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Abstract

Tabular data, which accounts for over 80% of
enterprise data assets, is vital in various fields.
With growing concerns about privacy protec-
tion and data-sharing restrictions, generating
high-quality synthetic tabular data has become
essential. Recent advancements show that large
language models (LLMs) can effectively gener-
ate realistic tabular data by leveraging seman-
tic information and overcoming the challenges
of high-dimensional data that arise from one-
hot encoding. However, current methods do
not fully utilize the rich information available
in tables. To address this, we introduce AI
Generative Table (AIGT) based on prompt en-
hancement, a novel approach that utilizes meta-
data information, such as table descriptions
and schemas, as prompts to generate ultra-high-
quality synthetic data. To overcome the token
limit constraints of LLMs, we propose long-
token partitioning algorithms that enable AIGT
to model tables of any scale. AIGT achieves
state-of-the-art performance on 14 out of 20
public datasets and two real industry datasets
within the Alipay risk control system.

1 Introduction

Given the prevalence of tabular data in practical
applications, synthesizing high-quality tabular data
is an essential task. It ensures privacy protection,
enhances the generalization capabilities of machine
learning models, and boosts performance in sce-
narios with limited samples. However, this task
is fraught with unique challenges, including speci-
ficity, impurities, class imbalances, and privacy
concerns.

Traditional approaches to tabular data synthe-
sis, such as generative models and statistical meth-
ods, often lose textual information and struggle
with capturing complex feature relationships (Choi
et al., 2017; Park et al., 2018; Xu et al., 2019a;
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Borisov et al., 2022). Recent efforts have explored
the use of language models to incorporate feature
names for better contextual learning. For instance,
GReaT (Borisov et al., 2023) made the pioneer-
ing attempt to generate tabular data using large
language models (LLMs), achieving satisfactory
synthetic data. TapTap (Zhang et al., 2023) fur-
ther enhanced the quality of synthetic data through
table pre-training and applied it to data augmenta-
tion in tabular data for improved performance in
prediction tasks, achieving state-of-the-art (SOTA)
results. However, these methods are constrained
by token limits, limiting their ability to handle arbi-
trarily wide tables. Additionally, they fail to fully
utilize crucial tabular elements such as headers and
column names, resulting in incomplete information
integration.

Recently, Artificial Intelligence Generation and
Creation (AIGC) technologies, including large-
scale language models and automatic image gen-
eration techniques, are driving progress in AI’s
capabilities for content creation and data genera-
tion. Prompt Learning, as an innovative approach,
aligns the pre-training of language models with
specific downstream tasks. By using well-designed
prompts, which include task descriptions, input
data, background information and output indicators,
create a template that directs the model’s attention
and thus improves the accuracy and relevance of
the generated context.

AIGC is more broadly applied to the generation
of multimedia content, such as images, videos, and
audio. Combined with Prompt Learning, AIGC
systems can generate content more accurately ac-
cording to user instructions or needs. However,
The application of AIGC technology in the gen-
eration of tabular data is currently relatively lim-
ited. Although work on table generation based
on large-scale language models has begun to ex-
plore, these efforts have mostly utilized only the
cell values in the tables, without fully leveraging
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the more comprehensive information contained in
the tabular data. We recognize that table meta-
data, such as headers and column names, provides
valuable context often overlooked in analysis. In-
spired by AIGC and Prompt learning, we propose
a prompt-enhanced model that leverages this meta-
data to improve performance. Therefore, we pro-
pose AI Generative Table (AIGT) technique based
on prompt enhancement, which leverages metadata
to enhance the quality and relevance of table gener-
ation.

Methods based on language models inherently
face limitations in generating long sequences of
tokens, which is why previous approaches like
GReaT and TapTap struggled to model tables with
a large number of columns—something very com-
mon in real-world industry data. To address this,
we developed a long-token partitioning algorithm
specifically adapted for AIGT. This approach al-
lows AIGT to effectively handle data synthesis
tasks for tables of any size, overcoming the token
length constraints. We further demonstrate AIGT’s
effectiveness in real-world scenarios such as Ali-
pay’s risk control system for commercial credit and
merchant fraud detection.

Our key contributions are as follows: (1) A
Prompt-Enhanced LM for Tabular Data Syn-
thesis: We utilize the metadata of tables to con-
struct prompt-enhanced language model and de-
sign a series of training techniques to enhance the
capability of table generation. (2) Scalability: Our
proposed partitioning algorithm enables LM-based
generation methods to be scaled to tables of any
size, overcoming the token limit constraints of LM
methods. (3) Superior Performance: We achieve
state-of-the-art results on 14 out of 20 academic
datasets and two real-world industry datasets from
Alipay.

2 Related Works

In this section, we provide a brief background on
prompt engineering and tabular data synthesis ap-
proaches.

2.1 Prompt Engineering

Prompt engineering has recently garnered signif-
icant attention as a technique for enhancing the
performance and usability of AI models, especially
in natural language processing (NLP). As described
by (Lester et al., 2021), a “prompt” involves pro-
viding natural language instructions or commands

to guide an AI model in task completion. This ap-
proach offers several benefits, including increased
model effectiveness, reduced training time and
costs, and improved interpretability and control-
lability. Notable works in this area include those
by (Jiang et al., 2020; Liu et al., 2023; Brown et al.,
2020).

2.2 Tabular Data Synthesis
Existing approaches for tabular data synthesis can
be categorized into four main groups:
Probabilistic Models. These models leverage
probabilistic techniques to synthesize data. For in-
stance, Gaussian copula models (Patki et al., 2016)
are effective for continuous variables but not for
categorical ones. Conversely, Bayesian networks
(Zhang et al., 2017; Aviñó et al., 2018) are adept at
handling categorical data but struggle with contin-
uous variables.
Generative Adversarial Networks. Generative
Adversarial Networks (GANs) have been widely
used to generate tabular data. MedGAN (Arman-
ious et al., 2020) and RGAN (Esteban et al., 2017)
produce healthcare records but face challenges with
mixed data types. TableGAN (Park et al., 2018)
employs Convolutional Neural Networks (CNNs),
demonstrating that synthetic data can perform com-
parably to real data. CTGAN and TVAE (Xu et al.,
2019a) address multimodality with column-specific
preprocessing and Variational Gaussian Mixture
(VGM) models. Other notable works include (Xu
et al., 2019b; Marti, 2020; Jordon et al., 2018; Che
et al., 2017).
Diffusion Models. These approaches utilize diffu-
sion models for data synthesis. TabDDPM (Kotel-
nikov et al., 2023) models both categorical and
continuous values but encounters difficulties with
correlations. SOS (Kim et al., 2022) uses Score-
based Generative Models (SGMs) to handle imbal-
anced data, though it lacks the ability to condition
on both data types.
Language Models. Self-attention models, which
have revolutionized NLP (Vaswani et al., 2017),
have also been adapted for tabular data synthe-
sis. These include encoding models (Lan et al.,
2020; Devlin et al., 2018), sequence-to-sequence
models (Raffel et al., 2020), and auto-regressive
models (Radford et al., 2019). Transformers have
been applied to table classification (Gorishniy et al.,
2021) and joint table-text representations (Tang
et al., 2020; Gong et al., 2020). GReaT (Borisov
et al., 2023) and TapTap (Zhang et al., 2023) gener-
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Figure 1: The architecture of the proposed AIGT. Firstly, AIGT utilizes the collected pre-trained corpus for
pre-training; Then perform fine-tuning training on each downstream table to learn the complex relationships between
features; Finally, based on the trained language model model, sample rows can be composed.

ate synthetic tables but encounter limitations with
wide tables.

3 The Task of Tabular Data Synthesis

To find a data synthesizer G learnt from a table
D and using G to generate a synthetic table Dsyn.
The objective of table generation is to produce data
that is similar in distribution to the original data.
We evaluate the generator G from multiple per-
spectives: (1) Machine Learning Efficiency: When
we train a classifier or regressor on the generated
dataset, can it achieve the accuracy achieved by
training on the original dataset? (2) Data Augmen-
tation: When we add synthetic data to the original
data, will it enhance the classification/regression
task? (3) The difference between the synthetic data
and the original data. We hope that the synthetic
data is not a copy of the original data.

4 Methods

This section introduces the AIGT method for gen-
erating tabular data using prompt-based enhance-
ment. As illustrated in Figure 1, AIGT comprises
five main stages: (1) Prompt Design: Construct
a prompt based on the table’s caption information
and column names. (2) Textual Encoding: Con-
vert table features and their values into sentences,
concatenate these into prompts, and construct data
suitable for model input. (3) Training Procedure:
Utilize a pre-trained Large Language Model (LLM)
on an extensive corpus, and then conduct specific
fine-tuning for downstream tables. (4) Genera-
tion: Generate samples using the fine-tuned auto-
regressive language model. To support tables of

any size, unrestricted by the number of features,
we proposed a Partitioning Algorithm for Long
Tokens to enhance the scalability of our model.

4.1 Prompt Design

To enhance the understanding of table structures
and semantics in language models, we utilize the
metadata of tables to construct prompts. In our
framework, the metadata of the table comprises
information from two parts.

• Caption information: the description of the
dataset, including the purpose of the dataset,
background information.

• Feature information: the names of features,
the target column for prediction, and the mean-
ings associated with the features, especially
the meanings of certain abbreviations.

We define the function prompt that can pro-
cess metadata, which is implemented by calling
the GPT3.51. The corresponding code is available
in the appendix B.

4.2 Textual Encoding

Feature Serialization. The standard large lan-
guage model expects text as input. Thus, AIGT
transforms each row from the dataset into a text
format. We follow the previous work (Borisov
et al., 2023) by serializing each sample into a text
sequence. By concatenating the feature names and
values of the table into sentences, that is, "[Feature]
is [Value]". Considering that tabular data follows

1OpenAI API: gpt-3.5-turbo
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Figure 2: Training Strategies for AIGT. Here, Prompt’s
losses are not calculated, the label feature was fixed
in the first place, the other features were pre-mutated
randomly.

the invariance of feature arrangement, we apply an
arrangement function P to randomly shuffle the
order of features when encoding a table. Formally,
given a table D = {(xi, yi)}, Let xij be the j-th
feature value of the i-th sample and Fi represents
the feature name in the i-th column. The textual
encoding is to transform the i-th sample xi into a
splice of sentences separated by commas Ti =
(Ti,k1 , Ti,k2 , ..., Ti,km), where [k1, k2, ..., km] =
P ([1, 2, ...,m]) and Ti,j = (Fj is xij) and m is
the total number of columns.
Label Prioritization. We believe that the mean-
ing of features and labels in tables is different,
and labels are a summary of all features. It is
crucial to prioritize the label column during the
serialization process. By placing the label col-
umn at the forefront, we ensure that the model can
immediately recognize the target variable, which
can enhance the overall understanding and perfor-
mance of the model. Therefore, given a table
D = {(xi, yi)} along with a prompt, which is
generated based on the table metadata (refer to
Section 4.1), where Fy represents the name of
the label, the encoded sentence becomes Ti =
(prompt Fy is yi, Ti,k1 , Ti,k2 , ..., Ti,km), where
[k1, k2, ..., km] = P ([1, 2, ...,m]).
Prompt-Enhanced Loss. Similar to the loss de-
sign of most prompt engineering methods (Lester
et al., 2021), AIGT’s training strategy only calcu-
lates non prompt loss calculations and ignores the
loss calculations of the prompt itself, to achieve bet-
ter table generation quality. We show these strate-
gies in Figure 2.

4.3 Training Procedure

Pre-Training. We perform pre-training on a large-
scale dataset upstream. Specifically, following
the first two steps, we convert each row of ta-
ble data into text to form the pre-training cor-
pus T . Each sentence t ∈ T can be encoded
into a sequence of tokens using tokenize(t) =
(w1, ..., wN ). In general, AIGT factorizes the
probability of generating t in an auto-regressive

manner as p(t) =
N∏
i=1

p(wi|w1, ..., wi−1). During

pre-training, AIGT is optimized towards maxi-

mizing the probability
∥T ∥∏
i=1

p(i) on the entire pre-

training corpus. The pre-training process can
initiate with an auto-regressive language model,
thereby capitalizing on the extensive knowledge
that these models have already acquired.
Fine-tuning. The fine-tuning of AIGT on down-
stream tables follows a similar process as pre-
training. The only difference is that fine-tuning
aims to target specific downstream tables.

4.4 Generation

Sampling. We have trained an auto-regressive
model q through fine-tuning on the text training
dataset. This model predicts the potential sub-
sequent labels w1, ..., wk−1 for the classification
output distribution z = q(w1, ...wk−1). Multiple
sampling strategies can be utilized in this scenario.
Typically, the next token w is selected through
weighted sampling from the output z of the LLM,
guided by a temperature parameter T > 0,

p(w|w1, ..., wk−1) =
e(zw/T )∑

w′∈W e(zw′/T )
. (1)

Following GReaT (Borisov et al., 2023), the
model is initialized with specific conditions and
LLM is tasked with sampling the remaining tokens
to complete the feature vector in its textual repre-
sentation. Although we fix the position of the label
in the first place during training, it is possible to
generate data according to a specific feature col-
umn; one simply needs to prepend the correspond-
ing label. For example, the provided condition can
be "prompt [Label] is [V alue]". Here, the prompt
is generated from the semantic information of the
table metadata as Section 4.1.
Re-Labeling. We observe that in TapTap (Zhang
et al., 2023), the re-labeling through the table pre-
diction model effectively enhances the ability to
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Figure 3: The Process of Long Token Partition Algo-
rithm in AIGT. Divide the table into sub-tables based
on columns, with overlaps between the columns of the
sub-tables. Use the data from the sub-tables to train and
generate the model.

predict labels of synthesized data. Given the origi-
nal train datasets D = {(xi, yi)}, similar to label-
ing technique, we fine-tune AIGT on it and gen-
erate synthesized data D′ = {(x′i, y′i)}. Then, a
tabular predictor P , e.g., LightGBM, is trained to
fit D, and then the synthesis label y′i can be re-
placed by y′i = P (x′i).

4.5 Partitioning Algorithm for Long Tokens

In practical industrial scenarios, datasets are large
with numerous features, leading to the number of
tokens to exceed LLM input limits. To address this
scalability challenge for LLM-based methods, we
propose a long-token partitioning algorithm that
integrates seamlessly with existing training and
generation methods.
Partition Training. As shown in the Figure 3, first,
we partition the features to ensure that there are
some overlapping columns between each region,
and then perform mixed training to enable the large
language model to learn the feature associations
of different partitions. The function of the cover
column is to alleviate to some extent the missing
feature associations between different regions. In
our industrial scenario experiment, the number of
overlapping columns is set to 1, and due to the
small number of features on academic datasets,
partitioning algorithms are not required.
Partition Generation. When generating, it is gen-
erated from the back to the front. After each parti-
tion is generated, the remaining partitions are gen-
erated using the cover part of the generated parti-
tion as the starting distribution column, and finally

merge the partitions.

5 Experiments

In Section 5.1, we outline the datasets, the baseline
methods utilized in our experiments. In Section 5.2,
we conducted extensive experiments, encompass-
ing the machine learning efficiency of generated
data, Distance to Closest Record (DCR) distance,
data augmentation, and the application of our par-
titioning algorithm across both public and indus-
trial datasets. To further show the excellence of
our approach, we include additional analysis in
the appendix C, such as discriminative metrics and
feature statistical similarity between generated and
original data.

5.1 Experimental Setup

Datasets. The experimental dataset consists of
three parts as following:

(1) Upstream Large-scale Cross-table Pre-
training Dataset. We collected approximately
1000 tables with their metadata, sourced primarily
from OpenML 2, referred to as STABS. We have
made STABS open-source in the hope of contribut-
ing to and advancing the community focused on
pre-training tabular data. More information about
STABS can be seen in the appendix A.1.

(2) Downstream Open Public Dataset. For
downstream tabular tasks, we utilize a diverse set
of 20 public benchmark tabular datasets to test the
efficacy of our model. These datasets, sourced from
OpenML, UCI repository and Kaggle, contain both
binary, multi-class classification and Regression
tasks. Information regarding each dataset is pro-
vided in the Table 1 .

(3) Ailpay Dataset. Datasets in real-world in-
dustrial settings generally comprise a multitude of
column names. To evaluate the efficiency and per-
formance of long token partitioning, we utilized
two industrial datasets from Alipay’s risk control
system. We show the details in Table 2.

Baseline Methods. We evaluate AIGT along-
side five other SOTA tabular data synthesis algo-
rithms: CTGAN, TVAE, TabDDPM, GReaT and
TapTap. CTGAN (Xu et al., 2019b) based on gen-
erative adversarial networks (Creswell et al., 2018)
for tabular data, allowing the generation process
to be conditional only on a single discrete feature.
The same author proposed TVAE (Xu et al., 2019b),

2https://www.openml.org/
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Abbr Name #Samples # Num # Cat Task type

BW Breast-w 699 9 0 Binclass
CG Credit-g 1000 7 13 Binclass
DI Diabetes 768 8 0 Binclass
EL Electricity 45312 8 0 Binclass
SI Sick 3772 7 22 Binclass
AD Adult 48842 15 6 Binclass
WI Wilt 4839 6 5 Binclass
CM Cmc 1473 9 0 Multiclass
VH Vehicle 846 18 0 Multiclass
SA Satimage 6430 36 0 Multiclass
AF Analcatdata_dmft 661 2 2 Multiclass
CR Car 1728 0 6 Multiclass
SE Segment 2310 15 0 Multiclass
EU Eucalyptus 736 14 5 Multiclass
LO Loan 5000 12 0 Binclass
HE Heloc 10460 22 1 Binclass
CA California Housing 20640 8 0 Regression
AG Crab Age 3894 7 1 Regression
IN Insurance 1338 3 3 Regression
KI King 21613 18 1 Regression

Table 1: Information of Downstream Tabular Datasets.
Dataset abbreviations are in parentheses. # Num and #
Cat represent the number of continuous and categorical
columns.

Dataset Name # columns # train # valid # test PR

SYH 251 466320 51814 29187 0.06
NonBD 45 6148904 1537226 960766 0.05

Table 2: Statistical Information of Alipay Datasets. The
two tables come from Alipay’s financial risk control sys-
tem, and their goals are binary, PR means the proportion
of instances that are labeled as positive.

a variational autoencoder (VAE) for tabular data.
TabDDPM (Kotelnikov et al., 2023) adapts diffu-
sion models to tabular data. GReaT and TapTap,
which utilize language-based approaches, adopt a
pre-trained DistilGPT-2 model. This DistilGPT-2
framework also serves as the foundational model
for AIGT. To illustrate the potential of larger mod-
els, our approach incorporates Llama3.1-8B as a
foundational model, denoted as AIGT-L.

Baseline Implementation. For CTGAN and
TVAE, we set the training epochs to 300, except for
those datasets that have less than 5k data. Due to
their small sample size, we will set a larger number
of training epochs to 500, to ensure better train-
ing results on these small datasets. For the diff-
sion method TabDDPM, we employ default set-
tings. For GReaT, TapTap and AIGT, we use the
distilGPT-2 as framework. We pretrained AIGT
for 10w steps with the learning rate 1× 10−4 . We
finetune the GReaT, TapTap and AIGT for 100
epoch. The batch size is 32 for all datasets. We
use the AdamW optimizer for the proposed genera-
tive models, with the learning rate 5 × 10−5. For

AIGT-L, We use the AdamW optimizer with the
learning rate 1× 10−5.

Environment Experiments run on a machine
equipped with 4 NVIDIA A100-SXM4-80GB GPU
and 100 GB RAM , Intel(R) Xeon(R) Platinum
8369B CPU @ 2.90GHz CPU under Ubuntu 20.04
with 64 cores.

5.2 Overall Performance

In this section, we will demonstrate the perfor-
mance of the proposed AIGT method through mul-
tiple experiments. Additionally, we also present the
effects of the partitioning algorithm on both public
and industrial datasets.

Machine Learning Efficiency (MLE). In this
section, we compare AIGT to alternative genera-
tive models in terms of machine learning efficiency.
Each dataset was split into two parts: 80% for
training purposes and 20% reserved for testing. Ini-
tially, each generative algorithm is trained on the
training data. Subsequently, the trained model is
utilized to generate synthetic data of equivalent
size. This synthetic data is then used to train a
classification/regression model, which is then eval-
uated using the real test set. We expect that for
high-quality synthetic data, models trained on this
data will perform comparably to those trained on
real data. To assess the effectiveness of the ma-
chine learning models, we apply the LightGBM
model, a leading GBDT method, to evaluate their
efficiency. We adopt the AUC score as the evalua-
tion metric for classification tasks and employ R2

score for regression tasks. For a fair comparison we
use the the standard hyper-parameter tuning budget
of 50 trials. Our full search space is provided in
the Appendix D and all the experimental results
are averaged over 10 different random seeds. The
result was showed in Table 3, Note that we match
or exceed state-of-the-art on 14 out of 20 datasets.

Distance to closest records histogram To ver-
ify that the generated data is similar to the orig-
inal sample, rather than an exact replica, this
metric calculates the distance from the nearest
record in the original training dataset Dtrain. For
each synthesized record s, it is given by DCR
(s)=min{distance(s, si)|si ∈ Dtrain}. As a dis-
tance measure, we use the L1 norm for numerical
features. For categorical features, we set the differ-
ence to 0, otherwise it is set to 1. Note that mod-
els such as CTGAN and TabDDPM have a fixed
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Dataset BW CM CG DI VH EL SA EU SI AF

Real 99.2±0.1 74.9±0.1 76.9±1.8 82.7±1.7 93.9±0.0 97.6±0.1 99.1±0.0 89.1±0.0 96.3±0.5 52.5±1.1

CTGAN 97.5±2.6 50.1±3.1 52.4±4.0 75.0±2.6 58.8±2.4 82.4±0.4 95.4±0.2 53.1±3.5 65.8±0.8 53.8±2.4

TVAE 98.9±0.3 59.3±0.9 74.8±2.1 80.3±0.9 86.6±0.4 84.0±1.1 97.3±1.0 84.9±0.8 93.2±1.5 53.0±2.3

TabDDPM 99.0±0.2 71.7±0.8 71.0±1.2 78.5±2.2 59.8±0.7 89.1±0.1 78.8±4.2 69.5±0.7 96.5±0.7 52.5±0.6

GReaT 98.2±0.4 56.4±3.2 53.9±3.1 59.2±0.3 64.3±4.5 92.3±0.3 95.9±0.3 81.1±2.1 96.2±1.2 53.1±2.2

TapTap 99.0±0.2 71.5±0.4 76.3±1.6 79.7±0.2 90.8±1.6 91.1±0.2 97.8±0.2 86.8±0.7 98.4±0.8 53.2±0.7

AIGT 98.5±0.1 71.6±0.6 78.1±2.3 81.7±0.5 91.5±1.1 94.3±0.2 97.8±0.1 86.9±1.0 97.9±1.6 53.8±0.9

AIGT-L 98.2±0.3 72.1±0.6 76.5±1.3 82.2±0.1 91.5±0.1 93.3±0.5 97.9±0.4 86.6±0.5 97.8±1.4 54.4±1.0

Dataset AD WI CR SE LO HE IN AG CA KI

Real 92.7±1.3 99.1±0.0 100.0±0.0 99.3±0.0 99.8±0.0 80.9±0.1 88.0±0.0 53.2±0.3 85.3±0.2 87.8±0.1

CTGAN 89.4±0.2 53.2±3.6 56.7±1.9 86.6±2.0 49.0±1.4 40.6±2.0 37.7±6.4 27.6±1.6 50.1±0.1 55.3±1.8

TVAE 87.4±0.4 80.6±1.8 89.1±2.3 97.7±0.2 97.2±0.4 61.0±4.0 61.0±3.2 20.5±1.0 69.0±0.3 72.3±2.5

TabDDPM 90.6±0.1 98.9±0.3 99.3±0.2 98.3±0.1 98.6±0.2 74.6±0.5 81.0±0.1 45.8±0.3 80.0±0.2 75.0±3.0

GReaT 90.8±0.3 96.1±1.1 91.4±2.0 98.1±2.0 97.8±0.2 75.3±0.4 57.9±5.1 41.2±0.8 75.6±0.3 61.8±2.1

TapTap 90.0±0.4 97.7±0.9 99.4±0.2 98.6±0.1 99.5±0.1 79.8±0.3 88.0±0.1 51.4±0.3 82.6±0.1 87.7±0.3

AIGT 89.8±0.2 97.4±0.8 99.8±0.1 98.6±0.1 99.4±0.2 80.3±0.1 87.9±0.2 53.3±0.2 82.4±0.1 88.0±0.2

AIGT-L 86.7±1.4 98.8±0.2 99.9±0.7 98.4±0.1 99.4±0.2 79.0±0.3 87.4±0.5 53.1±0.5 83.2±0.1 87.5±0.4

Table 3: ML efficiency experiment. We used 20 real-world datasets, for classification tasks, auc score is reported.
For regression datasets, R2 is reported. The values of machine learning efficiency computed with regards to the
state-of-the-art tuned LightGBM model. The best results are marked in bold, while the second best results are
marked with underscores.

Figure 4: Distance to closest record (DCR) distribution for the California Housing dataset. “Original” denotes the
DCR of the original test set with respect to the original train set. The experimental results illustrate that each method
does not copy samples from the train set.

DCR score. However, generative algorithms based
on language models can produce more novel sam-
ples by adjusting the temperature coefficient. For
the sampling step of GReaT, TapTap and AIGT,
we set the temperature parameter T to 0.7 for all
datasets. We compare the distribution of the mini-
mal distances of the generated samples to the train-
ing data set. The visualization of the minimum
distance distribution can be found in Figure 4.

Data Augmentation. When dealing with
datasets that are relatively small in sample size, our
approach is to boost the performance of machine
learning models by supplementing these datasets
with synthetic data. We integrate the synthetic
data with the original training data to create an
augmented training set. Following this, we conduct
model training on this enlarged training set and
assess its performance on the test set. The results
are presented in Table 4, which show that AIGT is

able to perform better than all baseline methods on
most datasets.

Effectiveness of Partition Generation Algorithm.
To validate our partitioning algorithm, we selected
datasets with more than 20 columns from pub-
lic datasets and two Real-world industrial Ailpay
datasets. We divided the academic datasets and the
NonBD table into two partitions, and partitioned
the SYH table into five segments. Utilizing the
synthetic data generated through our partitioning
algorithm, we evaluated the ML efficiency of the
synthetic datasets and compared it with the genera-
tion methods that do not employ language models.
The results of the partitioning algorithm are shown
in Table 5. It can be seen that even with the par-
titioning algorithm, our method still outperforms
models not using language models in efficiency.
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Dataset BW CM CG DI VH EL SA EU SI AF

Real 99.2±0.1 74.9±0.1 76.9±1.8 82.7±1.7 93.9±0.0 97.6±0.1 99.1±0.0 89.1±0.0 96.3±0.5 52.5±1.1

CTGAN 99.0±0.1 72.8±0.7 72.6±0.4 80.2±0.7 92.4±0.0 95.5±0.1 99.0±0.0 88.1±0.0 99.8±0.5 53.3±1.1

TVAE 99.1±0.1 73.2±0.7 75.6±1.6 83.0±0.7 92.0±0.6 95.4±0.1 99.0±0.0 89.1±0.8 99.7±0.1 53.1±1.1

TabDDPM 99.1±0.2 73.3±1.6 74.7±1.2 82.2±1.2 92.5±0.0 95.5±0.1 99.1±0.0 89.1±0.5 99.7±0.1 53.0±0.5

GReaT 99.1±0.2 71.8±0.8 72.6±1.9 79.5±2.0 91.9±0.3 96.8±0.0 98.6±0.1 88.8±0.7 99.8±0.0 53.1±0.2

TapTap 99.2±0.2 73.8±0.4 75.7±1.4 80.9±1.0 93.2±0.6 97.1±0.2 99.1±0.4 89.2±2.0 99.8±2.4 53.1±0.8

AIGT 99.2±1.1 73.5±0.9 79.5±2.6 81.7±1.7 93.6±0.4 97.9±0.2 99.0±0.6 89.2±2.0 99.9±0.2 53.8±0.5

AIGT-L 99.2±0.1 74.2±0.6 76.6±0.4 82.3±0.1 93.0±0.4 97.1±0.1 99.0±0.6 88.6±0.4 99.9±0.2 53.8±1.0

Dataset AD WI CR SE LO HE IN AG CA KI

Real 92.7±1.3 99.1±0.0 100.0±0.0 99.3±0.0 99.8±0.0 80.9±0.1 88.0±0.0 53.2±0.3 85.3±0.2 87.8±0.1

CTGAN 92.4±0.1 97.5±0.6 96.4±1.1 99.3±0.1 98.9±0.4 75.4±0.6 59.3±6.0 49.8±0.6 81.4±0.5 82.3±1.1

TVAE 92.4±0.1 97.2±0.8 98.0±0.6 99.3±0.1 99.8±0.5 77.3±0.3 82.4±3.2 49.3±0.4 81.5±0.1 82.4±0.3

TabDDPM 92.3±0.1 99.5±0.2 99.8±0.1 99.4±0.0 99.8±0.1 80.2±0.3 86.5±0.6 53.0±0.5 84.1±0.2 82.4±1.0

GReaT 92.7±0.1 99.1±0.3 99.8±0.2 99.3±0.1 99.8±0.1 80.4±0.1 81.9±4.3 53.0±0.5 82.3±0.2 78.0±1.8

TapTap 91.9±0.2 98.9±0.7 99.9±0.6 99.8±0.0 99.8±0.4 81.0±0.4 88.1±0.2 53.0±0.6 85.2±2.0 87.6±0.5

AIGT 91.7±0.4 99.3±0.2 100.0±0.0 99.7±0.8 99.7±0.4 81.1±0.1 88.2±0.1 54.2±0.2 85.2±0.1 87.3±3.0

AIGT-L 92.2±0.7 99.3±0.4 100.0±0.4 99.3±0.4 99.8±0.4 79.2±0.2 88.1±0.8 54.2±0.1 85.2±0.1 88.7±1.6

Table 4: Data Augmentation. "Real" means training with the original data. Each generative methods means training
with the original data plus the synthetic data.

Dataset CG SA EU SI HE KI SYH NonBD

CTGAN 52.4±4.0 95.4±0.2 53.1±3.5 65.8±0.8 40.6±2.0 55.3±1.8 45.7±0.8 78.6±0.6

TVAE 74.8±2.1 97.3±1.0 84.9±0.9 93.2±1.5 61.0±4.0 72.3±2.5 54.6±0.5 86.3±1.2

TabDDPM 71.0±1.2 78.8±4.2 69.5±0.7 96.5±0.7 74.6±0.5 75.0±3.0 56.1±0.7 79.6±1.8

AIGT 78.1±2.3 97.8±0.1 86.9±1.0 97.9±1.6 80.3±0.1 88.0±0.2 ✗ ✗

AIGT-part 74.3±1.1 97.8±0.2 83.9±0.8 96.4±0.4 78.6±0.1 86.6±0.8 57.2±1.6 88.2±0.2

Table 5: ML efficiency experiment for partition generation algorithm. The public datasets and the NonBD table
were devided into two partitions, and partitioned the SYH table into five segments. Below the backbone model is
LightGBM. ✗ indicates that the calculation cannot be performed due to the excessive columns in the table.

AG CG DI IN KI EL CR LO
0.4
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1

AIGT
w.o. Metadata Prompt

w.o. Label Prioritization

Figure 5: Ablation experiments related to training strate-
gies. The y-axis is the average metric values across all
datasets with LightGBM.

5.3 Ablation Analysis

Effects Analysis of Training Strategy. We se-
lected 8 datasets and tested ablation experiments
under the following different conditions: (1) w.o.
Metadata Prompt. This refers to AIGT without
the metadata from tables serving as fixed prompts.

(2) w.o. Label Prioritization. We consider labels
as features, shuffling them with other features for
use in the training and generation processes, rather
than moving the label column to the first position
during the serialization process. The experimental
results are shown in Figure 5, we can see that the
prompt-enhanced method indeed has a good gain,
demonstrating the effectiveness of our method.

Performance Analysis of Partition Algorithm.
We evaluate the impact of the number of partitions
in our partitioning algorithm on the synthesis of
data. Four public datasets are selected for this pur-
pose. The results are shown in Figure 6.

6 Conclusion

In this paper, we introduce a novel data-synthesis
method for language models called AIGT, en-
hanced with prompts. This method utilizes the
metadata of tables, guiding the language model to
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SI EU HE KI

0.8
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1
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AIGT AIGT-2 AIGT-4

Figure 6: Analysis of the number of partitions for par-
tition generation algorithm. "AIGT" signifies no parti-
tioning, while "AIGT-2" denotes partitioning into two
sections,"AIGT-4" denotes partitioning into four sec-
tions.

generate data more effectively.
Existing table generation methods based on lan-

guage models are unable to tackle the issue of long
tokens. To overcome this limitation, we’ve de-
signed a long-token partitioning algorithm, can sup-
port the generation of tabular data at any scale. Our
approach is more flexible, capable of handling tab-
ular data with a larger number of feature columns.
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Limitations

A primary limitation of our method is its processing
speed. While we leverage the powerful capabilities
of LLMs, this also results in increased running time
and GPU memory consumption compared to more
lightweight approaches such as GANs. Detailed
comparisons are provided in appendix C.3. Further-
more, our current method for handling numerical
values treats numbers as characters, applying to-
kenization and transformation without additional
processing. This approach is unable to capture
the magnitude relationships of numerical values,
focusing solely on semantic similarity during tok-
enization. Future work will aim to develop more
advanced encoding techniques for numerical values
to address this limitation.
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A Dataset

A.1 More Information about STABS

In this paper, we collected and filtered out 978
publicly available tabular datasets to construct the
pre-training corpus for AIGT. Significant effort
has been invested in conducting thorough data fil-
tering and cleaning procedures to uphold dataset
quality. For each table, our data cleaning protocols
include, but are not limited to:
(1) Check the semantic degree of the column names.
For example, the column names {user_age, weight,
monthly_income} have high semantic information,
while the column names {f1, f2, xyz} have low. We
calculate a cumulative semantic relevance score
for each table and, as part of our protocol, exclude
tables which less than 50% of the semantic score.
(2) Check the missing values. The datasets with
more than 40% missing values are discarded. Be-
cause too many missing values can easily lead to bi-
ased or inaccurate results in the pre-training phase.
(3) Data Preprocessing. For categorical features
in the tables, we restore them to their original tex-
tual values whenever possible. As for numerical
features, we employ normalization to mitigate the
impact of inconsistent measurement units across
different tables (e.g., kilograms vs. grams).

A.2 More Details about Downstream Dataset
We provide the urls of the public datasets in Table
6.

Abbr Link

BW https://www.openml.org/d/15
CG https://www.openml.org/d/45058
DI https://www.openml.org/d/42608
EL https://www.openml.org/d/151
SI https://www.openml.org/d/41946

AD https://www.openml.org/d/1590
WI https://www.openml.org/d/40983
CM https://www.openml.org/d/45054
VH https://www.openml.org/d/42863
SA https://www.openml.org/d/42858
AF https://www.openml.org/d/469
CR https://www.openml.org/d/40975
SE https://www.openml.org/d/42860
EU https://www.openml.org/d/43925
LO https://www.kaggle.com/datasets/burak3ergun/loan-data-set
HE https://www.kaggle.com/datasets/averkiyoliabev/home-equity-line-of-creditheloc
CA https://www.kaggle.com/datasets/camnugent/california-housing-prices
AG https://www.kaggle.com/datasets/sidhus/crab-age-prediction
IN https://www.kaggle.com/datasets/mirichoi0218/insurance
KI https://www.kaggle.com/harlfoxem/housesalesprediction

Table 6: The urls of Downstream Tabular Datasets.

B Prompt Templates

In our implementation, we use the gpt-3.5-turbo
model via the OpenAI-API to construct the func-
tion prompt. Here we presented the code to call
the GPT API in Listing 1:

Our prompt input to gpt-3.5 is shown as Listing
2. We utilize the table’s metadata M to construct
prompt input. In our framework, we actively collect
metadata from two sources:

• The caption information (C): the description
of the dataset, including the purpose of the
dataset, background information.

• Feature information(F): the name of columns
and the meaning of columns.

C Further Experiments

C.1 Statistical similarity
To accurately assess the dependencies among
columns in synthetic data, we calculate pair-wise
correlation matrices separately for both real and
synthetic datasets. We use the Pearson correlation
coefficient to analyze continuous variables, which
produces results within the range of [-1, +1]. For
categorical features, we use the uncertainty coef-
ficient for evaluation, yielding values within the
range of [0, 1]. Additionally, we use the correlation
ratio to investigate the relationship between cate-
gorical and continuous variables, which also yields
values within [0, 1]. Subsequently, we compute the
Frobenius norm between the pairwise correlation
matrices of the real and synthetic datasets and refer
to it as the Correlation Distance. It is worth noting
that a lower Correlation Distance value signifies a
higher quality of data synthesis. The mean Correla-
tion distance of 20 datasets was presented in figure
7.

C.2 Discriminator Measure.
In order to verify whether the data we generated
can be easily distinguished from the original data,
we trained a LightGBM discriminator (with hyper-
parameter tuning) on a combination of the gener-
ated training set (with a label of 0) and the original
training set (with a label of 1). Following this, we
reported the test accuracy on a test data set, which
comprises equal portions of samples from both the
generated test set and the real test set. The scores,
which are displayed in Table 7, demonstrate the
superior performance of AIGT.

https://arxiv.org/abs/2305.09696
https://arxiv.org/abs/2305.09696
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1 import requests
2 api_key = 'openai_api_key '
3 url = 'https ://api.openai.com/v1/engines/davinci -codex/completions '
4 headers = {
5 'Content -Type': 'application/json',
6 'Authorization ': f'Bearer {api_key}'
7 }
8 data = {
9 'prompt ': '',

10 'max_tokens ': 200
11 }
12 response = requests.post(url , headers=headers , json=data)
13 if response.status_code == 200:
14 result = response.json()
15 print(result['choices '][0][ 'text'].strip())
16 else:
17 print(f"Error: {response.status_code}")
18 print(response.json())

Listing 1: Code for calling GPT3.5

1 prompt=
2 "Following is a description of a dataset , a profile of an object from the dataset ,

and a target description. The objective is to predict the target based on the
information provided about the object .\n

3 Dataset description: \{table caption \},\n
4 feature name: \{ columns \}.\n
5 Target: \{ target column \}.\n
6 the meaning of columns :\{the meaning of features \}
7 Information to be returned includes: 1) a brief summary of the table description (

such as field and background); 2) the target columns; 3) the features and their
explanations. Here is an example output: The dataset is about economics , the
target is income , and the features along with their explanations are as follows:
ID represents a unique identifier for each user; Age denotes the age of each

user. Make it brief but informative. Try to limit it to 200 words."

Listing 2: prompt construction
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Dataset CTGAN TVAE TabDDPM GReaT TapTap AIGT

BW 99.9±0.2 99.8±0.3 57.9±2.8 69.7±1.1 67.2±2.6 71.9±2.5
CM 78.6±2.3 89.9±0.9 55.7±1.4 95.5±0.4 95.7±0.5 54.0±2.4
CG 90.0±1.4 99.6±0.2 75.3±5.8 99.3±0.6 99.5±0.5 75.0±4.5
DI 97.7±1.2 98.9±0.8 88.6±2.3 76.1±2.7 59.8±3.5 73.5±2.7
VH 99.4±0.6 86.9±2.9 100.0±0.0 88.4±1.0 78.8±1.7 76.4±3.0
EL 99.7±0.0 99.5±0.1 83.1±0.4 68.7±0.4 100.0±0.0 69.9±0.3
SA 99.9±0.1 100.0±0.0 100.0±0.0 77.5±0.1 100.0±0.0 78.7±0.8
EU 99.8±0.4 99.9±0.2 100.0±0.0 100.0±0.0 100.0±0.0 95.6±0.2
SI 98.7±0.4 99.3±0.3 91.9±0.9 73.8±0.6 69.1±0.1 72.8±0.7
AF 67.9±3.0 86.0±2.2 53.0±1.5 71.4±3.1 68.2±4.0 51.4±2.5
AD 100.0±0.0 100.0±0.0 71.5±0.4 99.9±0.0 99.9±0.1 99.4±0.0
WI 84.1±1.0 71.1±1.4 51.8±0.2 70.0±0.4 61.3±0.7 69.8±0.1
CR 69.2±1.7 59.7±1.5 53.6±1.8 50.9±0.2 52.6±0.5 50.7±0.2
SE 100.0±0.1 100.0±0.1 91.9±0.6 81.3±0.2 96.0±0.1 72.2±0.1
IN 89.7±1.3 80.6±1.1 67.9±0.8 82.6±0.2 80.3±0.3 67.8±0.3
HE 98.5±0.2 96.1±0.2 85.7±0.6 96.9±0.4 96.6±0.4 78.8±0.6
CR 99.3±0.2 98.6±0.4 87.8±0.9 99.2±0.3 99.2±0.4 59.2±0.7
CA 91.5±0.3 88.7±0.4 65.0±0.1 76.5±0.6 77.5±0.6 75.4±0.6
LO 98.9±0.3 98.2±0.4 71.9±0.5 92.2±0.7 90.4±0.7 71.3±0.9
KI 100.0±0.0 99.9±0.1 95.9±0.2 81.9±0.7 79.9±0.6 81.3±0.7

Table 7: Discriminator measure. A lower accuracy rate suggests a difficulty for the discriminator in discerning
between artificial records and original samples. A completely indistinguishable dataset would yield an accuracy rate
of 0.5. The superior results are highlighted in bold, while the results of the next best are underscored. Best results
are bold, second-best results are underlined. Results are averages over ten trials with different random seeds.
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Figure 7: Correlation distance mean value for 20
datasets.

C.3 Running Time
We analyze the running time of AIGT and baseline
methods. The results of the Adult Income dataset
are in Table 8. As can be seen from the results,
the generation method based on language models
requires more computational resources and time.

D Hyperparameters Optimization

We employ Optuna (Akiba et al., 2019) for hyper-
parameter tuning of LightGBM. For each specific
dataset and model, we initially tune the model’s
hyperparameters using the original data. The deter-
mined set of hyperparameters is then consistently
applied across all experiments on the dataset for all
methods, ensuring a fair comparison.

Training Time Sampling Time

CTGAN 873 9
TVAE 360 3
TabDDPM 856 158
GReaT 960 895
Taptap 910 506
AIGT 906 456

Table 8: The running time in seconds on the Adult In-
come dataset of different methods in the privacy protec-
tion setting. The number of fine-tuning steps for GReaT,
TapTap and AIGT was 10k. A total of 36k samples
were generated.

Models Parameter Values

LightGBM

learning_rate Uniform[0.01, 0.1]
num_leaves Uniform[10, 100]
subsample Uniform[0.5, 1.0]
colsample_bytree Uniform[0.5, 1.0]
min_child_samples UniformInt[2, 100]
#Iterations UniformInt[100, 1000]

Table 9: Hyperparameter Space of LightGBM.


	Introduction
	Related Works
	Prompt Engineering
	Tabular Data Synthesis

	The Task of Tabular Data Synthesis 
	Methods
	Prompt Design
	Textual Encoding
	Training Procedure
	Generation
	Partitioning Algorithm for Long Tokens

	Experiments
	Experimental Setup
	Overall Performance
	Ablation Analysis

	Conclusion
	Dataset
	More Information about  STabs
	More Details about Downstream Dataset

	Prompt Templates
	Further Experiments
	Statistical similarity
	Discriminator Measure.
	Running Time

	Hyperparameters Optimization

