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Abstract

Linear attention enhances the inference effi-
ciency of the Transformer and has attracted re-
search interests as an efficient backbone of lan-
guage models. Existing linear attention-based
models usually exploit decay factor-based posi-
tional encoding (PE), where attention scores de-
cay exponentially with increasing relative dis-
tance. However, most work manually designs a
non-trainable decay factor of exponential calcu-
lation, which limits further optimization. Our
analysis reveals directly training decay factor is
unstable because of large gradients. To address
this, we propose a novel PE for linear atten-
tion named Disentangle to Decay (D2D). D2D
disentangles the decay factor into two parts to
achieve further optimization and stable training.
Moreover, D2D can be transformed into a recur-
rent form for efficient inference. Experiments
demonstrate that D2D achieves stable training
of decay factor, and enhances the performance
of linear attention in both normal context length
and length extrapolation scenarios 1.

1 Introduction

Linear attention (Katharopoulos et al., 2020) sub-
stitutes the softmax calculation in vanilla Trans-
formers (Vaswani et al., 2017) with a dot-product
of kernel feature maps. It achieves linear complex-
ity during inference, which is particularly advanta-
geous for processing long sequences (Katharopou-
los et al., 2020). However, some challenges such
as cumulative regularity errors over long sequences
necessitate specialized mechanisms for effective
information filtering (Qin et al., 2022a). PE con-
tributes to effective information filtering since it
integrates positional information for language mod-
els. For existing linear attention language mod-

*Equally Contribution.
†Corresponding author.
1Our code implementation is available at

https://github.com/TongjiNLP/Disentangle-to-Decay-
Linear-Attention-with-Trainable-Decay-Factor

els (Sun et al., 2023; Qin et al., 2024), they intro-
duce a PE structure including decay terms γ(i−j),
where γ is the decay factor and i − j represents
the relative position between the query and the key
tokens. The decay factor provides an information-
forgetting mechanism, which alleviates the afore-
mentioned issue and enhances the capability of
processing longer sequences.

However, decay factors used in these models are
manually designed and non-trainable, limiting fur-
ther optimization (Moreno-Cartagena et al., 2023).
We reveal that directly training decay factor might
generate enormous gradients, due to exponential
calculation with a trainable base. Consequently,
large gradients integrate numeric instability, lead-
ing training to collapse. Models fail to yield ex-
pected outcome from the trainable decay factor.

To enhance the stability of training and the per-
formance of models, our work proposes an in-
novative trainable decay factor based PE named
Disentangle to Decay (D2D). D2D disentangles the
decay factor into two parts: Global decay factor is
fixed with an effective initialization, providing the
numeric foundation; local tuning factor is train-
able for further optimization. With the initial value
of the global decay factor, the local tuning factor
exhibits mild numeric fluctuation and bounded gra-
dients for stable training. We use a mixed form
of absolute positional encoding (APE) and relative
positional encoding (RPE) in our D2D implemen-
tation. Consequently, D2D avoids unnecessary cal-
culations and addresses the precision problems of
floating-point. We offer the whole training process
and the recurrent inference for D2D.

In experiments, we construct language models
using D2D and other baselines, with a pre-training
scale similar to GPT-2 (Radford et al., 2019). Then
we conduct various experiments on language mod-
eling, length extrapolation, and downstream tasks.
D2D exhibits training stability and facilitates en-
hanced performance for language models than di-

https://github.com/TongjiNLP/Disentangle-to-Decay-Linear-Attention-with-Trainable-Decay-Factor
https://github.com/TongjiNLP/Disentangle-to-Decay-Linear-Attention-with-Trainable-Decay-Factor
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rectly trained decay factors and untrained decay
factors. Moreover, D2D outperforms existing PE
in linear attention, including RoPE (Su et al., 2024)
and ALiBi (Press et al., 2022). D2D fulfills the
recurrent inference of linear attention and attains
the expected generation efficiency.

Our main contributions are listed below:
(1) We analyze the stability of the training decay

factor in linear attention PE. Training of the de-
cay factor exhibits a large and unbounded gradient,
leading to training collapse or sub-optimal results.

(2) We propose D2D, a novel trainable PE for
linear attention, which maintains stability during
training and enhances representational capability.
We provide an optimized implementation for train-
ing and efficient inference, addressing intrinsic pre-
cision and space issues in intuitive implementation.

(3) We construct language models for D2D and
other baselines and then conduct various experi-
ments. Results show that D2D demonstrates train-
ing stability and superior ability.

2 Preliminary

2.1 Computational Form of Linear Attention
For query token Qi in position i and key token Kj

with position j, unified formulation of linear and
vanilla attention is given in Eq. 1 (Katharopou-
los et al., 2020), where similarity calcula-
tion Sim(Qi,Kj) quantifies relationship between
query of the i-th token and key of the j-th token:

Atti,j =
Sim(Qi,Kj)∑i
k=1 Sim(Qi,Kk)

(1)

In vanilla attention (Vaswani et al., 2017), simi-
larity is calculated using the exponent of dot prod-
uct of query and key, expressed as Sim(Qi,Kj) =
exp (QiK

⊺
j ). Conversely, in linear attention, the

similarity is computed directly through a kernel
function ϕ, as Sim(Qi,Kj) = ϕ(Qi)ϕ(Kj)

⊺.

2.2 Constraints of PE in Linear Attention
For efficient inference, PE used in linear attention
must satisfy certain constraints. Katharopoulos
et al. (2020) proposes the approach of convert-
ing linear attention to recurrent form for inference.
This transformation is contingent upon a specific
positional encoding format, as detailed in Eq. 2,
where fq and fk are functions applied to Qi and
Kj , respectively, to incorporate absolute positional
information. Through this equation, similarity cal-
culation between queries and keys is decomposed

into independent functions that are completely de-
pendent on the queries and keys. The detailed
proof process for this constraint is provided in Ap-
pendix A.2.

Sim(Qi,Kj) = fq(Qi, i) · fk(Kj , j) (2)

3 Instability of Training Decay Factor

For most decay factor based PEs, decay factors are
fixed number rather than trainable, since they do
not achieve better performance (Press et al., 2022;
Sun et al., 2023). We analyze that training of decay
factor exhibits numerical instability, leading to
training collapse and limited optimization.

Numerical Instability The value of decay fac-
tor exhibits significant fluctuations throughout the
training process and fails to converge rapidly.
When the decay factor reaches a certain thresh-
old, it tends to trigger gradient explosion, causing
the training to collapse.

Large Gradients Brought By Exponential Calcu-
lation When the decay factor becomes trainable,
the exponential calculation involves higher-order
terms of decay factor, which can generate large
gradients.

For two tokens separated by a relative distance
of δ, a higher-order term γδ is adopted in the calcu-
lation (Qin et al., 2024; Sun et al., 2023), where γ
is the decay factor. When γ becomes trainable, it
generates gradient of d(γδ)

dδ = δγδ−1.
Theoretically, directly training decay factor leads

to larger unbound gradient in linear attention.
When the range of δ increases, the gradient pro-
duced by the global decay factor can potentially
reach a very large value. Previous work (Qin et al.,
2022a) has demonstrated linear attention suffers
from large gradient compared with vanilla attention.
Directly training decay factor will further amplify
unstable gradients produced by linear attention.

Practically, gradient is not acceptable during di-
rectly training decay factor. Taking settings in Sun
et al. (2023) 2 as an instance, training decay fac-
tor will integrates gradient with a maximum value
of 376. The large gradient is integrated in overall
gradient by multiplication. Consequently, the en-
tire training will suffer from gradient explosion. In
subsequent experiments, we observe a collapse of
training when directly training decay factor. This
phenomenon is consistent with the analysis above.

2It exploits a context length of 1024 for language model,
and set decay factor close to 0.999 for some attention heads.
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Figure 1: A training process overview of D2D and vanilla of decay factor. Firstly, D2D disentangles the decay
factor into the global decay factor and local tuning factor. With the initialized global decay factor, training of the
local tuning factor exhibits bounded gradients. By summing them, a well-optimized decay factor is obtained. Global
decay factor is integrated with mask matrices, to avoid precision problems and improve efficiency. Conversely,
directly training decay factor exhibits unbounded large gradients, leading to training collapse and poor performance.

4 Method

We propose D2D, an effective solution to the in-
stability of the decay factor during training. The
main structure of D2D compared with vanilla decay
factor based PE is demonstrated in Figure 1.

4.1 Disentanglement based PE

Disentanglement of Decay Factor Firstly, we
provide detailed assignments within attention head
for the decay factor. For l-th attention head, the
decay factor is represented as a vector Pl ∈ R1×dh ,
where dh is the dimension of each attention head.
For comparison, existing method exploits a con-
stant scalar as a decay factor within certain atten-
tion head.

Then, we disentangle the decay factor of D2D
into global decay factor and local tuning factor.

Global decay factor P b is a vector assigned to
each attention head. Global decay factor for l-th
head is represented as P b

l ∈ R1×dh , where P b
l =

(pbl , . . . , p
b
l ) consists of same fixed scalars pbl . It

provides a rough range for the decay factor.
Local tuning factor P s

l ∈ R1×dh is applied to
each dimension of the attention head to achieve
fine-grained optimization of the decay factor. For
the l-th attention head, vector Pl is disentangled,
that is Pl = P b

l + P s
l . As shown in Figure 2,

the sum of two factors takes up a wider range of
distribution, which is beneficial for optimization.

Positional Encoding Design Based on the afore-
mentioned disentanglement, we proposed calcula-
tion of D2D in Eq. 3, where Sim(Qi,Kj)[l] repre-
sents similarity calculation for l-th attention head.
All divisions are performed element-wisely.

Sim(Qi,Kj)[l] =
ϕ(Qi)

exp(iPl)
(

ϕ(Kj)

exp(−jPl)
)⊺

= Θb ·Θs

Θb = exp (−pbl )
i−j

Θs =
ϕ(Qi)

exp(iP s
l )

(
ϕ(Kj)

exp(−jP s
l )

)⊺

(3)

D2D exploits a mixed form of APE and
RPE 3 (Wang et al., 2021). APE form calculates
of query and key indices i, j separately, like first
line of Eq. 3. And RPE form calculates a function
of i, j together, like calculation of Θb.

During training, PE is calculated with Θb · Θs.
Θs is trainable vector, it is calculated in APE form
because of essential time and space complexity
concerns. Θb is calculated in RPE form, it provides
foundation for mask implementation in Section 4.3.
Mask implementation is necessary for efficiency
and precision of floating-point numbers.

During inference, PE is represented using APE
form, as the first line of Eq. 3. In calculation, value

3In Appendix C, we explore the necessity of APE and RPE
for corresponding calculations.
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of Pl is derived from P b
l + P s

l . APE form is nec-
essary owing to constraints of converting linear
attention into RNN in Section 2.2. Consequently,
D2D is available for recurrent inference using ap-
proaches described in Eq. 4 (Katharopoulos et al.,
2020). In Eq. 4, V ′

i is the output of the attention,
S0 ∈ Rdh×dh , Z0 ∈ R1×dh . All elements in S0

and Z0 are zero. More details of converting linear
attention into RNN are shown in Appendix A.1.

V ′
i =

∑i
j=1(ϕ(Qi) exp(−iPl))(ϕ(Kj) exp(jPl))

⊺Vj∑i
j=1(ϕ(Qi) exp(−iPl))(ϕ(Kj) exp(jPl))⊺

=
ϕ(Qi)(Si−1 exp(−Pl) + ϕ(Ki)

⊺Vi)

ϕ(Qi)(Zi−1 exp(−Pl) + ϕ(Ki)⊺)

Si = Si−1 exp(−Pl) + ϕ(Ki)
⊺Vi

Zi = Zi−1 exp(−Pl) + ϕ(Kj)
⊺

(4)
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Figure 2: Illustration of disentanglement. Green circle
stands for each index of P = P b + P s. To visualize
the value of P , we approximate it with a smooth red
curve on the Figure. Possible sum of them could cover
a wide range during optimization. Pl,d represents the
value of P at dimension d in the l-th head.

4.2 Stabilizing Training

Effective Initialization for D2D An effective
initialization strategy can provide an optimal foun-
dation for PE (Press et al., 2022). Compared
with other initializations, we provide a more struc-
tured initialization in D2D, facilitating faster con-
vergence and better overall model performance.

We initialize global decay factor pbl as 2−
h
l for

l-th attention head, where h is the total amount of
attention head. As described in Press et al. (2022),
this initialization provides a more concentrated dis-
tribution of decay factor near zero, and it is effec-
tive for the representation of positional information.
For the local tuning factor, we apply zero initializa-
tion since we expect a small range of local tuning
factors for training stability concerns.

In D2D, the global decay factor provides a foun-
dation for the training of the local tuning factor.
Once the global decay factor in each attention
head is initialized to an appropriate value, the
range of P s

l is narrowed during gradient descent.
D2D avoids rapid numerical fluctuations, enhanc-
ing training stability. Experiments in Section 6
validate the above analysis.

Stabilizing Gradients of Decay Factor D2D
brings a bounded gradient for the training decay
factor. For l-th attention head, gradient gl satisfies
|gl| ≤ 1

e·pbl
, as proved in Appendix B. pbl is a fixed

value manually initialized, which can control the
maximum gradient. Compared to unbounded gra-
dients of directly training decay factor in Section 3,
D2D mitigates gradients to an acceptable range for
stable training. Taking the first attention head as a
practical instance, D2D reduces the gradient of the
decay factor from 376 to 6.87. In practical training,
the gradient is acceptable.

4.3 Mask-based Efficient Training
Implementation

4.3.1 Limitation Of Original Implementation
D2D stabilizes training of the decay factor accord-
ing to the aforementioned analysis. But original
implementation of D2D encounters some problems
in practical training, as analyzed in the following
paragraphs:

Extra Time Cost on Calculating Θb As shown
in Eq. 3, Θb needs to be calculated every time in
similarity calculation of Sim(Qi,Kj). But Θb is
only determined by positional indices i, j, resulting
in unnecessary exponential calculations. This prob-
lem also exists when directly training the decay
factor.

Precision In Floating-Point Arithmetic During
the training phrase, calculation in the first line of
Eq. 3 encounters precision problems of floating-
point. For exponential calculation exp(x), the re-
sult is not reliable when |x| becomes very large in
training.

For decay factor based PE, exp(γi) ·
exp(−γj) = exp(γ(i − j)) should hold for
all position indices. But | − γj| and |γi| could be
very large in practical training, causing precision
problems. Consequently, the product does not
match the theoretical value. This causes the value
of D2D, which is only related to relative positions,
to be affected by absolute positions of tokens.



9881

Precision problems disrupt the theoretical prop-
erty of D2D. This concern emerges more frequently
for longer sequences due to larger position indices.
Moreover, we observe limited optimization of de-
cay factor in training, due to precision problems 4.

4.3.2 Masked-based Transformation
Preprocessing of global decay factor is available,
because P b

l in Eq. 3 consists of identical scalars pbl .
Therefore, the global decay factor can be factored
out as Θb, which is constant across all computa-
tions within a head. Consequently, when context
length is given, all possible results of relative posi-
tions can be preprocessed before training.

We implement this by presetting a mask M as
shown in Figure 3. The element in the i-th row
and j-th column of the matrix corresponds Mi,j .
The part where j > i is assigned a value of 0 to
ensure attention is unidirectional in auto-regressive
language modeling. For different attention heads,
we preprocess matrices respectively, since number
of attention heads is usually limited.

To integrate this mask, we apply the element-
wise product of mask and attention scores. To save
time and space cost, we replace causal mask 5 with
M .

1 0 0

1 0

1

1

0

0

0𝑝!"

𝑝!# 𝑝!𝑝!"

𝑝!

𝑝!

Figure 3: An instance of decay mask (length n = 4).

Effectiveness of Mask For extra time cost, our
mask is integrated into a causal mask of language
model and avoids extra calculation.

Regarding the precision problem, the mask ap-
plies RPE calculation exp(γ(i− j)) for the global
decay factor, to avoid precision calculation. And
only the local tuning factor is calculated in APE
form exp(γi) · exp(−γj). The local tuning factor
is significantly smaller than the whole decay factor,
and it requires a larger exponent to trigger precision
problems. In our practical experiments, the preci-
sion problem is solved through mask mechanisms.

4We record the distribution of decay factor in practical
training in Appendix D.4, which demonstrates a truncated
optimization range.

5For auto-regressive language models, the causal mask is
a lower triangular matrix to ensure attention is unidirectional.

4.4 Overall Training And Inference
Implementation

Algorithm 1 and 2 respectively illustrate the whole
process training and inference for D2D-based lin-
ear attention. ÷ stands for element-wise division,
and ⊙ stands for element-wise multiply. In the al-
gorithm, the operations splithead and mergehead
refer to the processes used in the multi-head atten-
tion mechanism (Vaswani et al., 2017).

The difference between training and inference
lies in how to introduce D2D into attention output,
while the remaining steps both follow procedure
in Katharopoulos et al. (2020).

Algorithm 1 Attention Output During Training
1: procedure ATTN(Q,K, V,M,P s, n)
2: K ← K⊺

3: Q,K ← ϕ(Q), ϕ(K)
4: a← (0, 1, . . . , n− 1)
5: C ← exp (a · P s)
6: Q← Q÷ C
7: K ← K ⊙ C
8: Q,K, V ← splithead (Q,K, V )
9: Att← Q ·K ⊙M

10: for i← 0, to n− 1 do

11: Atti ← Atti/
n−1∑
j=0

(Atti,j)

12: end for
13: O ← Att · V
14: O ← mergehead (O)
15: return O
16: end procedure

Algorithm 2 Attention Output During Inference

1: procedure ATTN(Q,K, V,P b,P s, n)
2: K ← K⊺

3: P ← P b + P s

4: P ← exp (P )
5: S,Z ← 0dh×dh ,0dh×1

6: Q,K, V ← splithead (Q,K, V )
7: for i← 0 to n− 1 do
8: Qi,Ki ← ϕ(Qi), ϕ(Ki)
9: S ← S ⊙ P +Ki · Vi

10: Z ← Z ⊙ P +Ki

11: Oi ← (Qi · S)/(Qi ·Z)
12: end for
13: O ← concat(O1, . . . , On)
14: O ← mergehead (O)
15: return O
16: end procedure

5 Experiments

5.1 Experiment Settings
5.1.1 Language Model Construction
Previous work (Press et al., 2022; Su et al., 2024)
constructs language model with designed PE to
demonstrate their performance. In this step, a pure
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Language Modeling Length Extrapolation Downstream Tasks

Datasets enwiki8
(PPL↓)

LAMBADA
(PPL↓)

WikiText2
(PPL↓)

Open
WebText
(PPL↓)

GovReport
(PPL↓)

PG19
(PPL↓)

ARC-e
(ACC↑)

ARC-c
(ACC↑)

SQuAD
(F1↑)

Finetune w/o w/o w/ w/o w/ w/o w/o w/ w/o w/ w/ w/ w/

Methods
Fixed. 94.91 95.06 31.53 96.29 18.57 67.64 24.14 16.78 198.53 40.52 0.250 0.218 0.504
D.T. 92.27 89.01 29.65 85.07 18.40 62.53 22.77 16.69 174.81 34.38 0.251 0.234 0.518

D2D 86.36 90.63 25.83 72.48 18.29 57.40 21.25 15.97 169.99 29.76 0.262 0.256 0.536

Table 1: The results of testing D2D, fixed decay factor, and directly trained decay factor on various tasks. w/o
represents direct testing on the dataset, while w/ indicates testing after fine-tuning on the corresponding training set.
The best results for each task are bold.

attention based language model backbone is re-
quired for experiments. Attention should be inte-
grated simply without additional architectural mod-
ification. Consequently, recent work with linear at-
tention like RetNet (Sun et al., 2023), Mamba (Gu
and Dao, 2024) is not available for comparison.

In our experiments, we adopt GPT-2 (Radford
et al., 2019) as the language model backbone and
replace vanilla position embedding with D2D in
attention calculation. We reconstruct the language
model through a whole pre-training epoch on Open-
WebText dataset (Gokaslan and Cohen, 2019), with
a similar size and training steps to Radford et al.
(2019). The training scale is also comparable with
previous PE research like RoPE (Su et al., 2024)
and ALiBi (Press et al., 2022) 6.

5.1.2 Baselines Design
Aside from D2D based language model, we design
two additional baselines for comparison, aiming
to probe the effectiveness and training stability of
D2D. Overall baselines are mentioned as follows.

D2D: This baseline exploits D2D implementa-
tion in training as mentioned before.

Fixed decay factor (notated as Fixed.): This
baseline has fixed decay factors during training,
initialization is the same with Section 4.2.

Directly trained decay factor (notated as D.T.):
The decay factor is randomly initialized and trained
directly alongside the model. In practical training,
we discover that training frequently collapses due
to a large gradient and that the language model
parameters are not available. To observe the perfor-
mance before collapse, we make manipulation to
narrow gradients in an acceptable range 7.

6In Appendix D, we provide detailed experiment settings
and supplementary experimental observations (i.e. generation
efficiency of recurrent form of D2D).

7We truncate the value of exponential calculation, to avoid
large gradients. Range of truncation is determined by repeti-

5.2 Basic Performance

5.2.1 Language Modeling
Language modeling is a basic ability in experi-
ments. We test language modeling performance
of different baselines in various text datasets, in-
cluding enwiki8 8, LAMBADA (Paperno et al.,
2016) and WikiText2 (Merity et al., 2016). Fol-
lowing Radford et al. (2019), we calculate the per-
plexity of language models. As shown in Table 1,
the model exhibits good language modeling perfor-
mance with D2D, with the benefit of better posi-
tional information.

5.2.2 Downstream Task
We evaluated the capability of D2D on down-
stream tasks through instruction tuning, as a sup-
plement to language modeling experiments. We
exploit multiple-choice task ARC-e and ARC-
c (Clark et al., 2018) and question-answering task
SQuAD (Rajpurkar et al., 2016) as downstream
tasks, with 1 epoch fine-tuning on corresponding
training dataset. We calculate Accuracy for ARC
and F1-Score for SQuAD as experiment results. Ex-
periment results demonstrates that D2D achieves
better instruction ability.

5.3 Length Extrapolation

Following Press et al. (2022), we test language
modeling performance on longer sequences than
training, to demonstrate superiority of D2D in
length extrapolation. We provide three series of
experiments, settings are listed below.

In-domain Length Extrapolation We observe
the perplexity of these baselines in the validation
set of OpenWebText, which shares the same distri-
bution with the pretrained corpus. We exploit a test

tive experiments, to avoid generating fatal gradient explosion.
8http://mattmahoney.net/dc/text.html

http://mattmahoney.net/dc/text.html
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length of 1024, which is longer than the training
length of 512.

Out-Domain Length Extrapolation Corpus out
of pretrained domain is integrated into length ex-
trapolation experiments. Following Rae et al.
(2020); Dong et al. (2024), we integrate GovRe-
port (Huang et al., 2021) and PG19 (Rae et al.,
2019) as a dataset, with a test length of 1024. Ad-
ditionally, we fine-tune each baseline with a corre-
sponding training corpus with a sequence length of
512 and record their length extrapolation results as
supplementary.

Extrapolation On Varying Sequence Lengths
Following Press et al. (2022), we conduct length ex-
trapolation on different sequence lengths, with the
same setting as In-domain Length Extrapolation.
We demonstrate perplexity with different sequence
lengths of these three baselines.

Experiment Results In-domain and out-domain
results are shown in Table 1. D2D outperforms
other baselines, especially in complex text datasets
(PG19), indicating that D2D can capture more po-
sitional information in long sequences.

We demonstrate extrapolation on varying se-
quence lengths in Figure 4, D2D exhibits better
perplexity than other baselines, especially for se-
quences very short (200) and long (1000). The
result indicates necessity and effectiveness in D2D,
since D.T. and Fixed. exhibit drawback in vari-
ous lengths, D2D outperforms them in all of the
lengths.

Figure 4: The figure illustrates the language model’s
ability to extrapolate the length within the domain. As
the length increases, the model using the decay factor
initially shows a decreasing trend in PPL, followed by
an increase, and eventually becomes stable.

5.4 Comparing with Other Positional
Encoding

We compare D2D with existing PE for linear atten-
tion in a smaller pretrained corpus (%10 of afore-

mentioned settings). Other experiments’ settings
are the same with Section 5.1.1.

We select RoPE (Su et al., 2024), ALiBi (Press
et al., 2022), Vanilla APE (Vaswani et al., 2017;
Radford et al., 2019) and implement them on lin-
ear attention language models. RoPE and ALiBi
exhibit decay properties and are frequently used
as position-encoding methods in linear attention.
Additionally, we integrate a language model with
full attention into vanilla APE. Details are shown
in Appendix D.3.

As results shown in Table 2, D2D demonstrates
a lower loss during training compared to full atten-
tion, exhibiting good performance, even surpassing
full attention, which indicates the effectiveness of
linear attention models. However, linear attention
itself has certain limitations, showing weaker gen-
eralization ability compared to full attention, as
detailed in Appendix D.6.

6 Discussions

6.1 Training Stability

We record numerical fluctuations of the trainable
part of the decay factor in different baselines, to
demonstrate the numerical stability of D.T. and
D2D in Section 5.1.2. For D.T., we record the range
of the decay factor. For D2D, we record range
of P s during training since P b is not trainable.
As shown in Figure 5, the trainable part of D2D
exhibits slighter fluctuation. With the assistance
of global decay factor, local tuning factor P s does
not require large-scale training compared to D.T..

6.2 Representation Ability of Decay Factor

To test the representation ability of D2D, we il-
lustrate the value of P s, P b, and P s + P b in a
trained D2D model. Figure 6 illustrates values in
the first head. Trainable local tuning factor remains

Figure 5: The numerical fluctuations of the D2D and
directly trained decay factor from the first layer of linear
attention model during the training process.
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PE
Vanilla APE

Linear Attention
Vanilla APE

and Attention
RoPE ALiBi D2D

PPL(Train) 49.40 45.74 44.59 44.88 43.82
PPL(Valid) 50.86 47.66 47.80 47.85 46.90

Table 2: Language modeling performance of different PE. Values bold are denoted as optimal results.

a stable range in different heads. However, with
the assistance of P b, final outcome of the decay
factor achieves a wide coverage.

6.3 Discussion of Scaling

We have exploited a reasonable experiment scale
in the aforementioned experiments, which is com-
parable with recent PE works on linear attention.
Theoretically, stability and length extrapolation per-
formance of D2D is expected to hold for a larger
scale of training, The reasons are as follows:

Scaling of Parameters The main reason for un-
stable training is gradient. However, the gradient
in training is irrelevant to training steps and param-
eters, according to Section 3 and Section 4.2.

Training collapse is inclined to occur in the early
steps of training, and more training steps would not
affect training stability significantly, because the
decay factor needs more optimization in early steps.
In our experiments of direct training decay factor,
the collapse occurs in the first 5% of training steps.

Scaling of Sequence Length Larger-scale length
extrapolation experiments require larger pre-
trained models and fine-tuning on ultra-long text
corpora, which is not the core goal of the D2D
design. To demonstrate the extrapolation ability
of D2D with longer corpora, we present the trend
of PPL for different position encodings as the in-
put corpus length changes in Figure 4. It can be

Figure 6: The value of decay factor in the first layer of
D2D based linear attention model. To enhance image
clarity, we use vertical gray dashed lines to split heads
and sort P s within each head.

inferred that D2D will also have advantages with
longer inputs.

6.4 Discussion MSA Employed in D2D

When using the multi-head self-attention (MSA)
mechanism (Vaswani et al., 2017), D2D can max-
imize its advantages. As shown in Section 4.2,
MSA allows D2D to assign different global decay
factors to each head, which enhances its represen-
tational capability. Moreover, MSA generally pro-
vides stronger representational power than single-
head attention.

Additionally, when using single-head attention,
it is necessary to partition the dimensions of the
head and apply different initializations to achieve
the effect of the global decay factor. This leads
to the failure of the training acceleration method
described in Section 4.3.2, reducing the training
efficiency of the model. Therefore, we mainly dis-
cuss the performance of D2D when using MSA.

6.5 Discussion of Other Gradient-Control
Approaches

Regarding issues of large gradients, common
gradient-control approaches don’t work properly.

(1) Large gradient varies for experiment circum-
stances, such as attention layers and dataset dis-
tributions. And gradient may be very large and
unbounded. Hence, manually clipping gradients
into certain values is ineffective, the clipping value
is hard to decide.

(2) In training, large gradients occur sporadi-
cally, while other gradients have acceptable values.
Therefore, normalizing gradients using overall dis-
tribution is ineffective, as it excessively weakens
other gradients but not fully address the large ones.

(3) As shown in Section 4.2, D2D solves this
issue by generating coefficients for higher-order
terms through the global decay factor, avoiding
large gradients generation and obtaining expected
performance.
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6.6 Advantages of D2D

In this section, we analyze improvements of D2D
in the following three aspects of experiments:

Improvements in language modeling can be at-
tributed to the stable training and appropriate range
of global decay factor. They provide a more reason-
able decay factor to represent more information.

Regarding length extrapolation, we believe that
the decay factor inherently possesses significant
length extrapolation capabilities (Press et al., 2022).
D2D enlarges such advantages with its stronger
representation capabilities.

For downstream tasks, the primary advantage
of D2D lies in the optimization of the local tuning
factor. Taking Figure 6 as an instance, P b + P s

is negative in certain dimensions, indicating these
dimensions focus on tokens that are farther apart.
This capability is not present in models with fixed
decay factors or models with directly trained decay.

7 Related Work

7.1 Linear Attention

Linear attention enhances computational efficiency
by reducing the space-time complexity from
quadratic to linear. Kernel-based linear atten-
tions (Qin et al., 2022b; Katharopoulos et al., 2020;
Qin et al., 2022a) process query and key with ker-
nel functions 9. Transformation of linear attention
into a recurrent form enables efficient inference, as
explored by Katharopoulos et al. (2020) and further
applied in large-scale models (Yang et al., 2023;
Sun et al., 2023).

7.2 Positional Encoding

Positional encoding integrates positional infor-
mation into models, which is essential for se-
quence recognition and computational efficiency,
especially with long sequences and large mod-
els (Kazemnejad et al., 2023).

PE can be categorized into APE, RPE and con-
vertible PE. APE uses the function of absolute po-
sitions (Vaswani et al., 2017; Brown et al., 2020;
Zhang et al., 2022). RPE accounts for relative dis-
tances between tokens (Press et al., 2022), which
are common in large language models (Raffel et al.,
2020; Chowdhery et al., 2023; Scao et al., 2022).
Convertible Positional Encoding allows for switch-

9Random-based linear attention (Peng et al., 2021; Choro-
manski et al., 2021) exploits other manners, which is beyond
discussion range of this paper.

ing between APE and RPE, facilitating flexible
computational strategies (Su et al., 2024).

Commonly used RPEs such as Su et al. (2024);
Press et al. (2022); Sun et al. (2022) exhibit certain
decay properties, which cause the model to focus
more on closer tokens. This leads to a more focused
attention structure, thereby improving its language
modeling capabilities (Han et al., 2023).

8 Conclusion

In this paper, we design a positional encoding
method, D2D, for models based on linear atten-
tion. By analyzing the gradients of the training
decay factor, we reveal the numeric instability of
direct training decay factor. To stabilize training,
we disentangle D2D during the training process,
transforming it into a combination of APE and
RPE. Disentanglement of decay factors and proper
initialization contribute to the bounding gradient of
training into an acceptable range. In the inference
process, we fully convert D2D into APE, enabling
the transformation of linear attention into an RNN
form. This fully leverages the advantages of linear
attention in terms of time complexity. We conduct
various experiments on D2D based linear attention
models and other baselines. Results demonstrate
the effectiveness and training stability of D2D.

9 Limitation

Our positional encoding demonstrates effectiveness
across various kernel functions. However, the per-
formance may differ depending on the specific ker-
nel function used. Based on our experiments, we
find that elu(x) + 1 is a good choice for the kernel
function, but we cannot provide a very systematic
theoretical explanation for this choice.

Additionally, D2D has not been tested on struc-
tures other than the linear attention framework. We
conducted discussions on an acceptable scale and
provided a theoretical analysis of the potential ef-
fects on larger models.

We welcome training on larger models and cor-
pora, as well as the use of D2D to replace existing
methods in frameworks that adopt decay factors, in
order to enhance model performance.
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queries and keys. Here, we delve into the mathe-
matical underpinnings of this conversion, starting
with the general form of linear attention:

Atti,j =
ϕ(Qi)ϕ(Kj)

⊺∑i
j=1 ϕ(Qi)ϕ(Kj)

⊺

The computation of the updated representation
V ′
i involves weighting by the attention scores:

V ′
i =

∑i
j=1 ϕ(Qi)ϕ(Kj)

⊺Vj∑i
j=1 ϕ(Qi)ϕ(Kj)

⊺

This equation can be simplified by recognizing
that ϕ(Qi) can be factored out, leading to a recur-
sive form that mirrors RNN computations:

V ′
i =

ϕ(Qi)(Si−1 + ϕ(Ki)
⊺Vi)

ϕ(Qi)(Zi−1 + ϕ(Ki)
⊺)

with Si−1 and Zi−1 representing cumulative sums
over j up to i− 1, allowing for an RNN-like itera-
tive update mechanism.

A.2 Proof of Constraints on Converting
Linear Attention to RNN

The core operation of Linear Attention can be ex-
pressed as follows, where Atti,j stands for corre-
sponding attention score:

Atti,j =
ϕ(Qi)ϕ(Kj)

⊺∑i
j=1 ϕ(Qi)ϕ(Kj)⊺

(5)

This formulation necessitates updating the rep-
resentation V ′

i using attention scores weighted by
the respective values:

V ′
i =

∑i
j=1 ϕ(Qi)ϕ(Kj)

⊺Vj∑i
j=1 ϕ(Qi)ϕ(Kj)⊺

(6)

The potential for simplification arises from the
ability to factor out ϕ(Qi), thereby converting the
attention computation into a recursive form remi-
niscent of RNN computations:

V ′
i =

ϕ(Qi)(Si−1 + ϕ(Ki)
⊺Vi)

ϕ(Qi)(Zi−1 + ϕ(Ki)⊺)
(7)

where Si−1 and Zi−1 represent the cumulative
sums over j up to i− 1, facilitating an RNN-like
iterative update mechanism.

For the transformation into RNN to be viable, the
positional encoding introduced must independently
influence Q and K without involving cross terms
of i and j. If such independence is not maintained,

ϕ(Qi) cannot be isolated from the summation ex-
pression, ultimately impeding the transformation
of linear attention into RNN. This requirement un-
derscores the necessity of adhering to the specified
positional encoding format, ensuring that linear
attention remains computationally efficient and the-
oretically sound.

B Bound of Gradients in Training of D2D

After adding the global decay factor, the absolute
value of the gradient produced by the local tun-
ing factor is δ exp(−pbl )

δ exp(−P s
l )

δ. Compared
directly training in Section 3, D2D has an extra
coefficient exp(−pbl )

δ, where exp(−pbl ) < 1. This
term decreases with the growth of δ, mitigating
large gradients. Since P s

l is much smaller than pbl
during training and can be approximated as zero,
the gradient simplifies to δ exp(−pbl )

δ. By taking
the partial derivative with respect to δ, we obtain
the maximum gradient at δ = 1

pbl
, leading to a maxi-

mum absolute gradient value of 1
pbl e

. This value can

be controlled by adjusting pbl . In contrast, as shown
in Section 3, when γ approaches 1, the gradient
generated by directly training decay factor is only
controlled by the δ and has no theoretical upper
bound.

C Space Complexity Discussion for D2D

For D2D, the calculation of global decay factor
P b is in RPE form, while the calculation of local
tuning factor P s is in APE form. This is motivated
by space and time complexity considerations.

Calculation of Global Decay Factor For the
RPE form of calculation P b

l , the values within
each head for P b are identical. Consequently, the
element-wise product is convenient for integration
P b
l . As mentioned in Section 4.3, RPE calcula-

tion can be transformed into several mask matrices,
and integrated to attention score with element-wise
product. Since the value of P b varies for differ-
ent attention heads, h 10 matrices should be calcu-
lated. So the total size of the RPE calculation is
h× len× len 11. Space complexity is acceptable
since head numbers h are usually small in settings.
And mask-based RPE calculation employs element-
wise product, which is efficient.

10h is the number of attention heads in the language model,
which is set to 12 in our experiments.

11len is context length of the language model, known as a
maximum positional index.
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Calculation of Local Tuning Factor Local tun-
ing factor P s varies within the head, and it has a
total dimension of d = dh × h 12. If we were to
apply a transformation to P s similar to that of P b,
we need to decompose the computation of Θs:

Θs = Σϕ(Qik) · ϕ(Kjk) exp((i− j)P s
l k) (8)

Term exp((i−j)P s
l k) can also be transformed into

a relative position encoding mask. Since P s
l varies

across each dimension, a separate mask must be
created for each one. d× len× len matrices should
be integrated. In practical settings, d is usually
significantly larger than h, and space cost is not
acceptable.

Serial mask calculation from each model dimen-
sion can address space issues, but it exploits d times
of additional multiplication, which is not accept-
able in time cost. In our experiments, we find it is
5 times slower in practical implementation.

Consequently, APE is necessary in the calcula-
tion of Θs. APE form of calculation conserves
the use of additional masks with very few calcula-
tions. We narrow the range of local tuning factors
in Section 4.2 and Section 4.3 to avoid latent issues
like numerical instability and precision in floating-
point.

D Experiment Details

D.1 Implementation Details of Experiments

The specific model parameters and training settings
are presented in Table 3.

Parameter Value
Number of Layers 12

Attention Heads 12 per layer

Hidden Dimension 64 per attention head

Batch Size 640

Training Text Length 512 tokens

Learning Rate 5e-4

Learning Rate Schedule Cosine Scheduler

Warmup Steps 3000

Epochs 1

Gradient Optimizer Adam (Kingma and Ba, 2015)

Total Parameters 137M

Table 3: Training Configuration and Model Parameters

12d is known as model dimension in Vaswani et al. (2017).
And d is set to 768 in our experiments.

D.2 Kernel Selection
For linear attention, there is no one-size-fits-all
criterion for selecting the kernel function; thus,
it is essential to choose the most appropriate ker-
nel function based on the position encoding we
use. For the position encoding we employ, using
elu(x) + 1 as the kernel function achieves a lower
perplexity (ppl) compared to using exp(x).

D.3 Calculation and Initialization of Other
Positional Encoding

RoPE (Su et al., 2024) exploits APE to catch rela-
tive Positional information. We select implementa-
tion for linear attention as Eq. 9, where Ri stands
for RoPE positional encoding for position i. RoPE
cancels applications of APE in the normalization
of similarity calculation.

Sim(Qi,Kj) = (Riϕ(Qi))(Rjϕ(Kj)
⊺)

Atti,j =
Sim(Qi,Kj)∑i
j=1 ϕ(Qi)ϕ(Kj)⊺

(9)

Vanilla APE of Transformer (Vaswani et al.,
2017) applies a trainable embedding 13 for absolute
positional information E(a),a = [1, 2, . . . , n].
The embedding is initialized randomly.

Sim(Qi,Kj) = ϕ(Qi + E(a)i)ϕ(Kj + E(a)j)
⊺

(10)
For D2D, we initialize P s

l for each head l with
a zero vector 0 ∈ R1×dh . P b

l is initialized with
scalar P b

l in Eq. 11, where h indicates the number
of heads, and then fill the vector P b

l with the scalar.

P b
l = 2−

h
l (11)

D.4 Training Outcome of Precision Problem
In Section 4.3, we discuss the issue of not convert-
ing Θb into a mask. To address this, we directly
train a linear attention model using D2D without
any transformations. As shown in Figure 7, the
value of P gets truncated near a certain threshold,
making it difficult for the D2D to further change
after reaching this value. This indicates that the
problem mentioned in Section 4.3 significantly im-
pacts training, limiting the range of values for the
D2D.

D.5 Experiments For Effective Inference
To ensure that D2D exhibits superiority in terms
of inference speed compared to the vanilla model,

13Trainable embedding is only added in the first layer of
GPT-2 in vanilla implementation.
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Figure 7: The results of directly training D2D without
converting P b into mask. The image displays the values
of P in the first layer of the model.
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Figure 8: Average inference time for the sequence with
different lengths. L.A. with D2D stands for linear atten-
tion with D2D.

we conduct speed tests for language generation
at the inference stage. We transform our method
into RNN-form to achieve O(n) time complexity.
We eliminate the "End of Sequence" (EOS) token
from the vocabulary to guarantee the production of
texts that conform to specified length criteria. We
conduct ten experiments for each model at each
length and took the average as the generation time.
The weights of the model are subjected to random
initialization, given that this has no impact on the
assessment of generation speed.

As shown in Figure 8, the inference time com-
plexity of our method is lower than that of the
vanilla GPT. Moreover, as the inference length in-
creases, the advantage of D2D becomes increas-
ingly pronounced. When the sequence length is
relatively short, the improvement in time is not
very pronounced, as the fundamental computations
and data copying still require a certain amount of
time.

D.6 Comparison of Pre-training Processes
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Figure 9: The figure shows the loss curves for the D2D
and Vanilla GPT during certain part of pre-training pro-
cess on both the training and validation datasets.

As shown in Figure 9, D2D, due to its stronger
prior knowledge, exhibits a much faster conver-
gence in loss during the early steps of training com-
pared to Vanilla GPT. However, vanilla attention
eventually converges to a stage of lower PPL. This
trend is more pronounced on the validation set,
where the linear attention in D2D shows certain
limitations in generalization ability compared to
Vanilla GPT.
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