Planet", "duration":
120, "resolution": "4K"}, "responses": {}},
{"api_name": "add_special_effects", "parameters":
{"scene_path": "path_to_Alien_Planet_scene",
"effects_list": ["alien_creatures", "spacecraft"],
"mood": "mysterious"}, "responses": {}},
{"api_name": "render_scene", "parameters":
{"scene_objects": ["alien_creatures", "space-
craft"], "quality": "high", "resolution": [3840,
2160]}, "responses": {}}, {"api_name": "ex-
port_final_scene", "parameters": {"scene_path":
"path_to_rendered_Alien_Planet_scene", "for-
mat_type": "MOV"}, "responses": {}}]

Table 13: Error examples for tool redundancy.

9843

Model Query Response
LLaMA3.1-8B Please assist in designing an optimal pros-

thesis for a 35-year-old male, who has an
unremarkable medical past and has suf-
fered a fracture impacting his upper ex-
tremity. Afterward, evaluate the patient’s
steady condition and anticipate a complete
recovery within a timeframe of 6 months.
Finally, arrange an orthopedic surgical pro-
cedure for the patient.

[{"api_name": "design_prosthesis", "parameters":
{"patient_info": "{"age": 35, "gender": "male",
"medical_history": "unremarkable"}", "injury":
"fracture", "affected_area": "upper extremity"},
"responses": {"prosthesis_details": "API_call_0",
"estimated_cost": "API_call_1"}}, {"api_name":
"patient_assessment", "parameters": {"pa-
tient_condition": "stable", "recovery_expectations":
"complete recovery within 6 months"}, "responses":
{"assessment_report": "API_call_2"}}, {"api_name":
"schedule_orthopedic_surgery", "parameters":
{"prosthesis": "API_call_0", "patient_info": "{äge:̈
35, g̈ender:̈ m̈ale,̈ m̈edical_history:̈ ünremarkable}̈",
"surgery_type": "orthopedic", "surgery_date":
"2024-03-16"}, "responses": {"surgery_schedule":
"API_call_3"}}]

Qwen2-7B Assess the caliber of the Python code in
the file found at "path/to/file.py". Sub-
sequently, refine the code using the tool
PyLint. Finally, deploy the optimized code
as a web application to the production en-
vironment.

[{"api_name": "analyze_code_quality", "parame-
ters": {"file_path": "path/to/file.py", "language":
"Python"}, "responses": {"issues_found": ["issue1",
"issue2"], "complexity_score": 4.5, "maintainabil-
ity_score": 8.2}}, {"api_name": "optimize_code",
"parameters": {"issues": ["issue1", "issue2"],
"optimization_tool": "PyLint"}, "responses": {"op-
timized_code": "optimized_code_snippet"}},
{"api_name": "deploy_app", "parameters":
{"app_id": "optimized_code_snippet", "server_type":
"Production", "region": "Global"}, "responses":
{"deployment_status": true, "deployed_url":
"https://optimized-code.example.com"}}]

Table 14: Error examples for hallucinations.

9844

Model Query Response
LLaMA3.1-

405B
Please check the safety status of a car
with registration number ABC123, last in-
spected on May 12, 2022. Issue a class C
driving license to John Doe aged 30. Then
book a vehicle inspection appointment for
a truck with registration number DEF456
on June 20, 2022.

[{"api_name": "check_vehicle_safety", "parame-
ters": {"vehicle_type": "car", "registration_number":
"ABC123", "inspection_date": "May 12, 2022"},
"responses": {"safety_status": "API_call_0",
"next_inspection_date": "API_call_1"}},
{"api_name": "issue_driving_license", "pa-
rameters": {"applicant_name": "John Doe",
"age": 30, "license_type": "class C"}}, "re-
sponses": {"license_number": "API_call_2",
"expiration_date": "API_call_3"}}, {"api_name":
"book_vehicle_inspection", "parameters": {"reg-
istration_num": "DEF456", "vehicle": "truck",
"inspection_date": "June 20, 2022"}, "responses":
{"appointment_confirmation": "API_call_4"}}]

Qwen2-7B Load the VR environment named "Fan-
tasy Land" for user ID 12345. Obtain in-
formation about the user’s avatar named
"Wizard". Explore the VR world within
the "Fantasy Land" environment, starting
at coordinates (10, 5, 3) and interact with
other users present.

[{"api_name": "load_vr_environment", "param-
eters": {"environment_name": "Fantasy Land",
"user_id": 12345}, "responses": {"environ-
ment_type": "Fantasy", "user_preferences": "adven-
ture", "avatar_skin_color": "blue"}}, {"api_name":
"get_avatar_info", "parameters": {"user_ID":
12345, "avatar_name": "Wizard"}, "responses":
{"avatar_height": 1.8, "avatar_accessories": "pointed
hat, staff", "avatar_bio": "A powerful wizard who
specializes in elemental magic."}, {"api_name":
"explore_vr_world", "parameters": {"environ-
ment_type": "Fantasy", "user_coordinates": [10,
5, 3], "interact_with_others": true}, "responses":
{"discovered_elements": ["ancient ruins", "enchanted
forest", "dragon’s lair"], "interactive_users": 5}}]

Table 15: Error examples for generation format.

	Introduction
	Related Work
	Dataset Construction
	Tool & Instance Generation
	Query Generation
	Data Review & Refinement
	Dataset Summary

	Experiments
	Experimental Setup
	Evaluation Metrics
	Main Results

	Further Analysis
	Scaling Analysis
	Nesting Depth Analysis
	Nesting Structure Analysis
	Robustness Analysis
	Error Analysis
	Tool Error
	Parameter error

	Conclusion
	Dataset Construction details
	Tool/Instance Generation
	Query Normalization
	Query Refinement
	Other details

	Evaluation details
	Other Evaluation Metrics
	Evaluation Prompt
	Prompt of removing conjunctions
	Error Examples
	Tool Selection
	Tool Omission
	Tool Redundancy
	Hallucinations
	Generation Format

