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Abstract

With the rise of multi-modal large lan-
guage models, accurately extracting and under-
standing textual information from video con-
tent—referred to as video-based optical char-
acter recognition (Video OCR)—has become
a crucial capability. This paper introduces
a novel benchmark designed to evaluate the
video OCR performance of multi-modal mod-
els in videos. Comprising 1,028 videos and
2,961 question-answer pairs, this benchmark
proposes several key challenges through 6 dis-
tinct sub-tasks: (1) Recognition of text con-
tent itself and its basic visual attributes, (2)
Semantic and Spatial Comprehension of OCR
objects in videos (3) Dynamic Motion detection
and Temporal Localization. We developed this
benchmark using a semi-automated approach
that integrates the OCR ability of image LLMs
with manual refinement, balancing efficiency,
cost, and data quality. Our resource aims to
help advance research in video LLMs and un-
derscores the need for improving OCR abil-
ity for video LLMs. The benchmark will be
released on https://github.com/YuHuiGao/
FG-Bench.git.

1 Introduction

The past two years have witnessed a surge in the de-
velopment of visual large language models (visual
LLMs), with significant progress made particularly
in the domain of image-based LLMs. This area
has seen the emergence of numerous models and
datasets designed to enhance the understanding and
generation of text from images. Simultaneously,
the field of video large language models has been
advancing at a comparable pace behind, with pi-
oneering models such as Video-ChatGPT (Maaz
et al., 2023) and Video-LLaVA (Lin et al., 2023)
leading the way. These models have laid the foun-
dation for integrating video content with language
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models, facilitating a deeper comprehension of vi-
sual and temporal information.

Alongside these developments in LLMs model
structure, several datasets in the field of video
understanding like MVbench (Li et al., 2024a)
and Video-Instruct (Maaz et al., 2023), have been
specifically crafted to meet the demands of video
LLMs. With previous video QA datasets such
as MSRVTT-QA (Xu et al., 2017) and TGIF-QA
(Jang et al., 2019), they have fostered further inno-
vation in this burgeoning field.

While these datasets have significantly driven
innovation in video-based reasoning and question
answering, an equally critical area—optical char-
acter recognition (OCR) within videos, or known
as video OCR—is respectively less studied. In
the field of Image OCR, there have been several
benchmarks and datasets including OCR Bench
(Liu et al., 2023b), MTVQA (Tang et al., 2024)
and EST-VQA Dataset (Wang et al., 2020). Com-
mercial Models like GPT-4V (Achiam et al., 2023)
and Gemini 1.5 (Reid et al., 2024) have already
demonstrated exceptional capabilities, outperform-
ing on these established benchmarks. Open-source
large models are also striving to improve image
OCR capabilities, with some models such as Text-
Monkey (Liu et al., 2024) and mPlug-DocOwl1.5
(Ye et al., 2023) specifically developed for reading
text in various images.

Why we need video-OCR abilities in video
LLM? They enable applications far beyond tra-
ditional Image LLMs by leveraging temporal in-
formation and dynamic scene understanding. They
allow precise text tracking across frames, such as
identifying moving text on vehicles or dynamic
signage, essential for smart transportation. In ed-
ucation, they extract and summarize evolving tex-
tual content like lecture slides, enriching learning
resources. For security, they monitor real-time
updates, such as warning messages or fluctuating
counters, enhancing surveillance. In entertainment,
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they enable dynamic subtitle generation, context-
aware ad analysis, and multi-language text transla-
tion. These abilities make Video LLMs indispens-
able for complex video-centric tasks across diverse
domains.

However, up to now there is still few video-
OCR benchmark or dataset particularly designed
for video-LLMs. In this scenarios, this paper con-
struct the first ever known benchmark for video
OCR to our knowledge, with 6 sub-tasks to eval-
uate models’ ability on (a) Text Recognition (TR)
(b) Semantic Understanding (SU) (c) Spatial Rela-
tion (SR) (d) Movement Detection (MD) (e) Text
Attribute Recognition (TAR) (f) Temporal Local-
ization (TL). The paper also provides an analysis
of current visual LLMs, particularly video LLMs.

Overall, our contributions are below 1). We de-
velop a benchmark with 6 sub-tasks across differ-
ent aspects of video-OCR capabilities for testing
multi-modal LLMs’ OCR performance in video.
This is the first big enough benchmark for eval-
uating visual LLMs’ video OCR performance in
various dimensions; 2). To construct this bench-
mark, we designed a semi-automatic method that
combines utilizing the excellent OCR ability of im-
age LLM and human’s manual check; We designed
that specifically test video LLMs ; 3). We evalu-
ate several multi-modal LLMs on this benchmark,
including both image LLMs and video LLMs. In
addition, some image LLMs which only support
single-image input are also being tested on this
benchmark via some tricky processes and demon-
strate acceptable performance.

2 Related Work

2.1 Image LLMs

Recent developments in image large language mod-
els (LLMs) have significantly advanced multimodal
AI. Flamingo (Alayrac et al., 2022) by DeepMind
utilizes perceptual resampling and gated cross-
attention for improved visual-language integration.
The LLaVA series (Liu et al., 2023a) enhances dia-
logue generation through visual instruction tuning.
GPT-4V (Achiam et al., 2023) extends the GPT
series with strong multimodal and example-based
learning, while Gemini 1.5 (Reid et al., 2024) from
Google excels in long-context processing and multi-
lingual translation. These models advance practical
applications in education, healthcare, and more.

2.2 Video LLMs

Video LLMs have made significant advancements,
with several notable models enhancing multimodal
capabilities. For instance, Video-LLaVA (Lin et al.,
2023) effectively aligns visual and textual data,
addressing challenges in integration. Similarly,
Video-ChatGPT (Maaz et al., 2023) showcases ad-
vanced comprehension by leveraging CLIP ViT-
L/14 (Radford et al., 2021) and Vicuna-v1.1 (Chi-
ang et al., 2023). Chat-UniVi (Jin et al., 2024)
adopts a unified approach to processing both video
and text, while Video-LLaMA2 (Cheng et al.,
2024) excels in narrative generation and content
analysis. Notably, many of these video LLMs are
built upon the foundations of image LLMs, reflect-
ing the influence of existing visual models in their
development.

2.3 Image OCR Benchmarks & Datasets

Key benchmarks and datasets for Optical Character
Recognition (OCR) include DT-VQA (Zhang et al.,
2024), focusing on Visual Question Answering,
and MTVQA (Tang et al., 2024), which enriches
multimedia VQA tasks. The ESTVQA (Wang et al.,
2020) dataset integrates structured text and visuals,
and OCRbench (Liu et al., 2023b) explores OCR in
large multimodal models. These resources advance
OCR research by integrating text and visual data.

2.4 Video OCR Datasets Pre-LLM Era

Video OCR has been enhanced by specialized
datasets such as News-VideoQA (Jahagirdar et al.,
2023), which provides QA pairs from news videos,
and BOVText (Wu et al., 2021), offering bilin-
gual data. RoadText 1K (Reddy et al., 2020) fo-
cuses on text detection in driving videos, while
M4-ViteVQA (Zhao et al., 2022) addresses visual
QA with extensive clips. These datasets push the
boundaries of video text recognition and analysis.

3 Benchmark Tasks for Video OCR

First, we need to distinguish between video OCR
and image OCR. It is essential to recognize both
their similarities and differences.

Differences Between Image OCR and Video
OCR in LLMs

Dynamic Information and Motion-Related
Tasks Image OCR datasets typically consist of
static images without dynamic information. Con-
sequently, Image LLMs are neither required to rec-
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ognizing nor capable of identify the movement of
OCR objects. They also cannot leverage prompts
related to motion information for OCR tasks. For
example, an Image LLM cannot answer a question
like "What is the text written on the billboard that
gradually becomes visible as the camera pans?"
because it lacks the temporal and contextual under-
standing needed to process the sequence of frames
where the text is incrementally revealed. Address-
ing the movement of OCR objects and handling
motion-related tasks represent entirely new chal-
lenges for Video OCR within LLMs.
Temporal Information and Localization Tasks
Images in Image OCR datasets generally lack time
dimension, meaning Image LLMs cannot extract or
reason about the temporal characteristics of OCR
objects. Tasks such as locating the timestamps
when OCR objects appear or disappear, or measur-
ing their duration on screen, are outside the capa-
bilities of Image LLMs. Handling temporal infor-
mation and tackling time-sensitive tasks, such as
temporal localization of OCR objects, are ground-
breaking challenges for Video OCR in LLMs.
Integrating Multi-Frame Information Video
LLMs are designed to extract and integrate visual
features across multiple frames, allowing for more
robust recognition of OCR objects despite temporal
disruptions. Image OCR datasets typically involve
single-frame inputs, so Image LLMs do not and
cannot utilize information from multiple frames
to improve OCR object recognition. For example,
When text in a video is intermittently obscured
and reappears across different frames, the ability to
correlate the text across frames and recognize it as
the same object is crucial. However, this capability
has not been explored in Image LLMs and remains
an open research challenge in the context of Video
LLMs.

These distinctions highlight the unique chal-
lenges and opportunities in the development of
Video OCR capabilities within Video LLMs, ex-
tending far beyond the scope of traditional Image
LLMs.

3.1 Tasks Introduction
To evaluate the ability of visual LLMs in the field of
video OCR, we develop this benchmark which con-
sist 1028 videos and 2961 question-answer pairs,
divided into 6 sub-tasks. Here is the figure (fig
1) of question-answer pairs example for the 6 sub-
tasks:
Text Recognition This task involves identify-

ing text from video frames, accurately recognizing
characters, words, phrases, and sentences that ap-
pear within the video. It is derived from Image
OCR tasks but differs significantly due to the dy-
namic nature and temporal information of video.
As mentioned in last subsection, video OCR tasks
must consider continuous frames over time. This
introduces the challenge of leveraging temporal in-
formation and dynamic changes, as well as the need
to integrate information across multiple frames. For
instance, in a video showing a moving vehicle with
a license plate, a text recognition task might in-
volve identifying the license plate number as it
moves across the screen, and text may be partially
obscured in certain frames. Another example is
a prompt like "What is the text displayed on the
digital counter in a bank that changes over time?".
Here, the model must track the changing text across
multiple frames, recognizing the sequence of num-
bers or words and understanding the temporal pro-
gression to maintain an accurate representation of
the text.
Semantic Understanding This task involves
comprehending the meaning and context of de-
tected text in videos. Visual LLMs rely on semantic
information for text recognition in OCR tasks (Liu
et al., 2023b), and for effective OCR performance
in video, a model must not only recognize the text
but also understand its meaning within the context.
For example, in a video showing a supermarket
scene with merely a price displayed on a billboard,
a prompt like "What is the price of the apple?"
requires the model to not only read the text on the
billboard but also understand its relevance to the
video’s context, such as identifying the fruit re-
lated to the price. This task goes beyond simple
text recognition and requires the model to integrate
both visual and textual information to accurately
interpret the meaning.
Spatial Relation This task examines the spa-
tial relationships between text elements and other
objects in the video frame, focusing on their rel-
ative positions, alignments, and interactions. Vi-
sual LLMs need to recognize these relationships.
For example, the most common question would be
"Where is the text {Given_Text} located?", models
sometimes should response with a certain object
with the text. While multiple frames provide richer
information for better judgment, they also increase
the complexity due to changing visuals.
Text Attribute Recognition This task involves
identifying Text visual Attributes including script,
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Figure 1: Sample question-answer pairs in 6 sub-tasks. Red words are target text.

language and color of the text appearing in the
video, recognizing different writing systems, and
possibly handling multilingual content. Among
these tasks, the recognition of colors and fonts
takes up the majority, while the recognition of lan-
guage types is less emphasized, as identifying lan-
guage types is strongly tied to the outcomes of Text
Recognition and Semantic Understanding.

Movement Detection This task focuses on de-
tecting and tracking text movement in videos,
known as Text Tracking, a specialized aspect of
video OCR. Unlike traditional methods that rely on
bounding boxes and MOTA metrics, our approach
describes text movement using natural language, as
current visual LLMs typically do not output bound-
ing boxes or coordinates directly. For example, in a
video of a car with a visible direction sign, a prompt
like "Which direction is the car with license plate

’T689273’ heading?" would require the model to
locate both the text "T689273" and "West, Kennedy
Airport," extract visual features of the car and its
movement, and then respond with "The car is head-
ing west towards Kennedy Airport". We convert
these descriptions into a multiple-choice format for
easier evaluation.

Temporal Localization This task focuses on
identifying and localizing when specific text ap-
pears, disappears, and how long it remains visi-
ble in a video. We anticipate that current video
LLMs may struggle with this task due to their ar-
chitectures, which prioritize capturing temporal
sequences of objects, actions, or events over di-
rect timeline tracking. Additionally, the limited
number of frames sampled by many models could
further hinder accurate timestamp localization. We
format this sub-task as multiple-choice, with most

options as 2-second intervals or right-unbounded
time ranges.

4 Benchmark Construction

As inspired, we first decided to produce question-
answer pairs based on the existed traditional video-
OCR datasets. However, the form of those datasets
are conventional, not in natural language. Every
OCR object is stored in part of json files, containing
text content, corresponding text ID, coordinates of
bounding box in frames. See figure 8.

4.1 Semi-Automatic Process

To manufacturing data efficiently and in high qual-
ity, we developed a semi-automatic procedure with
3 stages that leverage powerful OCR capability of
certain image LLM. We will use a pseudo-code and
a diagram in appendix to illustrate these 3 stages
clearly. See the pseudo-code 1 and figure 9:
Stage 1 First, we select only 4 frames evenly as
backup for each OCR object in video. This is be-
cause selecting 4 frames strikes a balance between
computational efficiency and effectiveness. Choos-
ing more frames would significantly increase the
inference time of image LLMs. While for many
OCR objects, their presence in the video is brief
(several seconds usually), and 4 frames are suffi-
cient to capture necessary information about these
objects. Then, InternVL 1.5 (Chen et al., 2024b)
is deployed to summarize all visual information
and text objects in 4 frames to get 4 OCR Con-
textual Captions. A OCR Contextual Caption is
a description supposed to involve all OCR objects
and as much as possible other visual elements in
the frame.

This process mainly aims to convert as much
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visual information to natural language information
as possible due to the situation that multi-modal
LLMs seems still dealing with text better than other
modality. Besides, it should be noticed that for a
single image, all relevant information about the
OCR objects present, ranging from texts’ basic vi-
sual details to their locations within the image, are
input into the LLM. This can induce visual LLM to
successfully uncover and express the relationships
between interrelated OCR objects in its responses.

Algorithm 1 Video-OCR Prompt Process (See de-
tailed diagram 9 in Appendix)

1: Input: Video frames {Fi}n with traditional
Video-OCR dataset D

2: USED MODEL: InternVL-1.5, GPT-3.5
3: for each OCR object d in D do
4: Stage 1:Generate OCR Contextual Cap-

tion for each frame
5: for each frame Fi do
6: Extract all other OCR objects and their

positions. Construct Prompt 1
7: OCR Contextual Caption = InternVL-

1.5(Prompt 1 + frame Fi)
8: end for
9: Stage 2: Generate 4 OCR Detailed Cap-

tions for OCR object d
10: for each frame Fi do
11: OCR Detailed Caption for d = InternVL-

1.5(OCR Contextual Caption + Prompt
2)

12: end for
13: Stage 3: Aggregate OCR Detailed Cap-

tions
14: 1 combined OCR Detailed Caption = GPT-

3.5(Prompt 3 + 4 OCR Detailed captions)

15: Stage 4: Question-Answer Pairs
16: 6 qa pairs = GPT-3.5(Prompt 4 + combined

caption + few shot cases)
17: end for

Stage 2 Each Generated OCR Contextual Cap-
tion in last stage is put into InternVL 1.5 with cor-
responding frame and a delicately designed prompt
to get 1 OCR Detailed Captions for each OCR
object. A OCR Detailed Caption is specific de-
scription of certain OCR object containing its text
content, semantic meaning, movement information,
timestamps about when it appear and vanish, vi-
sual attribute like color and font. Notably again
that this process is conducted once for each frame.

So there will be 4 OCR Detailed Captions that are
generated.
Stage 3 After getting 4 OCR Detailed Captions
for the 4 sampled frames, we follow the principle of
the majority and use GPT-3.5-Turbo to synthesize
different captions into 1 single caption, which con-
tains thorough information of the OCR object, rang-
ing from its semantic content to spatial-temporal
information. Then the synthesized caption will
be given GPT-3.5-Turbo to generate 6 question-
answer pairs in diverse sub-tasks.

4.2 Human Annotation & Refinement

Expert human annotators check the correctness of
manufactured answer and question’s logic of the
question-answer pairs. Then revise those questions
and answers strictly following the rules below:
Task’s Type-Question Alignment For each
question-answer pair, Human annotators first need
to check whether the question is matched with type
of sub-task. If not, correct the question-answer pair
to match the sub-task type.
Answerability For questions in dataset, it is nec-
essary to ensure every question is answerable, i.e.
there must be 1 and only 1 correct answer. To
achieve this goal, human need to clarify the de-
scriptions and references of ocr objects.
Factual Correctness Human annotators need to
revise the factual error which exist in questions and
answers.
Visual Dependence Human annotators have to
make sure the questions can only be answered after
watching corresponding video.
Simplicity Human annotators must simplify
ground truth answers across sub-tasks like Text
Recognition, Attribute Recognition, Spatial Rela-
tion, and Temporal Localization. For Text Recogni-
tion and Attribute Recognition, answers should be
in their simplest form, without prefixes or introduc-
tions. In Movement Detection and Spatial Relation,
objects should be described by their most visually
prominent features. For Temporal Localization, an-
swers should be reduced to numbers and time units
only.
Quality Review Another data annotator who
did not participate in the data cleaning process will
review the cleaned data one by one according to the
above standards to verify the quality of the cleaned
data and ensure that the data has been properly
cleaned. Questions that do not meet those criterions
are returned to the original annotators for revision.
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4.3 Convert to Multiple Choices

In the Temporal Localization and Movement Detec-
tion sub-tasks, to lower task difficulty, inspired by
Video-MME (Fu et al., 2024), where ground truth
answers are provided as multiple-choice options
(A, B, C, and D), we adopted a similar approach.
This format not only improves model accuracy but
also simplifies evaluation. For Temporal Localiza-
tion, each option represents a time interval rather
than a specific timestamp, with intervals set at 2
units apart. In Movement Detection, by giving the
question and correct answer, GPT-3.5 generates
three distractor options.

4.4 Analysis

After these above processes data is succeed to be
manufactured. To get more details of data, please
see many statistics results in appendix A.

This semi-automated pipeline is inspired by
the Video-ChatGPT (Maaz et al., 2023) approach,
which utilizes Katna for keyframe extraction,
Tag2Text for tagging, and a combination of BLIP-
2, GRiT, and GPT-3.5 for captioning. In contrast,
our method simplifies this by using only one open-
sourced visual LLM with sufficient OCR capabil-
ities and GPT-3.5, achieving a favorable balance
between cost and efficiency. This efficiency is due
to: (a) InternVL 1.5 being open-source, reducing
API costs compared to GPT-4V, and requiring only
a single A6000 GPU for deployment; and (b) In-
ternVL 1.5’s strong performance in OCR Bench
(Liu et al., 2023b) and captioning tasks, despite
having fewer parameters than GPT-4V or Gemini
1.5.

5 Experiment

In this section, we delineate the process of evaluat-
ing several visual LLMs.

5.1 Evaluation Procedure

5.1.1 What models are evaluated?
We evaluate the performance of various multi-
modal large language models on the VideoOCR
Benchmark, including video LLMs such as Mini-
GPT-4-video (Ataallah et al., 2024), VILA-1.5-
3B-video (Lin et al., 2024), Video-LLama2 (7B
and 72B) (Cheng et al., 2024), Chat-UniVi-
V1.5 (Jin et al., 2024), Video-CCAM (4B and
14B) (Team, 2024), MiniCPM-V 2.6 (Yao et al.,
2024), ShareGPT4Video (Chen et al., 2024a), and
Qwen2-VL-7B (team, 2024), most of which have

LLM backbones with similar parameter sizes (from
7B to 13B), although there are also some "micro"
models, such as VILA-1.5-3B-video, mini-Monkey,
and Video-CCAM-4B, whose LLM backbones’ pa-
rameter sizes are only 3B and 4B; additionally, we
include image LLMs supporting multi-image in-
puts, such as VILA-1.5-13B (Lin et al., 2024), and
those supporting only single-image inputs, like
Monkey (Li et al., 2024b), mini-Monkey (Huang
et al., 2024), and GLM-4V (GLM et al., 2024).

Figure 2: Overall performance of the six selected mod-
els on different sub-tasks in this benchmark.

5.1.2 Metrics for diverse sub-tasks

Sub-task’s Ground Truths’ Metric
Type Diversity

Semantic
High GPT-4o-mini

Understanding

Spatial
Moderate GPT-4o-mini

Relation

Text Attribute
Low Accuracy (Simple Check)

Recognition

Text
Low Accuracy (Simple Check)

Recognition

Movement
High Accuracy (Multiple Choices)

Detection

Temporal
Low Accuracy (Multiple Choices)

Localization

Table 1: Different Evaluation Metrics for 6 sub-tasks

Different sub-tasks need different metrics for
model evaluation. For Text Recognition and Text
Attribute Recognition, we selected accuracy, a sim-
ple way of checking the whether the ground truth
is in the model’s answer, as the evaluation metric.
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Adopted by OCRbench (Liu et al., 2023b), This
metric is particularly intuitive and concise.

For Semantic Understanding and Spatial Rela-
tion, different ways of expressions, variations in
wording, and varying descriptions of objects or
spatial-temporal locations can all lead to vastly dif-
ferent ground truth answers. So GPT-4o-mini is
selected to calculate accuracy when dealing with
synonymous expression situation.

In the Temporal Localization and Movement De-
tection sub-tasks, to lower task difficulty, same as
in Video-MME (Fu et al., 2024), accuracy is sim-
ply calculated by the proportion of questions whose
correct options are selected by models.

5.1.3 Ensure models output in proper format
To enable the model to better answer questions
on some sub-tasks and ensure that the answers
conform to the expected format or direction, we
first added some appropriate prompts to the model
along with the input questions. For example, in
Text Recognition, Text Attribute Recognition, we
require those models to output their answer in con-
cise manner. In Movement Detection and Temporal
Localization task, we design a simple prompt to
require models answer questions only in the format
of a single letter as the predicted option.

To evaluate LLMs which only support single im-
age input, we simply concatenate sampled frames
into a wider image horizontally, allowing it to rep-
resent the video as the model’s input. It turns out
that the three single-image-input models can tackle
this kind of wide image and output normally at
most time.

5.1.4 Overall Evaluation Results
In this evaluation process, we follow their offi-
cial configurations and try to use more frames for
evaluation. The numbers of the evenly sampled
frames are 1 frame per second (up to 100 frames)
for Chat-Univi-V1.5, 1 frame per second (up to
64) for MiniCPMV-v2.6, 1 frame per second (up
to 768) for Qwen2-VL, 32 for ShareGPT4Video,
32 for Video-LLaMA2 (both 7B and 72B), 19 for
VILA-1.5 (both 3B and 13B), 0.5 frame per second
for Mini-GPT4video, 32 for Video-CCAM (both
4B and 14B), 32 for GLM4-V, 32 for Monkey and
mini-Monkey.

On this benchmark, Qwen2-VL-7B performs
best overall with the highest average score (0.4653),
particularly excelling in text recognition, semantic
understanding, text attribute recognition, and move-

ment detection. MiniCPM-V 2.6 follows closely
with an average score of 0.4508, with a highly
small gap between the two, especially strong in se-
mantic understanding and text recognition. While
Qwen2-VL-7B has a slight edge in some tasks,
both models show similar overall capabilities in
handling video OCR tasks. In contrast, models
like MiniGPT4-video, GLM-4V, mini-Monkey and
Monkey perform significantly worse, with 3 of the
4 are single-image input LLMs, indicating clear
limitations of this kind of visual LLMs in handling
complex video OCR tasks.

5.1.5 Evaluation on different time interval
thresholds

In the last table 2, we observed that all models
do not perform well in Temporal Localization sub-
task, with few model get accuracy significantly big-
ger than 0.25 (the accuracy of random guess). And
it is weird that ShareGPT4Video perform best in
this sub-task while do not have comparable ability
in other sub-tasks. To further explore the capability
of various nowadays’ visual LLMs in timestamp
localization, previous multi-choice format of data
is abandoned which means models need to answer
in the number of second to directly predict the
timestamp. We select set 12 thresholds for judging
whether models’ prediction is within the pre-set
margin of error (if so, a prediction will be seen
as correct). The total number of question-answer
pairs in this sub-task is 586.

Figure 3: Top figure: change in accuracy with respect
to the threshold (in seconds). Bottom figure: change in
accuracy with respect to the threshold (as a percentage
of the total video duration). 568 questions in Total.

We select 4 models (Qwen2-VL-7B, MiniCPM-
V-2.6, Video-CCAM-14B, which have high aver-
age accuracy, and ShareGPT4Video that perform
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Video OCR Tasks Leaderboard

Models LLM Backbone TR SU SR TAR MD TL Average

Chat-UniVi-V1.5 Vicuna-v1.5-7B 10.27 23.77 17.20 28.68 11.30 13.82 17.51
MiniCPM-V 2.6 Qwen2-7B 40.07 63.19 29.57 55.26 51.68 30.72 45.08
VILA-1.5-3B-video LLaVA-VL 21.47 34.92 18.01 35.26 35.82 24.91 28.40
Qwen2-VL-7B Qwen2-7B 39.10 61.96 26.08 58.16 63.70 30.20 46.53
Video-LLaMA2-7B LLaMA2-7B 15.50 31.09 25.00 36.58 51.20 27.13 31.08
Video-LLaMA2-72B LLaMA2-72B 26.48 43.55 28.76 45.52 70.91 36.00 41.88
Mini-GPT-4-video LLaMA2-7B 5.59 6.44 6.45 20.26 5.29 7.68 8.62
Video-CCAM-4B Phi-3-mini-4B 17.66 23.58 25.00 38.95 20.19 19.80 24.19
Video-CCAM-14B Phi-3-medium-14B 21.08 30.93 31.18 51.05 66.35 30.38 38.50
ShareGPT4Video LLaVA-Next-8B 5.53 14.42 21.77 50.79 38.22 34.81 27.59

Monkey Qwen-7B 3.74 6.29 8.06 25.26 32.69 29.52 17.61
Mini-Monkey InternLM2-1.8B 13.42 23.93 16.40 46.05 42.07 28.50 28.41
GLM-4V GLM4-9B 4.46 8.90 15.32 29.21 50.00 25.43 22.22

VILA-1.5-13B Vicuna-v1-13B 25.76 41.81 2366 45.26 40.38 28.50 34.23

Table 2: Evaluation Results of Visual LLMs on Video-OCR Bench: The top-performing models are indicated in
bold and the second-best models are marked with underlining. Values of accuracy are scaled up by a factor of 100
for better visualization.

the best on multiple-choice Temporal Localization
task) to evaluate. And we plot 2 line graph to
show how the models’ ability to locate timestamps
changes with the threshold.

From the figure it seems that although
ShareGPT4Video performs the best on Temporal
Localization sub-task when ground truths are time
intervals being put in multiple options, it doesn’t
mean that this model really have the ability to per-
ceive time due to its worst direct localization per-
formance among the 4 chosen models. Besides,
when the threshold is set as 2 seconds, same as
length of options’ time interval, the discrepancy of
accuracy between these 2 setting is quite large.

5.1.6 Re-Evaluation on single-image input
LLMs

Our evaluation of single-image-input LLMs reveals
relative poor performance, indicating that simple
concatenation is not suitable for leveraging the
models’ OCR capabilities. To address this, we pro-
pose an alternative approach: instead of merging
frames into a single visual input, we evaluate each
frame independently frame by frame. We manu-
ally selected 506 question-answer pairs from the
dataset, focusing on around 300 questions related
to Text Recognition and several dozen each for
Text Attribute Recognition, Semantic Understand-
ing, and Spatial Relations. This selection was based
on whether questions could be assessed frame-by-

frame. Questions related to Movement Detection
and Temporal Localization, which involve informa-
tion spread across multiple frames, do not fit this
approach. Similarly, questions involving temporal
features or events were excluded.

To infer videos using single-image input LLMs,
we propose a streamlined workflow. We first sam-
ple 10 evenly spaced frames from each video. Each
frame, along with its corresponding question and
prompt, is sequentially input into the model. If
the model’s response contains the ground truth an-
swer, we mark the question as correctly answered
and cease further frame testing. If the ground truth
answer is not present, we continue testing the re-
maining frames and use GPT-4o-mini for final eval-
uation. Accuracy is computed based on the number
of correctly answered questions.

We have collected the inference time and ac-
curacy of the 3 models under this two different
methods. The table show that processing frames
individually generally leads to much higher av-
erage accuracy and significantly longer inference
time compared to processing a single concatenated
frame. It is noticeable that improvement in accu-
racy is quite large. This is mainly because some
frames provide clear and easily recognizable view
of OCR objects while others not. These kinds of
view sometimes do not get enough attention when
blending with other frames’ visual features.

We conducted another experiment with the two
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Models Setting Inference Time Accuracy

Monkey
① 4781 s 0.502
② 1477 s 0.065

mini-Monkey
① 4176 s 0.551
② 1550 0.219

GLM-4V
① 8278 s 0.592
② 1787 s 0.115

Qwen2VL
③ 2296 s 0.603
④ 1852 s 0.686
① 4127 s 0.704

MiniCPMV-v2.6
③ 763 s 0.589
④ 1283 s 0.599
① 4830 s 0.708

Table 3: Evaluation Result Comparison, ① represents
evaluation frame by frame. ② represents evaluation
use 1 concatenated frames. ③ represents evaluation
with direct video input. ④ represents evaluation with
sampled frames as multi-image input

strongest models, MiniCPMV-v2.6 and Qwen2VL-
7B, which are the only models evaluated that sup-
port both direct video input and multi-image input.
We assessed these models under three conditions:
direct video input, sampled frames as multi-image
input, and single frames processed sequentially.

Our results, as shown in Table 3, reveal that per-
formance varies significantly with different evalua-
tion settings. Both Qwen2VL and MiniCPMV-v2.6
demonstrate a marked improvement in accuracy
when evaluated frame-by-frame compared to direct
video input and multi-image input. This indicates
that processing videos frame-by-frame enhances
the models’ ability to capture detailed visual fea-
tures, leading to more accurate predictions. The
improvement may be attributed to the challenge
of isolating targeted visual features when multiple
images are combined.

6 Conclusion

In this paper, we introduce Video-OCR bench, the
first comprehensive benchmark to evaluate visual
LLMs in various video-OCR tasks. Our benchmark
presents new tasks, ranging from text-related move-
ment tracking to time stamp localization. We also
propose a GPT-4o-mini model-based evaluation
method, inspired by Video-ChatGPT (Maaz et al.,
2023), for assessing some complicated tasks. Our
evaluation result shows that (1) many video LLMs
struggle with video OCR tasks. Image LLMs, al-
though show good capacity in several sub-tasks
like Text Recognition and Semantic Understand-
ing, their ability to handle video content is rela-
tively weak. (2) All models perform poorly in

Temporal Localization, with accuracy not better
than random guess. These findings underscore the
need for further advancements in handling features
about temporal information and motion tracking in
dataset. We hope this Video-OCR bench will in-
spire future research and development in improving
the capabilities of visual LLMs.

7 Future Work

Most evaluated visual LLMs exhibit inadequate
performance in timestamp localization, suggesting
that while they can capture temporal information
about objects and events, their understanding of
time itself is limited. Additionally, many models
struggle with motion tracking. To address these
issues, it is crucial to expand the benchmark to in-
clude the full dataset, including training data, and
explore fine-tuning of video LLMs. This process
should also involve evaluating whether current vi-
sual LLMs architectures can be effectively trained
for these tasks or if a new model architecture is
needed to better capture relevant features.

Limitations

In this study, we employed a method for process-
ing video inputs using single-image-input LLMs,
where instead of summarizing predictions across
multiple frames—commonly achieved by leverag-
ing tools like GPT-4-omini—we utilized the ground
truth to bypass the summarization step. While this
approach simplifies the workflow, it introduces two
significant limitations. First, the inference time
is likely underestimated since not only the time
required for summarization is omitted from the
pipeline but also not all frames are inferred by
models. Second, the model’s accuracy may be
a little higher. Furthermore, due to both financial
and computational resource constraints, we only
perform 1 model with larger parameter scales, i.e.
Video-LLaMA2-72B. This may limit the generaliz-
ability of our findings across larger and more com-
plex architectures. Future work will address these
limitations by incorporating more comprehensive
evaluation strategies and extending experiments to
include larger models.
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A Data Statistics

Figure 4: Distribution for question-answer pairs in var-
ious sub-tasks. Color labels represent words count in
questions.

Here, we present the detailed statistics of our
dataset to provide a more comprehensive under-
standing, including the meta information, QA pairs,
video clips, qualitative analysis, and comparison to
previous works.
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A.1 Video Distribution
Here is a pie chart 4 the distribution of duration and
scene of videos in dataset. To ensure the diversity
of video scenes, we obtained metadata from 4 dif-
ferent source datasets. As a result, our video scene
range covers videos in more than 20 different sce-
narios, including: Livestreaming, Sports, Celebrity
& Fashion, Game, Cartoon & Movie & TV show,
Interview, Introduction, Photograph, Speech, News,
Driving, Vlog, and so on.

Across this videos from diverse types of sce-
nario, videos shot during driving occupied the most.
This kind of video provide much good enough data
due to texts’ enough motion. This is important
because it provides a dynamic perspective for sta-
tionary text and related objects. The disappearance
of text will be gradual rather than sudden. When
the scene text is rich and contains sufficient seman-
tic information, relative movement can also cause
issues such as blurriness, improper exposure, and
occlusion. These issues, along with blurry and in-
complete text, will pose challenges to the model’s
video OCR capabilities in terms of robustness.

Figure 5: Distribution for question-answer pairs in var-
ious sub-tasks. Color labels represent words count in
questions.

As for the duration of selected video, our se-
lected videos mainly last from a little over ten sec-
onds to several tens of seconds.

A.2 QA pairs distribution
Above is distribution of question-answer pairs re-
lated to videos in benchmark. Due to the fact that
text recognition task is fundamental and semantic
understanding task is more important than others,
we collect much more data than other sub-tasks. In
this figure 7 we can observe that most questions

Figure 6: Questions Word cloud (top) and Answers
Word cloud (bottom).

Figure 7: Distribution for question-answer pairs in var-
ious sub-tasks. Color labels represent words count in
questions.

in this benchmark have less than 15 words, which
is intentionally designed for contain enough infor-
mation for precise locating OCR objects with least
words.
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B Format of traditional video OCR data
and Diagram for Semi-Automatic
Process

B.1 traditional video OCR data format
This JSON data structure is commonly used in tra-
ditional video OCR systems to store information
extracted from video frames. It captures the video
name as a unique identifier, the file path of the
image frame, and an array of OCR labels. Each
OCR label provides details about the recognized
text blocks, including their ID, content, attributes
(such as language), and bounding box coordinates
that define their location within the image. See
figure 8.

Figure 8: traditional video OCR data format

B.2 Diagram of Semi-Automatic
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Figure 9: Diagram for semi-automatic process of data manufacture
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Figure 10: Example of 2 kinds of Prompts to generate OCR Contextual Caption and OCR Detailed Caption
respectively.



9875

Figure 11: The First is an example of prompts to aggregate OCR Detailed Captions. The Second is an example of
prompts to generate question-answer pairs for 6 sub-tasks.
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Figure 12: Few shot cases for generating question-answer pairs via GPT-3.5
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