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Abstract

Numbers are used to describe quantities in vari-
ous scenarios in daily life; therefore, numerical
errors can significantly affect the meaning of
the entire sentence, and even a single-letter er-
ror can be fatal. Detecting numerical errors
often requires a high level of commonsense
and is difficult even with the recent large lan-
guage models (LLMs). In this study, we create
a benchmark dataset of numerical error detec-
tion that uses automatically generated numer-
ical errors. In our analysis, we classify the
numerical errors based on the properties of the
errors and investigate the ability of the model
from several perspectives, including the error
class, error size, and passage domain. The ex-
perimental results indicate that GPT-3.5, GPT-
4, and Llama-3-Instruct (8B) perform well in
the numerical error detection task; however,
they are not as accurate as humans. We find
that the LLMs misidentified correct numbers
as errors more frequently than the humans did.
In particular, the analysis demonstrates that the
current LLMs still need improvement for de-
tecting numerical errors requiring calculations
or extensive prior knowledge.

1 Introduction

Numbers provide accurate or approximate quanti-
tative information such as time, size, and monetary
value, serving as an essential part of everyday com-
munication (Spithourakis and Riedel, 2018). How-
ever, it is difficult for language models (LMs) to
deeply understand numbers in text (Sharma et al.,
2024; Xu et al., 2024). Previous studies highlighted
that LMs that process sentences using embedded
representations have difficulty understanding the
correspondence between number tokens and their
numerical magnitude (Wallace et al., 2019) and
understanding the magnitude of numbers that are
divided into multiple tokens, such as large num-
bers and decimals, because they process sentences

Figure 1: An overview of our approach and examples
of annotated numerical errors.

with a finite set of fixed tokens (Singh and Strouse,
2024; Chen et al., 2023; Yuan et al., 2023).

Consider the following numerical error:

(1) Reserve a private room in a restaurant for
tomorrow’s dinner with 10 people.

(2) * Reserve a private room in a restaurant for
tomorrow’s dinner with 100 people.

Errors in numbers can significantly affect the mean-
ing of the entire sentence. Therefore, even a single-
letter numerical error, as in this example, can cause
more damage compared to a textual error (Ng et al.,
2014; Kasewa et al., 2018; Bryant et al., 2019).
While it is not difficult for humans to notice such a
one-digit error and avoid significant damage, LMs
would find it difficult to detect numerical errors
because it requires a deep contextual understand-
ing. In addition, numerical errors demand a high
level of numerical commonsense and diverse skills
for detection due to their variety. As an example,
consider the case (Ex1–4) shown in Figure 1. In
all examples, the number “1791” in the sentence
“Mozart (1756–1791) was an influential composer”
is replaced by different numbers, where the error
type is different. In Ex1, readers would need to
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know that Mozart died in 1791 (or at least not in
1801) to notice the error (factual error). However,
knowing the exact year in which Mozart died is not
necessary to notice the errors in Ex2–4. (Naturally,
knowing the exact year would be sufficient to no-
tice.) For Ex2, it is sufficient to know that the year
number is an integer (type error ∩ factual error).
Ex3 can be recognized as an error if readers real-
ize that the magnitude of “1791000” is too large
as a year (anomaly ∩ factual error). In Ex4, the
error can be detected if readers can compare the
magnitudes of 1756 and 1691 (error in numerical
relationships ∩ factual error).

In addition, the numerical error detection task
has a wide range of applications, including numeri-
cal error correction systems and hallucination de-
tection for LLMs. In particular, the hallucination
detection is currently an important topic, and it
would be greatly beneficial if LMs could solve
it, since detecting trivial numerical errors is diffi-
cult even for knowledgeable humans. Despite the
importance of the numerical error detection task,
benchmark datasets for this task have been lim-
ited before (Berg-Kirkpatrick and Spokoyny, 2020;
Chen et al., 2019). In this study, we developed
a Benchmark for Numerical Error Detection task,
called BeNEDect, which can be used to verify and
analyze the ability of LMs to detect numerical er-
rors.1 Furthermore, we propose to use this task
as a measure of the ability of LMs to understand
numerical values. By comparing the performances
of numerical error detection between LMs and hu-
mans based on the diversity of numerical errors, we
analyze the differences in the behavior of humans
and LMs for numerical values.

First, we classified numerical comprehension
skills and numerical commonsense into several cat-
egories to analyze the performance of LMs. We
then define the classes of numerical errors that re-
quire each skill or commonsense knowledge for
detection, and propose a classification of numer-
ical errors consisting of four classes. (Details of
each class are shown in Section 3.2.3.) Next, we
collected example sentences from five domains,
including Wikipedia, scientific papers, and news ti-
tles, and subsequently, we generated synthetic error
data by automatically substituting arbitrary num-
bers (Figure 1). We subsequently manually anno-
tated them using the aforementioned error classes
(Table 2). Finally, the annotated dataset is used to

1https://github.com/cogma/BeNEDect

evaluate the knowledge and ability of LLMs, in-
cluding GPT-3.5 (Winata et al., 2021; Chen et al.,
2021; Ouyang et al., 2022), GPT-4 (OpenAI et al.,
2024), Llama-3 (Meta, 2024), Flan-T5 (Wei et al.,
2022), and T0 (Sanh et al., 2022). The accuracy of
these results is analyzed by comparing them with
human accuracy.

Although GPT-3.5, GPT-4, and Llama 3 per-
formed well on the numerical error detection task,
their accuracy was still not as high as that of hu-
mans, indicating room for improvement. Analysis
of the performance of numerical error detection by
LMs and humans for each passage domain, error
class, and error generation method indicated that
the performance of these models was similar to that
of humans compared to other LMs. However, the
difference in accuracy was considerably large for
numerical errors that required certain arithmetic
operations (in the “error in numerical relationships”
class) and for those that required expert-level prior
knowledge (in scientific papers). Moreover, we
found that the LLMs misidentified correct numbers
as errors more often than the humans did. In addi-
tion, the results indicated that minor changes in the
phrasing of prompts can cause significant variations
in detection performance, suggesting that achiev-
ing consistent performance and managing prompt-
dependent variability remain key challenges for
these models. These findings suggest a guideline
for future research on the numerical understanding
of LMs.

The contributions of this study are as follows:

• We proposed a classification of numerical er-
rors and organized the capabilities needed to
detect each error type, linking them to the
characteristics of the errors.

• We created a benchmark for the numerical
error detection task by introducing synthetic
errors into passages collected from a wide
range of domains and manually annotating
them with their error classes.

• We analyzed the ability of recent LLMs to de-
tect numerical errors from three perspectives:
the passage domain, the class of numerical
errors, and the operations used to generate nu-
merical errors, comparing their performance
with the human performance.

https://github.com/cogma/BeNEDect
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2 Related Work

2.1 Numerical Error Detection with LMs

Numerical error detection determines whether tar-
get numbers in the input passages are correct (Chen
et al., 2019; Berg-Kirkpatrick and Spokoyny, 2020;
Spithourakis et al., 2016). They examines the nu-
merical commonsense of architectures, including
BiGRU (Cho et al., 2014), CRNN (Kim, 2014;
Choi et al., 2016) and BERT (Devlin et al., 2019),
by using them to contextually detect anomalous
numbers changed by a random scaling factor in a
dataset of news titles and market comments. The
results confirmed that the LMs used in the exper-
iments detected numerical errors with moderate
to high accuracy, and the detection accuracy im-
proved as the error degree increased. In this study,
we developed BeNEDect, a benchmark dataset that
allows for a more detailed analysis of the ability
of LMs to detect numerical errors by generating
numerical errors in a wider range of domains using
anomaly generation methods that cover more prac-
tical errors, such as one-digit errors, sign errors,
and copy-paste errors. Subsequently, we employed
the numerical error detection task, which, despite
its importance, has been infrequently addressed in
recent LLMs, as a means of evaluating and ana-
lyzing the capabilities of recent LLMs, including
GPT-4, Llama 3, and Flan-T5, with a particular
focus on error types.

Li et al. (2024) evaluated the performance of
LLMs using math word problems. The models
were presented with a problem and its solution,
which was sometimes incorrect, and were then
asked to determine whether the solution contained
errors. In their study, the authors defined a classi-
fication of erroneous solutions and employed it to
analyze the performance of the LMs. Their exper-
iments showed, as we demonstrate, that the latest
LLMs are still unable to accurately identify erro-
neous solutions that require mathematical compu-
tation. In our study, we employed the numerical
error detection task within passages to evaluate the
performance of LLMs. Our analysis encompassed
not only their computational capabilities but also
their numerical commonsense and memorization
abilities regarding numerical data. Furthermore,
we offered insights by comparing the performance
of LLMs with that of humans.

2.2 LLM Ability on Numerical NLP Tasks
In recent years, LLMs have achieved remarkable re-
sults for various NLP tasks (Qin et al., 2024; Huang
and Chang, 2023), including numerical NLP tasks
(Ahn et al., 2024). LLMs have achieved a certain
degree of success in recognizing the magnitude of
numbers and in performing accurate arithmetic op-
erations (Yuan et al., 2023; Frieder et al., 2023),
which have been difficult with previous LMs such
as BERT and RoBERTa (Liu et al., 2019). Conse-
quently, the performance of these LLMs on tasks
such as math word problems and numerical reason-
ing has improved significantly.

Yuan et al. (2023) verified the basic computa-
tional capabilities of recent LLMs with the pro-
posed dataset and confirmed that GPT-3.5 and GPT-
4 exhibit high performance in arithmetic tasks that
were difficult for the previous LMs. Sivakumar
and Moosavi (2023); Akhtar et al. (2023); Imani
et al. (2023); Mishra et al. (2020) classified skills
required in numerical reasoning tasks (e.g., num-
ber representation recognition, number sense, and
mathematical skills), created a dataset for evalua-
tion based on the classification and analyzed the
numerical reasoning abilities of the recent LLMs.
Liang et al. (2023); Jie and Lu (2023) demon-
strated that, even without using LLMs as solvers,
the performance of solver models with a small
number of parameters, such as LSTM (Hochre-
iter and Schmidhuber, 1997) and RoBERTa, can be
improved significantly by managing the learning
status of the solver models and by creating addi-
tional exercises for them with LLM.

This study examined the numerical common-
sense of the LLMs regarding quantity and their
ability to handle numbers in a simple but practical
task setting that is yet to be conducted for LLMs,
that is, the numerical error detection task.

3 BeNEDect: A Benchmark for
Numerical Error Detection Task

3.1 Task Description
We tested the numerical commonsense and ability
of LMs to handle numbers using the numerical
error detection task (Figure 1) defined as follows:
Input: Passages containing only one target num-

ber (erroneous or not)
Output: Determination of whether the target

number is an error
We assume exactly one target number even if

multiple numbers appear in an input passage. We
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use only one target number because it is rare to
have more than one numerical error in a sentence
or paragraph, and we aim to enable the models to
determine whether the target number is an error by
comparing or calculating the target number with
other correct numbers in the same passage.

3.2 Dataset Construction

3.2.1 Passage Sources

This study introduced passages from a wide range
of domains into BeNEDect by expecting differ-
ences in the trends of numbers and the ease of de-
tecting errors by a passage domain. Specifically, we
selected passages from the following five datasets
with different domains and passage lengths.

• Numeracy-600K (article titles)
(Chen et al., 2019)

• ACLsent (scientific papers)
(Abekawa and Aizawa, 2016)

• DROP (Wikipedia (history articles and Na-
tional Football League game summaries))
(Dua et al., 2019)

• QA-text (MCTest (Richardson et al., 2013),
RACE (Lai et al., 2017), Project Gutenberg,
Open American National Corpus (Ide and
Suderman, 2006), ReClor (Yu et al., 2020),
Wikipedia (science and arts articles))
(Sugawara et al., 2022)

• FinNum (financial tweets) (Chen et al., 2018)
We collected 1,000 passages containing one or

more numbers from each dataset, for a total of
5,000 passages. Statistics of passage lengths and
numbers that appear in each dataset are listed in
Table 1. First, the passages in Numeracy-600K,
ACLsent, and FinNum are short and contain fewer
numbers. Therefore, a few contextual clues ex-
ist for numerical error detection in these datasets.
Numeracy-600K has only 1.5 numbers in a sin-
gle passage on average, and there are few clues
from the other numbers in the passage. In contrast,
DROP and QA-text are longer (approximately 200–
300 words) and contain more clues in the context.
In particular, DROP is a reading comprehension
dataset that requires numerical reasoning; therefore,
it contains an average of 22.6 numerals per pas-
sage. In addition, more than 30% of the numbers
in FinNum are decimals, whereas most numbers
in Numeracy-600K are integers. These trends in
numbers appearing in each dataset are considered
to affect the ease of identifying numerical errors.

3.2.2 Generating Numerical Errors
We automatically modified collected passages by
randomly selecting one target number in each pas-
sage and randomly applying one of the following
operations: addition or subtraction, multiplication,
and replacement (Figure 1). A total of 5,000 erro-
neous passages were generated from 5,000 correct
passages, resulting in BeNEDect, a 10,000-passage
dataset.

Addition or Subtraction We randomly select a
size from the following list and add or subtract it
from the original number: [±1, 000,±100,±10,
±1,±0.5,±0.1]. Using a random size from the
above list allows us to cover a one-digit numerical
error (e.g., 2024 → 2034), which is considered one
of the most common numerical errors in practice.

Multiplication We randomly select a multiplier
from the following list and multiply it by the origi-
nal number: [∗(−1), ∗0, ∗0.001, ∗0.01, ∗0.1, ∗0.5,
∗0.7, ∗0.9, ∗1.1, ∗1.5, ∗2, ∗10, ∗100, ∗1, 000]. As-
suming that decimal point errors and numerical
errors owing to misunderstanding of units are com-
mon in practice, we randomly selected a multiplier
from the aforementioned list.

In both addition/subtraction and multiplication,
the more significant the difference or magnification,
the higher the detection rate for humans is expected
to be. We experimentally verified whether the LMs
showed the same tendency as human behavior.

Replacement We replace the target number with
a randomly chosen unrelated number in another
passage within the same domain. This simulates
copy-paste errors. Aforementioned two types of
operations do not consider the distribution of num-
bers within a domain, which can introduce bias into
the task. Specifically, they can generate erroneous
numbers with a low occurrence rate in the domain,
and the rarity and unfamiliarity of such numbers
can lead to detection of errors without deep knowl-
edge. Therefore, this operation uses numbers that
appear in passages in the same domain to generate
numerical errors. We confirmed that the numbers
before and after the replacement do not match.

3.2.3 Numerical Error Classification
We categorized numerical errors into four classes
according to the ability or numerical commonsense
required to detect them: factual error, type error,
anomaly, and error in numerical relationships (Ta-
ble 2) (Lin et al., 2020; Elazar et al., 2019).
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Dataset Numeracy-600K ACLsent DROP QA-text FinNum

Ave. passage length [words] 10.1 33.5 307.1 193.1 21.9
Ave. #numbers per passage 1.5 5.5 22.6 7.3 2.9
% of integers 97.2 % 79.6 % 85.3 % 81.6 % 67.4 %

Domain News titles Scientific papers Wikipedia various Financial tweets
Prior knowledge of annotators Good Excellent Good Good Poor

Table 1: Statistics across five different datasets.

Error type Examples

• Spiders have 9 limbs.
Factual error • Wolfgang Amadeus Mozart (1756-1991) was ...

• The population of New York City is 14,028 in 2023.

• March 3.5
Type error • March -15

• Mike’s height is -3.6 meters.

• Mike’s height is 30.6 meters.
Anomaly • The movie I saw yesterday was 2,000 hours long.

• 500,000,000 people attended her wedding.

Error in • Android has more than 6/5 of the smartphone market.
numerical • 1st inning top 1-0, bottom 1-5, 2nd inning top 3-1, ...

relationships • They split their profits 80% and 30% between them.

Table 2: Four types of numerical errors.

Factual Error “Factual error” is a class of nu-
merical errors concerning definitions, actual mea-
surements, or years of important historical events
(Table 2) (Lin et al., 2020). The numerical error
that belongs to this class is determined solely by the
properties of the number, and we assume that hu-
mans know exactly what the correct number is for
the error. Therefore, memorization of basic com-
monsense is necessary to detect numerical errors in
this class. “Factual error” is one type of numerical
error, yet many of the capabilities required to de-
tect them are not unique to numbers. It is therefore
anticipated that the current LMs will be easier to
detect them in comparison to the errors belonging
to other classes that require number-specific com-
monsense to detect, as described below. In this
work, we assume that these numbers are consid-
ered to be known to high school or college students
or found in some textbooks.

Type Error “Type error” is a class of numerical
errors that violate number-type constraints such
as a decimal number for an integer type or a neg-
ative value for a positive number type (Table 2).
This class only includes explicit number-type er-
rors, such as a decimal number for a number that
should be an integer or a number less than or equal
to zero for a number that should be a positive num-
ber. Knowledge of the number types allowed for
each entity type of numbers is necessary to detect

numerical errors in this class. Note that the class
does not include numerical errors that are out of
bounds but still satisfy the number-type constraint
(e.g., March 300)2.

Anomaly “Anomaly” is a class of numerical er-
rors for numbers that have certain range or distribu-
tion (Elazar et al., 2019). They are not number-type
errors, and instead, they can be judged to be anoma-
lies based on commonsense and their contexts (Ta-
ble 2). Detecting numerical errors in this class
requires knowledge about the acceptable range and
distribution of numbers for each entity type in con-
text. Moreover, it requires a basic ability to recog-
nize the numerical magnitude of the number words.
For example, it is difficult to determine whether
“17.94” in the sentence “His height is 17.94 cm” is
an error solely based on the co-occurrence proba-
bility of the number word with contextual words.
Recognizing the magnitude of “17.94” and con-
firming that it is unnatural by comparing it with
the aforementioned distribution is necessary to cor-
rectly infer that this is an error. Errors belonging to
this class differ from factual errors in that even hu-
mans do not know exactly what the correct number
is.

Error in Numerical Relationships “Error in nu-
merical relationships” is a class of numerical er-
rors that violate some numerical relationships or
arithmetic formulae that must be satisfied among
numbers in the same passage, such as ensuring that
percentages add up to 100% (Table 2). Knowledge
of the constraints among numbers and the mathe-
matical ability to compare the magnitudes of num-
bers and perform elementary arithmetic operations
is necessary to detect errors in this class.

Lastly, errors can belong to more than one class.
For example, Ex4 in Figure 1 belongs to the “er-
ror in numerical relationships” class, while at the
same time it belongs to the “factual error” class
because it can be detected even with the knowledge

2It is included in the “anomaly” class shown below.
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of the exact year. Details on which error classes
are compatible are given in Section A.

3.2.4 Annotation of Error Classes
We manually classified the 1,500 numerical errors
in BeNEDect (Section 3.2.3). The “undetectable
error” class was added to the aforementioned four
classes to accommodate numerical errors that are
difficult to detect even for humans due to reasons
such as slight numerical changes and the need for
professional knowledge to detect them, resulting in
a total of five classes of annotations.

Careful guidelines for annotation were prepared
(details are provided in Appendix A). Crowdsourc-
ing was not used in this study because of the need
for careful instructions for annotation, and annota-
tion was performed by eleven annotators, including
graduate students and researchers in natural lan-
guage processing, who annotated 250–500 samples
each. Therefore, biases in the prior knowledge of
the annotator are expected to exist across domains
(Table 1). A majority vote of 1–3 annotators was
used to determine the error class for each numerical
error. 67.9% of the numerical errors were agreed
upon by three annotators, and 94.4% of the errors
were agreed upon by more than two annotators.

Figure 2 shows the distribution of the error
classes per dataset. According to the results, ap-
proximately 30% of errors in the annotated num-
bers were marked as unrecognizable by the annota-
tors. The most common error class among errors
that humans can notice is the “Type error,” which
is predictable given the error generation design.
Further, numerical errors that belonged to the “fac-
tual error” class are considerably fewer, thereby
confirming that commonsense numbers are rarely
mentioned in the actual sentences. The distribution
varied widely across datasets, which was affected
by passage length, trend of the numbers to appear,
and amount of prior knowledge of the annotators.

4 Experiments and Results

4.1 Experiments

We evaluated the performance of the following
LMs in the zero-shot and few-shot scenarios: GPT-
3.5 Turbo3 (Brown et al., 2020; Winata et al.,
2021; Chen et al., 2021; Ouyang et al., 2022),
GPT-4 Turbo3 (OpenAI et al., 2024), Llama-3-
Instruct (8B) (Meta, 2024), Mistral-Instruct-v0.3
(7B) (Jiang et al., 2023), Mathstral-v0.1 (7B) (AI,

3January 2024 models

31.6%

33.8%

13.1%
4.6%

16.9%
All

31.2%

44.6%

4.1%2.9%
17.2%

Numeracy-600K

25.6%
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27.0%

24.9%20.0%

6.1%

22.0%
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25.7%

31.6%
15.3%

9.0%

18.4%
QA-text

49.4%

27.9%

8.2%
0.9%

13.6%
FinNum

Undetectable error
Type error
Error in numerical relationships
Factual error
Anomaly

Figure 2: Error class distribution of the annotated nu-
merical errors for each dataset.

2024), FLAN-T5-xl (3B) (Wei et al., 2022; Chung
et al., 2022), and T0 (3B) (Sanh et al., 2022).
FLAN-T5 has been pre-trained on mathematics-
related datasets and is considered skilled in han-
dling numbers. The prompts given in the experi-
ments are described in the Appendix B. The judg-
ment of LMs was determined by applying pattern
matching to the output sentences. More than 120
patterns that indicate whether the target number
is correct or not were prepared. In the event that
neither positive nor negative patterns were present,
or that both were present, the output was deemed a
generation error.

4.2 Accuracy for Numerical Error Detection

4.2.1 Zero-shot Accuracy

Table 3 lists the detection accuracies of the LMs in
a zero-shot setting for BeNEDect. This showed the
highest accuracy for each model among the eight
prompts used in the experiments. The results for
the other prompts are shown in Appendix C.

In Table 3, “Accuracy” represents the LMs’ per-
centage of correct decisions out of 10,000 cases
(5,000 correct and 5,000 wrong numbers). “True
positive” and “True negative” represent the per-
centage of error numbers correctly identified as
errors and wrongly identified as correct numbers,
respectively. “False positive” and “False negative”
indicate the percentage of correct numbers wrongly
identified as errors and correctly identified as cor-
rect numbers, respectively. “Human” indicates the
detection accuracy of the human annotator on 600
randomly selected data from BeNEDect (see Ap-
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Model Accuracy True positive True negative False positive False negative Generation error

GPT-3.5 68.0 / 64.6 28.2 / 28.1 21.8 / 16.1 10.2 / 7.1 39.8 / 36.5 0.0 / 9.8
GPT-4 73.8 / 73.8 37.0 / 35.8 12.9 / 13.4 13.0 / 10.7 36.8 / 38.0 0.2 / 1.5
Llama-3-8B 69.1 / 68.7 35.4 / 33.0 14.5 / 17.0 16.1 / 14.2 33.7 / 35.7 0.0 / 0.0
Mistral-7B 71.6 / 54.9 29.5 / 9.4 20.5 / 35.9 7.9 / 1.6 42.1 / 45.5 0.0 / 6.1
Mathstral-7B 65.3 / 65.7 31.1 / 21.1 18.9 / 28.9 15.8 / 5.4 34.2 / 44.6 0.0 / 0.0
FLAN-T5-xl 53.5 / 53.8 36.3 / 35.8 13.7 / 14.2 32.8 / 32.0 17.2 / 18.0 0.0 / 0.0
T0 50.1 / 51.6 49.9 / 46.7 0.1 / 3.3 49.8 / 45.1 0.2 / 4.9 0.0 / 0.0

Human 78.3 31.7 18.2 3.5 46.6 0.0

Table 3: Numerical error detection accuracy (%) of the LMs with the zero-shot and few-shot settings for BeNEDect
(zero-shot accuracy / few-shot accuracy).

pendix A).

We note that a model with random prediction
can still achieve a 50.0% accuracy. Therefore, mod-
els other than GPT-3.5, GPT-4, Llama 3, Mistral
and Mathstral were not significantly more accurate
than the random predictions. Even for FLAN-T5-
xl and T0, the improvement in accuracy was only
a few points, suggesting that it is still difficult to
detect numerical errors, even with recent LLMs. In
contrast, GPT-3.5, GPT-4, Llama 3, Mistral and
Mathstral demonstrated high performance in the
numerical error detection task. Furthermore, GPT-
4 detected numerical errors with a high accuracy
of 73.8%, even in the zero-shot setting, although
the accuracy was not as high as that of humans.
Moreover, it was found that the LLMs misidenti-
fied correct numbers as errors significantly more
frequently than humans.

4.2.2 Few-shot Accuracy

Table 3 also lists the detection accuracy of the LMs
for BeNEDect in a few-shot setting. This shows
the highest accuracy for each model among the
16 prompts used in our experiments. The results
for the other prompts are provided in Appendix C.
The models were provided with several passages
with and without numerical errors as few-shots (see
Appendix B).

Compared with the zero-shot results, most mod-
els did not present significant improvements in
overall accuracy. One reason for this in some mod-
els is the greater number of generation errors in
the few-shot setting. The scope for improvement
exists in the selection of the few-shots and in the
phrasing of the prompts. In contrast, the percentage
of correct numbers identified as errors decreased
for most models, indicating improvement.

Numeracy
-600K

ACLsent DROP QA-text FinNum

Dataset

0

20

40

60

80

De
te

ct
io

n 
Ra

te
 (%

)
FLAN-T5
GPT-4
Llama 3
Human

Figure 3: Numerical error detection rates by the source
dataset for GPT-4, Llama 3, FLAN-T5, and humans.

4.3 Analysis of Model Performance

We analyzed the performance of GPT-4, Llama-
3-8B, and FLAN-T5-xl in the zero-shot setting,
which had high accuracy in our experiments, com-
paring their performance with the human detection
accuracy from three perspectives: the passage do-
main, the class of numerical errors, and the oper-
ations used to generate numerical errors. The fol-
lowing analysis is based on the detection accuracy
for 5,000 numerical errors, of which 1,500 samples
are annotated with error classes (Section 3.2.4).

4.3.1 Model Performance by Passage Domain
Figure 3 illustrates the GPT-4, Llama 3, FLAN-
T5, and human numerical error detection rates for
each dataset. It shows that while humans had a
low detection accuracy in FinNum, humans outper-
formed GPT-4 in ACLsent. From these results, it
can be inferred that human performance is affected
by context length and background knowledge (Ta-
ble 1); however, detailed analysis is a topic for
future research. All LMs had higher accuracy in
Numeracy-600K, which indicates that they have a
reliable knowledge of news and numbers used in
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Figure 4: Numerical error detection rates by the error
class for GPT-4, Llama 3, FLAN-T5, and humans.

news titles. Llama 3 and GPT-4 demonstrated con-
siderably higher accuracy in ACLsent and DROP,
respectively, than in the other datasets. This could
be due to the possibility that these models have
seen the numbers that appear in the evaluation data
in some datasets during training. Further investiga-
tion of this is provided in the Appendix D.

4.3.2 Model Performance by Error Class
Figure 4 shows the error detection rates for GPT-
4, Llama 3, FLAN-T5, and humans according to
the error class. Notably, the accuracy of FLAN-
T5 did not differ significantly among error classes,
whereas the accuracies of GPT-4 and Llama 3 dif-
fered significantly depending on the error class.
The “undetectable error” class, which comprises
errors that cannot be determined to be errors by
humans, has a considerably lower detection accu-
racy than the other classes, not only in the case of
humans. Note that the human detection rate for
the “undetectable error” class is not 0% because
some annotators detected some of the errors in
that class. The detection rate of the “error in nu-
merical relationships” class, which requires some
type of arithmetic operation or size comparison for
detection, is 6–12% lower than that of the other
classes. This is consistent with the findings of re-
lated work in that even recent LLMs have difficulty
in performing accurate arithmetic operations and
accurately recognizing the magnitude of numbers
(Singh and Strouse, 2024; Yuan et al., 2023; Mishra
et al., 2022). Furthermore, it was confirmed that
the “factual error” class, which was anticipated to
be easier for current LMs to detect because it does
not require basically number-specific capabilities
for detection, represents the easiest error class to
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Figure 5: Numerical error detection rates by the nu-
merical error generation method for GPT-4, Llama 3,
FLAN-T5, and humans.

detect for most LMs.

4.3.3 Model Performance by Error Operation

Figure 5 presents the detection rates of GPT-4,
Llama 3, FLAN-T5, and humans by the numer-
ical error generation method.

Humans had a high detection rate for large er-
rors caused by operations such as “±1,000,” “±100,”
“*1,000,” and “*100.” Furthermore, the detec-
tion rate was high for numerical errors caused by
operations such as “±0.5,” “±0.1,” “*(-1),” “*0,”
“*0.001,” and “*0.01,” which do not change the
numerical value significantly but can change the
number type from integer to decimal or from a
positive number to a negative number or 0. The
detection rate of numerical errors caused by the
“-1,000” operation, which had a considerable ef-
fect on both numerical magnitude and number type,
was nearly 100%. Humans were not good at detect-
ing errors caused by operations such as “±1,” “±10,”
“*0.5,” “*1.5,” and “*2,” which had a slight effect
on both numerical magnitude and number type. In
addition, the errors caused by “swap,” a simple ran-
dom sampling replacement from the same dataset,
were difficult for humans to detect.

Similar to that in the previous analysis, GPT-
4 and Llama 3 demonstrated greater variation in
accuracy per operation than FLAN-T5. Further-
more, they present trends that are considerably
close to the human detection rate for each afore-
mentioned operation. As an exception, Llama 3
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was significantly less accurate in detecting numer-
ical errors caused by “*0.” In contrast, FLAN-T5
neither showed a significant difference in the de-
tection rate between the large and small numerical
errors nor it was sensitive to changes in the number
type. However, the detection rates for errors caused
by operations such as “*0,” “*0.001,” and “*0.01”
were significantly higher than the other operations.
This implies a high level of understanding of the nu-
merical magnitude of 0 and whether 0 is allowed in
each entity type. We believe that these differences
in the ability to recognize numerical magnitudes
and the understanding of number types resulted in
an overall difference in the detection rates between
GPT-4/Llama 3 and FLAN-T5.

5 Conclusion

In this study, we developed a benchmark for nu-
merical error detection, called BeNEDect, using an
automatic numerical error generation method and
used it to evaluate the numerical error detection
capability of the recent LLMs. The results indicate
that GPT-3.5, GPT-4, and Llama 3 performed well
in the numerical error detection task; however, they
could not reach human accuracy, thereby indicat-
ing that a scope for performance improvement still
exists. We confirmed that the detection accuracies
of GPT-4 and Llama 3 are different from those of
humans for numerical errors requiring numerical
calculations or commonsense knowledge, thereby
highlighting problems that LLMs currently face
and opening avenues for future research on the
numerical understanding of LLMs.

Limitations

We selected several numerical errors with differ-
ent properties from each class of numerical errors
as the few-shot and presented them to LMs in the
prompts; however, we did not fully experiment
with the best method for selecting the few-shot.
Although we experimented with several prompt
patterns, a method may provide the model with few-
shot examples that can introduce the best perfor-
mance of the model. The results confirmed that the
detection performance of LLMs varies significantly
depending on the trivial changes in the phrasing
of the prompts, suggesting that achieving consis-
tent performance and managing prompt-dependent
variability remain key challenges.

Detailed instructions were required for annota-
tion in this study; therefore, the class annotation

of numerical errors was performed by several grad-
uate students and researchers in the field of com-
puter science without crowdsourcing. In addition,
the same annotators were evaluated for their accu-
racy in detecting numerical errors. Therefore, some
bias in the prior knowledge of the annotators is ex-
pected to exist in some domains. We were unable
to conduct error class annotation and evaluate hu-
man detection accuracy in a setting that eliminates
such biases, and this is a topic for future work.
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A Numerical Error Classification
Annotation and Evaluation of Human
Numerical Error Detection
Performance

The following are the guidelines given to the an-
notators for numerical error classification: Annota-

tion was performed in a flow format that allowed
multilabeling. Annotators were provided a passage
containing only one numerical error while indicat-
ing which number was the target numerical error.
Internet searches were not allowed because target
passages in some datasets can be hit directly. In
this annotation, multiple classes may receive the
most votes because the annotators are allowed to
select multiple labels. In such cases, the numeri-
cal error was assumed to belong to all classes that
received the most votes.

1. Exclude numerical errors that are not the sub-
ject of this study, such as numerical errors in
URLs and mathematical formulae.

2. Can you determine that the target number is
an error? If no, select “undetectable error”
and exit.

3. Can you detect the numerical error because its
number type is unnatural? If yes, select “type
error.”

4. Is the target number considered to be known
to high school or college students or found in
some textbooks? If yes, select “factual error.”

5. Can you detect the numerical error by refer-
ring to other numbers in the passage? If yes,
select “error in numerical relationships.”

6. If “type error” or “factual error” is selected,
exit.

7. Can you detect the numerical error without
referring to other numbers in the passage? If
yes, select “anomaly” and exit. If no, exit.

We created the annotation flow such that “type
error” and “factual error” are given priority
over “anomaly” in cases where “type error” and
“anomaly”, or “factual error” and “anomaly” are
compatible for numerical errors, respectively. In
addition, the annotator was provided with a more
detailed description of each numerical error class,
its purpose, and five examples of classified numeri-
cal errors, as partially presented in the paper.

We evaluated the human detection performance
with the same conditions as LMs, including not
only passages containing numerical errors but also
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B Prompts
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[zero]
Question: Answer the following yes/no question.

Is "0.5" in the following sentence an
error? "0.5 people attended her wedding."

Answer:

------------------------------------
[zero_correct]
Question: Answer the following yes/no question.

Is "0.5" in the following passage correct?
"0.5 people attended her wedding."

Answer:

------------------------------------
[zero_step]
Question: Answer the following yes/no question.

Is "0.5" in the following passage an error
? "0.5 people attended her wedding."

Answer: Let's think step by step.

------------------------------------
[zero_YN]
Question: Be sure to answer "Yes" or "No" to

the following question. Is "0.5" in the
following passage an error? "0.5 people
attended her wedding."

Answer:

------------------------------------
[zero_correct_step_YN]
Question: Be sure to answer "Yes" or "No" to

the following question. Is "0.5" in the
following passage correct? "0.5 people
attended her wedding."

Answer: Let's think step by step.

------------------------------------

B.2 Few-shot

------------------------------------
[few]
Question: Answer the following yes/no question.

Is "9" in the following passage an error?
"Spiders have 9 limbs."

Answer: yes

Question: Answer the following yes/no question.
Is "8" in the following passage an error?
"Spiders have 8 limbs."

Answer: no

Question: Answer the following yes/no question.
Is "-3.6" in the following passage an

error? "Mike's height is -3.6 meters."
Answer: yes

Question: Answer the following yes/no question.
Is "30.6" in the following passage an

error? "Mike's height is 30.6 meters."
Answer: yes

Question: Answer the following yes/no question.

Is "1.8" in the following passage an error
? "Mike's height is 1.8 meters."

Answer: no

Question: Answer the following yes/no question.
Is "2,000" in the following passage an

error? "The movie I saw yesterday was
2,000 hours long."

Answer: yes

Question: Answer the following yes/no question.
Is "8" in the following passage an error?
"We split the dataset into 8:1:2."

Answer: yes

Question: Answer the following yes/no question.
Is "7" in the following passage an error?
"We split the dataset into 7:1:2."

Answer: no

Question: Answer the following yes/no question.
Is "1691" in the following passage an

error? "Wolfgang Amadeus Mozart
(1756-1691) is great."

Answer: yes

Question: Answer the following yes/no question.
Is "1791" in the following passage an

error? "Wolfgang Amadeus Mozart
(1756-1791) is great."

Answer: no

Question: Answer the following yes/no question.
Is "0.5" in the following passage an error

? "0.5 people attended her wedding."
Answer:

------------------------------------
[few_CoT]
Question: Answer the following yes/no question.

Is "9" in the following passage an error?
"Spiders have 9 limbs."

Answer: Spiders have 8 limbs. So the answer
is yes.

Question: Answer the following yes/no question.
Is "8" in the following passage an error?
"Spiders have 8 limbs."

Answer: Spiders have 8 limbs. So the answer
is no.

Question: Answer the following yes/no question.
Is "-3.6" in the following passage an

error? "Mike's height is -3.6 meters."
Answer: The number representing the height

must be a positive number. So the answer is
yes.

Question: Answer the following yes/no question.
Is "30.6" in the following passage an

error? "Mike's height is 30.6 meters."
Answer: 30.6 meters is too large for human

height. So the answer is yes.
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Question: Answer the following yes/no question.
Is "1.8" in the following passage an error
? "Mike's height is 1.8 meters."

Answer: 1.8 meters is appropriate for human
height. So the answer is no.

Question: Answer the following yes/no question.
Is "2,000" in the following passage an

error? "The movie I saw yesterday was
2,000 hours long."

Answer: 2,000 hours is too long for the
length of a movie. So the answer is yes.

Question: Answer the following yes/no question.
Is "8" in the following passage an error?
"We split the dataset into 8:1:2."

Answer: 8+1+2=11, but the sum of the ratios
should be 10. So the answer is yes.

Question: Answer the following yes/no question.
Is "7" in the following passage an error?
"We split the dataset into 7:1:2."

Answer: 7+1+2=10, which is a fine as a sum
of ratios. So the answer is no.

Question: Answer the following yes/no question.
Is "1691" in the following passage an

error? "Wolfgang Amadeus Mozart
(1756-1691) is great."

Answer: The year of death must be later than
the year of birth. So the answer is yes.

Question: Answer the following yes/no question.
Is "1791" in the following passage an

error? "Wolfgang Amadeus Mozart
(1756-1791) is great."

Answer: Wolfgang Amadeus Mozart died in 1791.
So the answer is no.

Question: Answer the following yes/no question.
Is "0.5" in the following passage an error
? "0.5 people attended her wedding."

Answer:

------------------------------------
[few_correct_step_CoT_YN]
Question: Be sure to answer "Yes" or "No" to

the following question. Is "9" in the
following passage correct? "Spiders have 9
limbs."

Answer: Let's think step by step. Spiders
have 8 limbs. So the answer is no.

Question: Be sure to answer "Yes" or "No" to
the following question. Is "8" in the

following passage correct? "Spiders have 8
limbs."

Answer: Let's think step by step. Spiders
have 8 limbs. So the answer is yes.

Question: Be sure to answer "Yes" or "No" to
the following question. Is "-3.6" in the

following passage correct? "Mike's height is
-3.6 meters."

Answer: Let's think step by step. The number
representing the height must be a positive
number. So the answer is no.

Question: Be sure to answer "Yes" or "No" to
the following question. Is "30.6" in the

following passage correct? "Mike's height is
30.6 meters."

Answer: Let's think step by step. 30.6
meters is too large for human height. So
the answer is no.

Question: Be sure to answer "Yes" or "No" to
the following question. Is "1.8" in the

following passage correct? "Mike's height is
1.8 meters."

Answer: Let's think step by step. 1.8 meters
is appropriate for human height. So the

answer is yes.

Question: Be sure to answer "Yes" or "No" to
the following question. Is "2,000" in the
following passage correct? "The movie I

saw yesterday was 2,000 hours long."
Answer: Let's think step by step. 2,000

hours is too long for the length of a movie.
So the answer is no.

Question: Be sure to answer "Yes" or "No" to
the following question. Is "8" in the

following passage correct? "We split the
dataset into 8:1:2."

Answer: Let's think step by step. 8+1+2=11,
but the sum of the ratios should be 10.

So the answer is no.

Question: Be sure to answer "Yes" or "No" to
the following question. Is "7" in the

following passage correct? "We split the
dataset into 7:1:2."

Answer: Let's think step by step. 7+1+2=10,
which is a fine as a sum of ratios. So the
answer is yes.

Question: Be sure to answer "Yes" or "No" to
the following question. Is "1691" in the

following passage correct? "Wolfgang Amadeus
Mozart (1756-1691) is great."

Answer: Let's think step by step. The year of
death must be later than the year of birth.
So the answer is no.

Question: Be sure to answer "Yes" or "No" to
the following question. Is "1791" in the

following passage correct? "Wolfgang Amadeus
Mozart (1756-1791) is great."

Answer: Let's think step by step. Wolfgang
Amadeus Mozart died in 1791. So the answer
is yes.

Question: Be sure to answer "Yes" or "No" to



9972

the following question. Is "0.5" in the
following passage correct? "0.5 people
attended her wedding."

Answer: Let's think step by step.

------------------------------------

C Results for All Prompts

C.1 Zero-shot Accuracy
Table 4 lists the detection accuracy of LMs in the
zero-shot setting for all prompts used in our experi-
ments. A slight change in the prompt can signifi-
cantly change the detection accuracy even for the
same model in a zero-shot setting.

C.2 Few-shot Accuracy
Tables 5 and 6 list the detection accuracy of LMs
in the few-shot setting for all prompts used in our
experiments. A slight change in prompting can
significantly change the detection accuracy even
for the same model, also in the few-shot setting.

D Detection Accuracy for “Undetectable
Error” Class

To further investigate the difference between the
LMs and humans, we examined the accuracy of the
models for the “undetectable error” class, which
encompasses numerical errors that are deemed un-
detectable by human reviewers. Table 7 lists the
results. Llama 3 detected the numerical errors in
the “undetectable error” class significantly more
accurately in ACLsent than in the other datasets.
Similarly, GPT-4 detected errors more accurately
in DROP and QA-text. This is consistent with the
results in Figure 3 and might indicate that the pres-
ence of potential data leakage or shortcuts in these
models for these datasets. FLAN-T5 detected the
numerical errors in the “undetectable error” class
with high accuracy on all datasets, indicating that
FLAN-T5 is not capable of basic numerical reason-
ing.
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Model Prompt Accuracy TP TN FP FN Generation error

GPT-3.5 zero 68.0% 28.2% 21.8% 10.2% 39.8% 0.0%
zero-correct 67.9% 33.5% 16.5% 15.5% 34.4% 0.1%
zero-step 10.0% 3.2% 2.7% 1.6% 6.8% 80.8%
zero-correct-step 28.8% 12.6% 7.3% 2.6% 16.2% 57.9%
zero-YN 56.7% 15.6% 34.4% 8.9% 41.1% 0.0%
zero-correct-YN 66.0% 40.6% 9.4% 24.6% 25.4% 0.0%
zero-step-YN 39.0% 36.5% 1.8% 39.3% 2.4% 18.7%
zero-correct-step-YN 45.2% 4.9% 34.7% 1.7% 40.2% 17.1%

GPT-4 zero-correct 71.9% 39.8% 10.2% 17.9% 32.1% 0.1%
zero-correct-step-YN 73.8% 37.0% 12.9% 13.0% 36.8% 0.2%

Llama-3-8B zero 66.1% 40.1% 9.9% 24.0% 26.0% 0.0%
-Instruct zero-correct 69.1% 35.4% 14.5% 16.1% 33.7% 0.0%

zero-step 12.2% 4.9% 3.5% 1.5% 7.3% 1.4%
zero-correct-step 36.6% 24.3% 4.2% 8.9% 12.3% 2.6%
zero-YN 68.7% 35.7% 14.3% 17.0% 33.0% 0.0%
zero-correct-YN 67.7% 35.4% 14.6% 17.7% 32.3% 0.0%
zero-step-YN 29.8% 7.5% 19.2% 4.1% 22.3% 0.4%
zero-correct-step-YN 34.2% 23.5% 5.0% 13.1% 10.7% 0.2%

Mistral-7B zero 68.1% 20.7% 29.2% 2.6% 47.4% 0.1%
-Instruct-v0.3 zero-correct 64.6% 32.7% 16.7% 17.2% 31.9% 1.3%

zero-step 32.9% 5.0% 12.7% 1.1% 27.9% 49.4%
zero-correct-step 37.9% 18.4% 8.2% 6.7% 19.5% 40.3%
zero-YN 71.6% 29.5% 20.5% 7.9% 42.1% 0.0%
zero-correct-YN 66.3% 33.3% 16.7% 16.8% 33.0% 0.1%
zero-step-YN 35.7% 11.2% 10.9% 6.1% 24.5% 44.4%
zero-correct-step-YN 41.4% 17.9% 10.7% 5.2% 23.4% 37.2%

Mathstral-7b-v0.1 zero 60.4% 12.5% 37.5% 2.1% 47.9% 0.0%
zero-correct 62.2% 14.0% 36.0% 1.8% 48.2% 0.0%
zero-step 41.7% 10.9% 23.4% 4.2% 30.8% 28.9%
zero-correct-step 34.5% 8.2% 21.4% 4.3% 26.3% 35.3%
zero-YN 65.3% 31.1% 18.9% 15.8% 34.2% 0.0%
zero-correct-YN 57.3% 7.7% 42.3% 0.4% 49.6% 0.0%
zero-step-YN 47.8% 35.9% 8.6% 31.4% 11.9% 11.9%
zero-correct-step-YN 42.0% 1.7% 38.9% 0.4% 40.4% 17.3%

FLAN-T5-xl zero 50.0% 0.0% 50.0% 0.0% 50.0% 0.0%
zero-correct 50.4% 23.0% 27.0% 22.6% 27.4% 0.0%
zero-step 49.5% 0.9% 48.4% 0.7% 48.6% 0.0%
zero-correct-step 51.7% 22.1% 27.9% 20.3% 29.7% 0.0%
zero-YN 50.0% 0.0% 50.0% 0.0% 50.0% 0.0%
zero-correct-YN 51.6% 29.7% 20.3% 28.1% 21.9% 0.0%
zero-step-YN 50.0% 0.0% 50.0% 0.0% 50.0% 0.0%
zero-correct-step-YN 53.5% 36.3% 13.7% 32.8% 17.2% 0.0%

Human 78.3% 31.7% 18.2% 3.5% 46.6% 0.0%

Table 4: Numerical error detection accuracy of LMs with the zero-shot setting for BeNEDect. “TP,” “TN,” “FP,”
and “FN” represent true positive, true negative, false positive, and false negative, respectively.
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Model Prompt Accuracy TP TN FP FN Generation error

GPT-3.5 few 44.9% 29.9% 11.0% 26.4% 15.0% 12.1%
few-correct 50.6% 33.9% 7.9% 25.2% 16.7% 14.0%
few-step 17.5% 12.3% 5.7% 12.8% 5.2% 51.8%
few-correct-step 36.2% 10.4% 20.7% 3.7% 25.8% 28.6%
few-CoT 58.9% 29.2% 12.2% 6.8% 29.7% 19.1%
few-correct-CoT 63.9% 28.9% 15.3% 8.7% 35.0% 7.3%
few-step-CoT 18.0% 8.6% 3.4% 1.6% 9.4% 51.9%
few-correct-step-CoT 32.0% 13.3% 8.2% 3.3% 18.6% 43.6%
few-YN 43.5% 18.1% 17.0% 11.0% 25.4% 14.9%
few-correct-YN 46.9% 37.4% 2.9% 31.1% 9.5% 15.6%
few-step-YN 9.3% 7.2% 2.0% 9.2% 2.0% 59.1%
few-correct-step-YN 28.1% 13.4% 8.5% 4.9% 14.7% 48.4%
few-CoT-YN 64.6% 28.1% 16.1% 7.1% 36.5% 9.8%
few-correct-CoT-YN 62.0% 29.4% 14.2% 10.9% 32.5% 10.2%
few-step-CoT-YN 16.5% 6.1% 4.0% 1.1% 10.3% 51.3%

GPT-4 few-correct-CoT 64.4% 30.4% 12.7% 4.2% 34.0% 11.3%
few-correct-step-CoT-YN 73.8% 35.8% 13.4% 10.7% 38.0% 1.5%

Llama-3-8B few 64.7% 31.7% 18.2% 16.9% 33.0% 0.0%
-Instruct few-correct 64.0% 19.9% 29.8% 5.6% 44.1% 0.1%

few-step 15.8% 6.2% 5.5% 0.9% 9.7% 0.7%
few-correct-step 40.8% 8.1% 17.7% 1.8% 32.6% 0.5%
few-CoT 55.6% 31.3% 12.1% 17.3% 24.2% 2.3%
few-correct-CoT 61.7% 28.4% 15.9% 9.7% 33.4% 2.3%
few-step-CoT 58.8% 26.5% 15.7% 8.1% 32.3% 2.4%
few-correct-step-CoT 63.2% 25.0% 19.9% 6.6% 38.2% 2.9%
few-YN 65.4% 37.1% 12.8% 21.7% 28.3% 0.0%
few-correct-YN 65.5% 21.8% 28.1% 6.3% 43.7% 0.0%
few-step-YN 64.4% 34.9% 15.1% 20.5% 29.5% 0.0%
few-correct-step-YN 62.3% 19.9% 30.1% 7.6% 42.4% 0.0%
few-CoT-YN 54.0% 47.8% 2.2% 43.7% 6.2% 0.0%
few-correct-CoT-YN 68.7% 33.0% 17.0% 14.2% 35.7% 0.0%
few-step-CoT-YN 52.3% 35.0% 8.4% 25.7% 17.3% 1.1%
few-correct-step-CoT-YN 64.0% 22.8% 24.4% 6.8% 41.2% 0.7%

Table 5: Numerical error detection accuracy of LMs (GPT-3.5, GPT-4, and Llama-3-8B-Instruct) with the few-shot
setting for BeNEDect. “TP,” “TN,” “FP,” and “FN” represent true positive, true negative, false positive, and false
negative, respectively.
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Model Prompt Accuracy TP TN FP FN Generation error

Mistral-7B few 49.3% 9.9% 36.5% 9.0% 39.4% 4.3%
-Instruct-v0.3 few-correct 47.9% 15.9% 22.3% 6.5% 31.9% 20.9%

few-step 52.9% 6.7% 37.0% 0.6% 46.2% 7.8%
few-correct-step 44.1% 15.8% 20.1% 7.7% 28.4% 23.8%
few-CoT 36.4% 7.2% 21.0% 1.8% 29.1% 36.5%
few-correct-CoT 41.3% 16.0% 14.6% 4.4% 25.3% 34.6%
few-step-CoT 36.7% 4.9% 22.9% 1.7% 31.9% 34.8%
few-correct-step-CoT 33.1% 16.5% 9.2% 6.5% 16.7% 44.4%
few-YN 52.8% 13.1% 35.2% 9.4% 39.7% 2.1%
few-correct-YN 51.3% 18.0% 24.5% 9.0% 33.4% 13.6%
few-step-YN 54.9% 9.4% 35.9% 1.6% 45.5% 6.1%
few-correct-step-YN 46.5% 16.8% 21.3% 7.9% 29.6% 18.7%
few-CoT-YN 41.3% 10.4% 21.7% 2.9% 30.9% 29.6%
few-correct-CoT-YN 44.8% 18.2% 16.6% 6.1% 26.7% 27.5%
few-step-CoT-YN 40.6% 7.6% 22.6% 2.4% 33.0% 30.0%
few-correct-step-CoT-YN 36.9% 17.5% 11.9% 7.1% 19.4% 37.0%

Mathstral-7b few 58.6% 9.8% 40.2% 1.1% 48.8% 0.1%
-v0.1 few-correct 58.3% 9.6% 40.1% 1.0% 48.7% 0.6%

few-step 59.5% 12.0% 37.8% 2.1% 47.5% 0.6%
few-correct-step 56.3% 7.0% 42.6% 0.3% 49.3% 0.7%
few-CoT 51.7% 10.6% 35.6% 3.4% 41.0% 8.7%
few-correct-CoT 56.5% 21.8% 21.6% 8.7% 34.6% 10.6%
few-step-CoT 45.6% 11.3% 28.0% 3.0% 34.4% 22.2%
few-correct-step-CoT 53.9% 25.8% 15.1% 12.7% 28.1% 15.6%
few-YN 60.5% 13.1% 37.0% 2.5% 47.5% 0.0%
few-correct-YN 65.7% 21.1% 28.9% 5.4% 44.6% 0.0%
few-step-YN 59.8% 11.8% 38.2% 2.0% 48.0% 0.0%
few-correct-step-YN 64.2% 20.0% 30.0% 5.8% 44.1% 0.0%
few-CoT-YN 59.4% 23.0% 25.1% 11.5% 36.4% 3.4%
few-correct-CoT-YN 56.9% 10.4% 37.8% 2.2% 46.5% 2.4%
few-step-CoT-YN 51.7% 14.8% 29.6% 6.4% 37.0% 11.7%
few-correct-step-CoT-YN 57.2% 17.5% 27.8% 6.0% 39.7% 7.8%

FLAN-T5-xl few 52.0% 2.7% 47.3% 0.7% 49.3% 0.0%
few-correct 46.8% 9.7% 40.3% 12.9% 37.1% 0.0%
few-step 52.0% 6.7% 43.3% 4.6% 45.4% 0.0%
few-correct-step 49.6% 10.1% 40.0% 10.4% 39.6% 0.0%
few-CoT 50.0% 0.0% 50.0% 0.0% 50.0% 0.0%
few-correct-CoT 50.3% 18.9% 31.1% 18.6% 31.4% 0.0%
few-step-CoT 50.0% 0.0% 50.0% 0.0% 50.0% 0.0%
few-correct-step-CoT 52.4% 21.8% 28.2% 19.3% 30.7% 0.0%
few-YN 50.0% 0.0% 50.0% 0.0% 50.0% 0.0%
few-correct-YN 51.0% 23.9% 26.1% 23.0% 27.0% 0.0%
few-step-YN 50.0% 0.0% 50.0% 0.0% 50.0% 0.0%
few-correct-step-YN 52.0% 23.6% 26.4% 21.6% 28.4% 0.0%
few-CoT-YN 50.0% 0.0% 50.0% 0.0% 50.0% 0.0%
few-correct-CoT-YN 52.2% 27.5% 22.5% 25.3% 24.7% 0.0%
few-step-CoT-YN 50.0% 0.0% 50.0% 0.0% 50.0% 0.0%
few-correct-step-CoT-YN 53.8% 35.8% 14.2% 32.0% 18.0% 0.0%

Human 78.3% 31.7% 18.2% 3.5% 46.6% 0.0%

Table 6: Numerical error detection accuracy of LMs (Mistral-7B-Instruct-v0.3, Mathstral-7b-v0.1, and FLAN-T5-xl)
with the few-shot setting for BeNEDect. “TP,” “TN,” “FP,” and “FN” represent true positive, true negative, false
positive, and false negative, respectively.
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Model N600 ACL DROP QA FN

GPT-4 43.9 38.9 54.8 57.1 45.4
Llama-3-8B 37.8 65.6 45.2 37.4 46.6
FLAN-T5-xl 71.4 66.7 60.2 74.7 76.7

Human 5.1 11.1 8.6 15.4 11.0

Table 7: Detection accuracy (%) for numerical errors in
the “undetectable error” class. “N600,” “ACL,” “QA,”
and “FN” represent Numeracy-600K, ACLsent, QA-
text, and FinNum, respectively.
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