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Abstract

Tabular prediction, a well-established problem
in machine learning, has consistently garnered
significant research attention within academia
and industry. Recently, with the rapid develop-
ment of large language models (LLMs), there
has been increasing exploration of how to apply
LLMs to tabular prediction tasks. Many exist-
ing methods, however, typically rely on exten-
sive pre-training or fine-tuning of LLMs, which
demands considerable computational resources.
To avoid this, we propose a retrieval-based ap-
proach that utilizes the powerful capabilities of
LLMs in representation, comprehension, and
inference. Our approach eliminates the need
for training any modules or performing data
augmentation, depending solely on informa-
tion from target dataset. Experimental results
reveal that, even without specialized training
for tabular data, our method exhibits strong pre-
dictive performance on tabular prediction task,
affirming its practicality and effectiveness.

1 Introduction

Tables are one of the most prevalent data formats in
real-world applications, with widespread use across
diverse fields such as healthcare, e-commerce, and
manufacturing. The analysis of tabular data facil-
itates solutions to various practical needs, includ-
ing trend prediction, risk control, anomaly detec-
tion, personalized services, and so on. Ensemble
tree models (Chen and Guestrin, 2016; Ke et al.,
2017; Prokhorenkova et al., 2018), based on gradi-
ent boosting decision trees (GBDT), are the lead-
ing approaches in tabular data analysis. Today,
deep learning’s remarkable breakthroughs have in-
spired exploration of its potential applications to
tabular data (Kotelnikov et al., 2023; Chen et al.,
2023b,a; Levin et al., 2023). However, in terms
of experimental performance, computational ef-
ficiency and generalization ability, deep learning
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still fails to achieve the dominance of GBDT-like
methods in tabular data (Gorishniy et al., 2021;
Grinsztajn et al., 2022; Shwartz-Ziv and Armon,
2022).

Over the past two years, the rapid advancement
of large language models (LLMs) (Brown et al.,
2020; OpenAI, 2023; Dubey et al., 2024) has gen-
erated considerable interest in their application to
tabular data. A typical way is to collect extensive
tabular datasets from diverse domains, and then
fine-tune LLMs to support a wide range of tabular
prediction tasks (Wang et al., 2023a; Yang et al.,
2024; Wen et al., 2024; Wang et al., 2023b). Addi-
tionally, some studies are dedicated to optimizing
input formats or leveraging prompt-based learn-
ing, to enhance the adaptability of LLMs in tabular
prediction tasks and improve their predictive per-
formance in few-shot settings (Hegselmann et al.,
2023; Jaitly et al., 2023; Dinh et al., 2022). While
these methods have, in some scenarios, achieved
performance comparable to XGBoost (Chen and
Guestrin, 2016), fine-tuning LLMs remains an in-
evitable step in these approaches, leading to ex-
cessive computational costs. Given the relatively
modest performance improvements, this level of
resource consumption is often not cost-effective.

Our motivation is to minimize unnecessary re-
source costs: is it possible to leverage the power-
ful capabilities of LLMs for tabular tasks by rely-
ing solely on LLM APIs, without resorting to data
augmentation or model fine-tuning? To this end,
we propose a straightforward yet efficient method
that fully exploits LLMs’ strengths in representa-
tion, comprehension, and reasoning. The workflow
of our proposed method is illustrated in Figure 1.
Specifically, it utilizes the embedding capability of
LLM to encode tabular instances and retrieve simi-
lar instances based on these representations. These
similar instances, along with their labels, are then
used as prompts to guide LLM in understanding the
characteristics of different categories, enabling it
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to make predictions for target unlabeled instances.
The entire process requires only API calls to LLM,
with no fine-tuning of the model or training of ad-
ditional modules, while also demonstrating high ef-
ficiency in data utilization. As a result, this method
provides a resource-efficient solution that signifi-
cantly reduces computational and annotation costs
while maintaining strong performance.

2 Methodology

2.1 Instance Serialization and Representation
To enable the application of LLMs to table-related
tasks, it is essential to first transform tables into
a text sequence format. Previous studies have ex-
plored various strategies for this transformation,
including template-based, model-based, and LLM-
based methods. In this work, we opt a more trans-
parent and efficient method by representing tabular
data as key-value pairs. Our choice is motivated
by the remarkable proficiency of LLMs in process-
ing code. This approach not only reduces the in-
put length and highlights distinctions between data
samples but also avoids potential errors introduced
during model-based transformations.

Specifically, a tabular dataset is formulated as
containing records {(xi, yi)|i ≤ N} and features
{fj |j ≤ M}, where xi is i-th record’s features
with values {cij |i ≤ N, j ≤ M} and yi is i-th
record’s label. The feature’s values can be a num-
ber, a word, or a phrase. Uncommon numerical val-
ues can be challenging for LLMs to comprehend,
so we selectively convert certain overly complex
numerical features by quantiles, describing them
like “low”, “medium”, and “high”. Each sample
record is serialized to key-value pairs like:

s(xi) = {f1 : ci1, f2 : ci2, . . . , fM : ciM}. (1)

Subsequently, we utilize the embedding function of
LLM to encode the representation of each instance:

x̃i = LLM(s(xi)). (2)

These encoded representations are then collectively
indexed and stored for further use.

2.2 Instance Retrieval
Although LLMs are capable of processing long in-
puts, directly inputting all tabular instances into
an LLM can be counterproductive. Common chal-
lenges in tabular data, such as repeated values, out-
liers, and the long-distance forgetting problem in

LLMs, can hinder their ability to effectively gener-
alize and identify categorical features.Therefore,
existing research often employs sampling tech-
niques to reduce the number of tabular instances
presented to LLMs. Building on this, we intro-
duce the concept of retrieval and nearest neighbors.
Retrieval-augmented methods have been widely
adopted in tasks such as question-answering and
recommendation systems. These techniques en-
able models to access more relevant information,
thereby enhancing their ability to discern patterns,
perform analogies, and reason effectively. How-
ever, the use of retrieval augmentation in tabular
prediction tasks remains relatively underexplored.

In our approach, we intend to retrieve labeled
instances from training set that exhibit similar fea-
tures to the target unlabeled instance, to be used as
prompt instances. These retrieved instances will
serve as contextual information and input alongside
the target instance into LLM. This will assist LLM
in comprehending the discriminative characteristics
of different categories, thereby enabling it to make
more precise and coherent predictions. To compute
the similarity between instances, we use the inner
product, which is widely recognized as a reliable
metric for assessing vector similarity. The function
sim(·) is used to calculate the similarity between
target instance xi and candidate instance xc, with
⊙ symbolizing the inner product operation:

sim(xi, xc) = x̃i ⊙ x̃c. (3)

2.3 LLM for Prediction
Given that LLMs have not undergone specialized
training for tabular prediction tasks, they may strug-
gle to directly grasp the target task. To enable LLM
to perform tabular prediction tasks effectively, it is
crucial to use appropriate prompts to consolidate all
relevant information. These contents specifically
include: (1) metadata of dataset (task descriptions,
features, and classes); (2) retrieved instances and
target unlabeled instance; and (3) an explicit initia-
tion of prediction task. An example of the prompt
composition is shown in Figure 2. A dataset’s meta-
data typically includes its source, features, and task
objectives. The retrieved instances are still pre-
sented as key-value pairs, with each instance tagged
with label. The target instance is placed after the re-
trieved instances. Textual coherence is maintained
in a plain and clear manner. Lastly, the prompt for
prediction is appended at the end. The LLM will
then generate the final prediction directly.
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Figure 1: The workflow of the proposed method. The unlabeled instances and training set samples are encoded via
LLM to obtain their vector representations. The similarity between instances is then computed to retrieve relevant
prompt instances. Subsequently, the retrieved instances, target instance, and task prompt are serialized into text and
fed into the LLM for prediction.

3 Experiment Setup

3.1 Dataset

We conduct experiments on 13 classic machine
learning tabular datasets, sourced from UCI (Kelly
et al., 2023) and OpenML (Vanschoren et al., 2014).
These datasets span diverse fields including health-
care, biological sciences, social statistics, and so on,
incorporating both numerical and categorical data
types. The dataset sizes are generally of medium
scale. Further specifics about datasets’ size, data
type, description and features are presented in Ta-
ble 2 and Table 3.

3.2 Experimental Settings

The utilization of LLMs in our method are all based
on OpenAI’s APIs, utilizing GPT-3.5 for embed-
ding processing and GPT-4.0-mini for executing
prediction tasks. All datasets are partitioned into
training, validation, and test sets following a 5:1:4
split, and hyperparameter optimization is guided
by performance on validation set. For instance
retrieval, we utilize the FAISS (Facebook AI Sim-
ilarity Search) tool (Johnson et al., 2021), which
supports similarity searches for vectors. The num-
ber of instances retrieved is set to 5. The experi-
mental results presented are based on the average
of 5 random seeds.

4 Results

We conduct a comparative analysis of the experi-
mental results with several typical baselines for tab-
ular prediction, including KNN, XGBoost (Chen
and Guestrin, 2016), TabLLM (Hegselmann et al.,
2023) and TabPFN (Hollmann et al., 2023). KNN
and XGBoost are two classical wide-used machine

learning methods in data science field. TabLLM
employs parameter-efficient technique (Liu et al.,
2022) to fine-tune LLMs for tabular prediction
tasks, and we use T0-3B (Sanh et al., 2022) for im-
plementation here. TabPFN is a pre-trained model
specifically for tabular prediction, which is trained
on 9216000 synthetically generated datasets.

4.1 Overall Performance

Table 1 presents the prediction accuracy of all meth-
ods on test set. The experimental results demon-
strate that, with the exception of the diabetes and
hamster datasets, our method performs remark-
ably well across the majority of datasets. When
compared to XGBoost, the most prevalent model
for tabular data, our approach yields comparable
results and even outperforms it on certain datasets.
These findings underscore the practicality and ef-
fectiveness of our method. The performance of
KNN is relatively weaker, showing notable advan-
tages only on the hamster and iris datasets. Our
method, which also draws inspiration from cer-
tain aspects of nearest neighbor algorithms, demon-
strates improved predictive performance, further
highlighting the powerful reasoning capabilities
of LLM. Notably, TabLLM, as a fine-tuning ap-
proach for LLMs, exhibits only moderate perfor-
mance on most datasets when trained with the full
dataset. This suggests that fine-tuning LLMs on
medium-size datasets may not lead to significant
performance improvements and could potentially
impair their reasoning capabilities. In contrast, our
method, which focuses on selecting appropriate
prompt examples, more effectively harnesses the
capabilities of LLMs. Moreover, compared to tab-
ular deep learning models that require substantial
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Dataset Ours TabPFN TabLLM KNN XGBoost

caesarian 0.6314 ± 0.05 0.5684 ± 0.11 0.6014 ± 0.04 0.6125 ± 0.09 0.5812 ± 0.07
chlamydia 0.8750 ± 0.03 0.7950 ± 0.07 0.8200 ± 0.02 0.8100 ± 0.01 0.8150 ± 0.11
diabetes 0.6656 ± 0.01 0.7621 ± 0.03 0.7367 ± 0.05 0.7247 ± 0.03 0.7571 ± 0.03
glass 0.8472 ± 0.04 0.8014 ± 0.10 0.8202 ± 0.05 0.7865 ± 0.05 0.8102 ± 0.09
haberman 0.7642 ± 0.03 0.6342 ± 0.07 0.6842 ± 0.07 0.7447 ± 0.03 0.7154 ± 0.07
tae 0.5574 ± 0.04 0.4720 ± 0.09 0.5216 ± 0.01 0.4983 ± 0.16 0.5082 ± 0.03
environment 0.6178 ± 0.02 0.5812 ± 0.04 0.5463 ± 0.06 0.6089 ± 0.04 0.5555 ± 0.07
hamster 0.5933 ± 0.02 0.6082 ± 0.09 0.6241 ± 0.04 0.7067 ± 0.08 0.6133 ± 0.08
blood_donation 0.9740 ± 0.01 0.9700 ± 0.01 0.9740 ± 0.01 0.7927 ± 0.02 0.9960 ± 0.01
breast_cancer 0.7225 ± 0.04 0.7177 ± 0.04 0.7171 ± 0.05 0.7286 ± 0.05 0.7297 ± 0.06
heart_statlog 0.7676 ± 0.02 0.7715 ± 0.04 0.7786 ± 0.03 0.6352 ± 0.07 0.7778 ± 0.03
iris 0.9198 ± 0.03 0.9264 ± 0.02 0.9314 ± 0.03 0.9767 ± 0.03 0.9333 ± 0.03
somerville 0.6034 ± 0.05 0.5721 ± 0.04 0.5860 ± 0.04 0.5103 ± 0.02 0.5690 ± 0.07

Table 1: The test accuracy of different models on each dataset.

training consumption, our method is highly com-
petitive, as it eliminates the need for training and is
resource-efficient.

4.2 Analysis

We perform experiments to analyze the effects of
our design. Table 2 presents the results of LLM in
zero-shot and few-shot settings.

Zero-shot performance. In zero-shot setting, pre-
dictions are made by directly inputting target in-
stance, dataset metadata, and associated prompts
into LLM without utilizing any additional support-
ing instances. This setup also serves as an ab-
lation experiment, excluding retrieval-related in-
stances to assess their impact. Experiments re-
sults reveal that for datasets such as caesarian,
diabetes, haberman, and heart_statlog, LLM
can achieve acceptable prediction outcomes even
under zero-shot scenario, highlighting the value of
its prior knowledge in certain tabular tasks. How-
ever, in other datasets, the zero-shot performance of
LLM is notably poor, considerably underperform-
ing compared to its zero-shot capabilities in textual
tasks. These findings suggest that while LLM may
comprehend the textual information within tables,
its grasp of prior knowledge and pattern learning
in tables remains limited, which makes LLMs im-
possible for direct application to most tabular pre-
diction tasks.

Few-shot performance. In few-shot setting, a
small subset of training set is sampled to serve
as prompt instances. For each dataset, two samples
per category are randomly selected. On datasets

such as glass, environment, blood_donation,
breast_cancer, and iris, introducing a few ran-
domly chosen prompt instances leads to notable
improvements in prediction accuracy. This high-
lights the strong analogical reasoning capabilities
of LLM when processing prompt instances. How-
ever, in certain datasets, the performance of LLM
declines under the few-shot scenario, emphasizing
the critical role of selecting high-quality prompt
instances. Overall, the consistent improvements
shown by our method across both scenarios vali-
date its ability to fully exploit the strengths of LLM
while mitigating the limitations associated with
suboptimal prompt selection.

Large-scale dataset and time consumption. In
our method, FAISS is employed for fast vector
search during instance retrieval process. For large-
scale datasets, FAISS maintains high efficiency
through memory optimization and vector partition-
ing. The retrieval time difference between datasets
containing 100 samples and 10,000 samples is min-
imal (about 0.002s and 0.006s, respectively), with
noticeable increases only in datasets with millions
of instances, which is rarely the case for tabular
prediction tasks. Thus, the impact of dataset size
on retrieval efficiency is negligible. The primary
time consumption lies in the LLM’s response time,
which averages approximately 1.223s—nearly 600
times of retrieval process.

5 Limitations

While our method demonstrates a certain level of
innovation and practicality, certain limitations re-
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Dataset Data type Size Zero-shot Few-shot Ours

caesarian 1c4d 80 0.5938 ± 0.10 0.6125 ± 0.06 0.6314 ± 0.05
chlamydia 1c2d 100 0.3125 ± 0.01 0.2800 ± 0.05 0.8750 ± 0.03
diabetes 8c0d 768 0.6351 ± 0.01 0.6383 ± 0.06 0.6656 ± 0.01
glass 9c0d 214 0.4678 ± 0.01 0.5729 ± 0.18 0.8472 ± 0.04
haberman 3c0d 306 0.7285 ± 0.00 0.7252 ± 0.01 0.7642 ± 0.03
tae 3c2d 151 0.3443 ± 0.00 0.3279 ± 0.00 0.5574 ± 0.04
environment 3c0d 111 0.4178 ± 0.02 0.5556 ± 0.13 0.6178 ± 0.02
hamster 5c0d 73 0.5333 ± 0.00 0.5667 ± 0.01 0.5933 ± 0.02
blood_donation 4c0d 748 0.7673 ± 0.00 0.9807 ± 0.02 0.9740 ± 0.01
breast_cancer 3c6d 286 0.5189 ± 0.03 0.6324 ± 0.17 0.7225 ± 0.04
heart_statlog 6c7d 270 0.6722 ± 0.00 0.6833 ± 0.04 0.7676 ± 0.02
iris 4c0d 150 0.7133 ± 0.02 0.8866 ± 0.03 0.9198 ± 0.03
somerville 0c6d 143 0.5345 ± 0.00 0.5345 ± 0.00 0.6034 ± 0.05

Table 2: The test accuracy of different scenarios with LLM on each dataset. The data type and size are provided
correspondingly (c means continuous variable, d means discrete variable).

main, offering potential directions for future im-
provement. Firstly, due to the inherent limitations
of language models in numerical understanding,
we employs a quantile-based discretization strategy
to transform numerical features into textual descrip-
tions. While this approach enhances the compatibil-
ity of numerical data with the language processing
capabilities of LLMs, it may introduce a loss of
numerical precision, especially in tasks requiring
detailed numerical comparisons or trend analyses.
Further studies could investigate approaches that
better retain numerical information, such as utiliz-
ing numerical embeddings or implementing more
effective discretization techniques. Secondly, the
direct use of LLMs to generate results for tabular
prediction presents interpretability challenges, as
these models function as complex black-box sys-
tems, lacking transparency of the reasoning process.
In future work, we might explore the incorpora-
tion of chain-of-thought reasoning, which decom-
poses inference into a series of explicit, step-by-
step processes. This method could reveal how the
LLM extracts key information from tabular data
and reaches conclusions, thereby providing greater
clarity into its decision-making mechanisms.

6 Conclusion

In this paper, we propose a resource-efficient so-
lution for tabular prediction tasks based on LLM
APIs. By encoding instances through an LLM to
calculate instance similarity, we retrieve prompt
instances for a target unlabeled instance based on

their similarity, thereby enhancing LLM’s inductive
and interpretative ability for task-specific features
and ultimately accomplishing effective analogical
reasoning and accurate predictions for unlabeled
instances. Unlike prior research, our approach re-
quires no training or fine-tuning, nor does it rely on
additional data annotation or synthesis; it operates
solely using LLM APIs and the intrinsic informa-
tion of dataset. From this perspective, our method
is both highly competitive and innovative for tabu-
lar prediction in terms of resource efficiency.
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Dataset Source
(id)

Task description Features

caesarian OpenML
(42901)

This dataset contains information about caesarian
section results of pregnant women, with the objec-
tive of predicting whether a woman will undergo
normal or caesarian delivery.

age; delivery number; delivery time;
blood pressure; heart problem

chlamydia OpenML
(535)

This dataset contains results of individuals that
tested for chlamydia, with the objective of predict-
ing whether a person will test positive or negative
for chlamydia.

age; gender; race

diabetes OpenML
(37)

This dataset contains diagnostic measurements
taken from the National Institute of Diabetes and
Digestive and Kidney Diseases, with the objective
of predicting whether a patient will test positive or
negative for diabetes.

number of times pregnant; plasma glu-
cose concentration; diastolic blood pres-
sure; triceps skin fold thickness;2-hour
serum insulin; body mass index; dia-
betes pedigree function; age

glass OpenML
(41)

This dataset contains different minerals in glass,
with the objective of predicting whether the glass
was a type of "float" glass or not.

refractive index; Sodium; Magnesium;
Aluminum; Silicon; Potassium; Cal-
cium; Barium,Iron

haberman OpenML
(43)

This dataset contains cases from a study about the
survival of patients who had undergone surgery for
breast cancer.

age; patient’s year of operation; number
of positive axillary nodes detected

tae OpenML
(48)

This dataset contains evaluations of teaching per-
formance over teaching assistant assignments, with
the objective of predicting their class scores: low,
medium, or high.

being native English speaker; course in-
structor; course; semester; class size

environment OpenML
(678)

This dataset contains indicators for predicting
whether the environment is positive or negative.

ozone; radiation; temperature

hamster OpenML
(708)

This dataset contains indicators for predicting
whether the hamster is ill or healthy.

lung; heart; liver; spleen; spleen

blood_donation UCI (176) This donor dataset is taken from the Blood Transfu-
sion Service Center, with the objective of predicting
whether he/she will donate blood.

months since last donation; total num-
ber of donation; total blood donated;
months since first donation

breast_cancer UCI (14) This dataset contains information collected from
breast cancer patients, with the objective of predict-
ing whether a patient will experience tumor recur-
rence.

age; menopause; tumor size; number of
affected lymph nodes; nodular capsules;
deg-malig; breast side; breast-quad; ra-
diotherapy

heart_statlog UCI (145) This dataset contains diagnostic measurements
about individuals, with the objective of predicting
whether a person has heart disease or not.

age; sex; chest pain; resting blood
pressure; serum cholesterol; fasting
blood sugar; electrocardiographic; max-
imum heart rate; angina; oldpeak; slope;
major-vessels; thal

iris UCI (53) This dataset contains the attributes of iris flowers,
with the objective of predicting the type of iris plant:
virginica, versicolor, and setosa.

sepal length; sepal width; petal length;
petal width

somerville UCI (479) This dataset contains ratings collected from
Somerville Happiness Survey, with the objective
of predicting whether a resident is happy or un-
happy about the place.

availability of information about the city
services; cost of housing; overall qual-
ity of public schools; trust in the local
police; maintenance of streets and side-
walks; availability of social community
events

Table 3: The task description and features of each dataset.

Shwartz-Ziv and Armon, 2022). Current tabular
deep learning models typically require significant
computational resources, including large model
parameters, substantial training datasets, and ad-
vanced hardware. Our study introduces an effi-
cient, training-free approach, contributing to the

exploration of more resource-efficient solutions in
tabular deep learning research.

B Dataset Details

All the data used in this study comes from pub-
licly available datasets on OpenML and UCI. Ta-
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ble 3 lists the details of all datasets, including their
sources, task descriptions, and features.

C Prompt Details

Figure 2 shows the prompt template used for LLM
in our method. <task description> and <classes>
are provided by dataset. <serialized labeled in-
stance> are prompt instances retrieved from the
dataset based on target instance. The serialization
method for instance follows the format described
in §2.1.

You are a helpful data analyst. I'll give
you a tabular dataset's task description,
features, label classes, and some labeled
instances in json format, from which you
will make classification prediction for
new instance. No analyzing, directly give
the prediction answer, there can only be
one category of prediction.

Task description: <task description>
Features: <features>
Target label classes: <classes>
Labeled instances: 
<serialized labeled instance>

Now use the provided metadata and
instances to infer by analogy about the
label of this new instance: 
<serialized unlabeled instance>

Figure 2: The prompt template used for tabular predic-
tion.
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