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Abstract

Large Language Models (LLMs) demonstrate
exceptional zero-shot capabilities in various
NLP tasks, significantly enhancing user expe-
rience and efficiency. However, this advantage
is primarily limited to resource-rich languages.
For the diverse array of low-resource languages,
support remains inadequate, with the scarcity of
training corpora considered the primary cause.
We construct and open-source CUTE (Chinese,
Uyghur, Tibetan, English) dataset, consisting
of two 25GB sets of four-language corpora
(one parallel and one non-parallel), obtained
through machine translation. CUTE encom-
passes two resource-rich languages (Chinese
and English) and two low-resource languages
(Uyghur and Tibetan). Prior to constructing
CUTE, human assessment validates that the
machine translation quality between Chinese-
Uyghur and Chinese-Tibetan approaches that
of Chinese-English translation. CUTE repre-
sents the largest open-source corpus for Uyghur
and Tibetan languages to date, and we demon-
strate its effectiveness in enhancing LLMs’ abil-
ity to process low-resource languages while
investigating the role of corpus parallelism in
cross-lingual transfer learning. The CUTE cor-
pus and related models are made publicly avail-
able to the research community1.

1 Introduction

The current LLMs demonstrate remarkable capa-
bilities in resource-rich languages. However, their
performance is limited for numerous resource-poor
languages (Ebrahimi et al., 2021; Chowdhery et al.,
2023). Even powerful multilingual models such as
XLM-R (Conneau et al., 2019), mT5 (Xue et al.,
2020), and NLLB (Costa-jussà et al., 2022) support
only approximately 100-200 languages, leaving
nearly 7,000 low-resource languages untapped (van
Esch et al., 2022). Among these are several low-
resource languages with significant numbers of

1https://github.com/CMLI-NLP/CUTE

speakers. Uyghur and Tibetan, two low-resource
minority languages in China, have over 13 mil-
lion and 8 million speakers respectively. However,
known LLMs have yet to achieve adequate support
for these two languages.

Existing multilingual datasets, such as OS-
CAR (Abadji et al., 2022) and CulturaX (Nguyen
et al., 2024), include Uyghur and Tibetan lan-
guages. The CC100 dataset (Conneau et al., 2019),
used for training XLM-R, also contains a small
amount of Uyghur text. However, these datasets
still exhibit several limitations, including insuffi-
cient data volume, misidentification of languages,
and imbalanced data distribution (Zhang et al.,
2024b). MC2 represents the largest open-source
multilingual corpus of Chinese ethnic minority lan-
guages to date. It comprises crawled, integrated,
and cleaned data from existing minority language
sources, including Uyghur and Tibetan (Zhang
et al., 2024b). Nevertheless, the scale of this dataset
remains relatively small, not exceeding 3GB in
size.

To enhance LLMs’ ability to process low-
resource languages, continued pre-training or
adding adapters are common approaches (Yong
et al., 2022; Zhang et al., 2024b; Cahyawijaya
et al., 2023; Jin et al., 2022). However, continued
pre-training typically requires substantial unlabeled
text for learning language representations, while
question-answer pairs in low-resource languages
for fine-tuning are even more challenging to obtain.
Existing low-resource corpora are often insufficient
to effectively update LLM parameters (Cahyawi-
jaya et al., 2024). To rapidly address the scale issue
of low-resource corpora, one solution involves us-
ing machine translation models to translate training
corpora from resource-rich languages like English
and Chinese into low-resource languages. How-
ever, this approach raises two primary concerns: (1)
the accuracy of the translation process may not be
guaranteed (Ebing and Glavas, 2023). (2) cultural

https://github.com/CMLI-NLP/CUTE
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nuances inherent in the languages may be lost or
erroneously propagated during translation (Zhang
et al., 2024b; Liu et al., 2023).

LLMs demonstrate strong comprehension and
instruction-following capabilities across multiple
high-resource languages. This multilingual pro-
ficiency largely relies on cross-lingual sentence
embeddings. Specifically, cross-lingual sentence
embeddings encode multilingual text into a unified
semantic representation space, where sentences
with similar meanings in different languages are
mapped to proximate vector locations (Conneau
et al., 2019; Devlin et al., 2019; Lample and Con-
neau, 2019). However, significant representational
disparities exist between cross-lingual word repre-
sentations of low-resource languages and those of
high-resource languages in current LLMs (Miao
et al., 2024). Given the word-level representational
differences, sentence-level cross-lingual represen-
tation alignment faces even more severe challenges.
Achieving semantic representation alignment be-
tween low-resource and high-resource languages
would provide more opportunities for transferring
knowledge from high-resource languages to low-
resource languages.Parallel corpora play a crucial
role as bridges in transfer learning (Pham et al.,
2024). However, accurately assessing their impact
on LLMs and determining whether parallel corpora
can facilitate more effective cross-lingual knowl-
edge transfer requires a parallel corpus of sufficient
scale and quality.

To advance research and development of Uyghur
and Tibetan in LLMs, validate the reliability of
machine translation in generating low-resource
data, and explore the impact of parallel cor-
pora in knowledge transfer from high-resource to
low-resource languages, this paper introduces the
CUTE (Chinese, Uyghur, Tibetan, English) dataset.
It comprises two equal-sized four-language cor-
pora: one parallel in content and the other non-
parallel, totaling approximately 50GB. The Uyghur
and Tibetan components are ten times larger than
the current largest open-source MC2 dataset.

The CUTE dataset addresses the common issues
present in the aforementioned datasets that include
Uyghur and Tibetan languages. Notably, the CUTE
dataset offers several improvements. First, it boasts
a significantly larger scale. Additionally, the use of
machine translation in CUTE eliminates the prob-
lem of language misidentification. Furthermore,
the dataset features a more balanced distribution of
data across languages and content domains. The

mutual parallelism among the four languages in
CUTE also provides expanded opportunities for
research in machine translation and cross-lingual
knowledge transfer.

In summary, we make the following contribu-
tions:

• We construct and open-source the CUTE
dataset, a large-scale multilingual corpus with
parallel and non-parallel data in two high-
resource languages (Chinese and English) and
two low-resource languages (Uyghur and Ti-
betan), facilitating LLM training and evalua-
tion for minority languages.

• We propose a novel approach for LLM train-
ing using parallel and non-parallel corpora
through vocabulary expansion and embed-
ding initialization. Using this method, we
develop and release two versions of CUTE-
Llama trained on different corpus types.

• We validate the effectiveness of parallel
corpora in cross-lingual knowledge trans-
fer through zero-shot experiments on vari-
ous downstream tasks, showing that parallel
data enables more effective knowledge trans-
fer from high-resource to low-resource lan-
guages.

2 Related Works

Low-resource Language Corpora In recent
years, several large-scale multilingual corpora have
emerged to support NLP tasks for low-resource
languages. Datasets such as OSCAR (Abadji
et al., 2022), CulturaX (Nguyen et al., 2024), and
MADLAD-400 (Kudugunta et al., 2023) provide
rich cross-lingual text for multilingual model train-
ing through web crawling and multi-source inte-
gration. The ROOTS dataset emphasizes openness
and traceability, implementing strict management
in data collection and cleaning for low-resource
languages (Laurençon et al., 2022). OPUS, as an
open-source parallel corpus, offers extensive bilin-
gual data for machine translation task (Tiedemann,
2012)s. Meta’s FLORES-200 and NLLB projects
focus on evaluating and improving translation per-
formance for low-resource languages, covering
200 languages and significantly advancing cross-
lingual knowledge transfer research (Costa-jussà
et al., 2022). Although these corpora demonstrate
excellent performance in processing high-resource
languages, they still face challenges such as insuffi-
cient data volume, language misidentification, and
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imbalanced content distribution for low-resource
languages (e.g., Uyghur, Tibetan). Future research
directions should prioritize increasing data collec-
tion for low-resource languages and improving the
quality of existing corpora.

NLP Development for Low-Resource Languages
NLP research for low-resource languages has made
some progress in recent years but still faces nu-
merous challenges. In terms of datasets, research
primarily focuses on tasks such as text classifica-
tion (Qun et al., 2017; Yang et al., 2022; Deng
et al., 2023), machine reading comprehension (Sun
et al., 2021), instruction following (Zhuang et al.,
2024a), and machine translation (Zhang et al.,
2024a). However, these datasets are typically lim-
ited in scale and cover a narrow range of languages.
Regarding models, pre-trained models specifically
developed for Chinese minority languages, such
as CINO (Yang et al., 2022), MiLMo (Deng
et al., 2023), CMPT (Li et al., 2022), and TiL-
amb (Zhuang et al., 2024b), have achieved cer-
tain breakthroughs in processing languages like
Uyghur and Tibetan through techniques including
multilingual pre-training and vocabulary expansion.
Nevertheless, the pre-training corpora for these
models are generally not publicly available, which
limits the reproducibility and further development
of research. Existing LLMs contribute minimally
to improving the processing capabilities for low-
resource languages, primarily due to the lack of
high-quality instruction data. Knowledge distilla-
tion methods from teacher models prove ineffective
for these languages, as current LLMs already per-
form inadequately in low-resource languages such
as Uyghur and Tibetan. Moreover, finding suitable
annotators capable of writing high-quality instruc-
tion samples is challenging due to the high require-
ments for creative thinking and professional ex-
pertise (Li et al., 2024). These factors collectively
constrain the development of NLP for low-resource
languages in China, highlighting urgent research
needs in data collection, model optimization, and
cross-lingual knowledge transfer.

Cross-lingual Knowledge Transfer Optimizing
cross-lingual knowledge transfer is a key strategy
for addressing NLP challenges in low-resource lan-
guages. Multilingual pre-trained models such as
XLM-R (Conneau et al., 2019) and mBERT (De-
vlin et al., 2019) currently serve as powerful tools
for effective cross-lingual transfer, yet they still
face challenges when applied to low-resource lan-

guages. In recent years, ICL (In-Context Learn-
ing) (Brown et al., 2020) and few shot learning have
shown potential to adapt large language models to
new tasks. However, their effectiveness in helping
models understand under-trained low-resource lan-
guages remains limited. To further enhance the effi-
cacy of cross-lingual knowledge transfer, this study
focuses on two critical directions: evaluating the
effectiveness of machine-translated low-resource
language data in model training, and investigating
the impact of parallel data on cross-lingual knowl-
edge transfer.

3 CUTE Dataset and CUTE-Llama

This section provides a detailed description of the
scale of the CUTE dataset, which encompasses Chi-
nese, Uyghur, Tibetan, and English. It represents
the largest open-source dataset for Uyghur and Ti-
betan languages in China to date. It is important to
note that Chinese and English, as resource-rich lan-
guages, are well-supported in the majority of LLMs.
In contrast, Uyghur and Tibetan, as low-resource
languages, often exhibit suboptimal performance
in nearly all LLMs.

Additionally, this section elucidates the construc-
tion and training process of CUTE-Llama, as well
as the model’s evolving adaptability to Uyghur and
Tibetan languages during the training phase.

3.1 Machine Translation for Chinese Minority
Languages

Low-resource languages exhibit a significant dis-
parity in data acquisition methods and scale com-
pared to resource-rich languages. One viable ap-
proach to build large datasets for low-resource lan-
guages is using machine translation. This method
converts existing training corpora from resource-
rich languages into low-resource language data.
However, ensuring translation quality becomes a
critical consideration in this process.

The combined number of Uyghur and Tibetan
language users in China exceeds 20 million. Neural
machine translation technologies between various
minority languages, with Chinese as the pivot, have
developed over an extended period and have now
reached maturity. Given that bidirectional transla-
tion between Chinese and English, both resource-
rich languages, has attained a considerable level
of reliability, we have established scoring criteria
to evaluate the quality of machine translation from
Chinese to Uyghur and Tibetan. Native speakers
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of these respective minority languages have been
invited to conduct the assessment.

Evaluation Criteria We have established unified
translation standards with Chinese as the source
language and Uyghur, Tibetan, and English as the
target languages, as shown in Table 1.

Human Evaluation We randomly select 500 Chi-
nese texts from the SkyPile-150B dataset (Wei
et al., 2023) and generate corresponding parallel
sentence pairs in Uyghur, Tibetan, and English
through machine translation, with 500 pairs for
each language. For Chinese-English translation,
we employ the Google Translate system, while spe-
cialized machine translation models are used for
Chinese-Uyghur and Chinese-Tibetan translations.

To evaluate the translation quality, we invite
three Uyghur and three Tibetan graduate students
as evaluators. These evaluators are native speakers
of their respective ethnicities and are also proficient
in Chinese. For the assessment of Chinese-English
translations, we recruit three graduate students with
excellent English communication skills. After stan-
dardizing the translation scoring criteria, they in-
dependently complete their respective translation
scoring tasks. The final human evaluation results
for Chinese translations into Uyghur, Tibetan, and
English are shown in Figure 1.

Figure 1: Human evaluation results of Chinese to En-
glish, Tibetan, and Uyghur translations. The stacked
bar chart displays the distribution of translation quality
scores across five score ranges (0-1, 2-3, 4-5, 6-7, 8-10)
for each language pair, while the black dashed line rep-
resents the average scores.

Results Analysis The Chinese-English (CH-EN)
translation performs best, achieving an average
score of 9.1, with 76.7% of translations falling
within the 8-10 score range, demonstrating high ac-

curacy and fluency. Notably, the quality of Chinese-
Uyghur (CH-UG) and Chinese-Tibetan (CH-BO)
translations closely approaches that of Chinese-
English, with average scores of 8.5 and 8.6 respec-
tively, also attaining the level of "generally accurate
and naturally fluent." All three language pairs ex-
hibit a pronounced right-skewed distribution, with
over 90% of translations scoring above 6, indicat-
ing that the vast majority of translations accurately
convey the overall meaning of the original text.
These results highlight the balanced high-level per-
formance of current machine translation systems in
handling translations between Chinese and English,
Uyghur, and Tibetan. In particular, the quality of
Chinese-Uyghur and Chinese-Tibetan translations
now approaches that of Chinese-English transla-
tion.

3.2 CUTE Dataset Language Distribution

The CUTE dataset utilizes machine translation
to translate a small portion of the SkyPile-150B
dataset into Uyghur, Tibetan, and English. SkyPile-
150B is a dataset specifically designed for pre-
training large-scale Chinese language models, con-
taining approximately 150 billion tokens primarily
sourced from a wide range of Chinese internet web
content. This dataset undergoes rigorous dedupli-
cation and sensitive information filtering to ensure
data quality and safety.

CUTE comprises two sets of corpora, each con-
taining four languages. The first set consists of par-
allel corpora in four languages, achieving a 99.98%
similarity in content parallelism. The second set in-
cludes non-parallel corpora in four languages, with
the English portion identical to the first set, while
the remaining three languages differ. The specific
scale of CUTE is presented in Table 2.

CUTE-P CUTE-NP

Lang. Lines Size Lines Size

ZH 933,946 2.62 1,000,609 2.64
EN 933,989 3.49 933,989 3.49
UG 934,002 7.37 1,010,381 7.77
BO 934,140 11.22 989,723 11.90

Total 3,736,077 24.70 3,934,702 25.80

Table 2: Distribution of CUTE dataset. CUTE-P: paral-
lel corpus, CUTE-NP: non-parallel corpus. Language
codes: ZH (Chinese), EN (English), UG (Uyghur), BO
(Tibetan). Size in GB.



10041

Score Description

10 Perfect translation, accurate and fluent, fully consistent with the original style and meaning.

8–9 Generally accurate, natural and fluent, with only minor errors or improprieties.

6–7 Overall meaning is understandable, but with noticeable errors or awkward phrasing that affect partial
comprehension.

4–5 Partially understandable, but with serious errors that impact overall comprehension.

2–3 Mostly incomprehensible, with only a few words correctly translated.

0–1 Completely incomprehensible or unrelated to the original text.

Table 1: Machine Translation Quality Evaluation Criteria: Universal Scoring Standards for Chinese-Uyghur,
Chinese-Tibetan, and Chinese-English Translation Directions in the CUTE Dataset

3.3 Analysis of Document Length Distribution

Figure 2 illustrates the document length distribu-
tion for four languages (Chinese, Uyghur, Tibetan,
and English) in the CUTE dataset. By analyzing
the document lengths for each language, we ob-
serve significant variations in the average document
length across languages. Uyghur exhibits the high-
est average document length at 1,094.23 tokens,
substantially exceeding the other three languages.
In contrast, English, Tibetan, and Chinese demon-
strate relatively similar average document lengths
of 955.36, 883.01, and 879.28 tokens, respectively.

Figure 2: Document length distribution across Chinese,
Uyghur, Tibetan, and English in the CUTE dataset,
based on token counts calculated using the CUTE-
Llama tokenizer. The red dashed lines represent the
average document length for each language.

3.4 CUTE-Llama Vocabulary Training

CUTE-Llama is based on the Llama2 model ar-
chitecture (Touvron et al., 2023). The original to-
kenization model of Llama2 is trained using the
SentencePiece (Kudo and Richardson, 2018) li-

brary, employing the Byte Pair Encoding (BPE)
algorithm. This algorithm constructs the vocab-
ulary by merging common byte pairs, enabling
effective processing of various languages. Consid-
ering that Llama2 is well-adapted for English but
lacks sufficient support for Chinese, Uyghur, and
Tibetan, we train separate vocabularies of 6,000
tokens each for these three languages. The training
content, while distinct from the CUTE dataset, is
of comparable scale. These newly trained vocab-
ularies are subsequently merged with the Llama2
vocabulary. The parameters for vocabulary training
are presented in Table 3.

Parameter Value

vocab_size 6,000
model_type bpe
split_digits True
max_sentence_length 10,000
byte_fallback True

Table 3: SentencePiece training parameters for Chinese,
Tibetan, and Uyghur vocabularies. Vocabulary sizes
after merging with the original Llama model: 36,820
(Chinese), 42,353 (Tibetan), and 47,905 (Uyghur) to-
kens, from an initial 32,000.

3.5 CUTE-Llama Training
We trained the CUTE-Llama model using key hy-
perparameters as shown in Table 4. The training
process was conducted on 8 NVIDIA H800 GPUs
for approximately 18 hours to obtain one CUTE-
Llama model.

3.6 Perplexity Analysis Across Training
Stages

To evaluate the model’s performance across differ-
ent languages throughout the training process, we
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Hyperparameter Value

Max Sequence Length 4,096
Batch Size 256
Learning Rate 1e-4
Warmup Steps 100
Epoch 1
Data Type BF16

Table 4: Key hyperparameters for CUTE-Llama train-
ing.

Stage Tibetan Uyghur Chinese English

Original 3.24 5.24 5.23 7.24
Post-Exp 50,633 16,317 822 7.25
CUTE-P 12.00 5.50 9.93 4.75
CUTE-NP 11.84 5.40 10.41 4.67

Table 5: Perplexity scores across training stages. Stages:
Original (initial Llama2), Post-Exp (after vocabulary
expansion), CUTE-P (after parallel corpus training),
CUTE-NP (after non-parallel corpus training).

conducted a perplexity (PPL) analysis using 1,000
samples for each language that were not included
in the training set. Table 5 presents the perplexity
scores at various stages of model development.

The results reveal an intriguing phenomenon in
the original Llama2 model, where Tibetan, Uyghur,
and Chinese show lower perplexity than English.
This counterintuitive outcome likely stems from
the model’s treatment of unfamiliar scripts as se-
quences of unknown tokens, leading to simplified
character-level predictions. The vocabulary expan-
sion initially causes a sharp increase in perplexity
for these languages, reflecting the model’s adjust-
ment to the new token distribution. Subsequent
training on both parallel and non-parallel corpora
significantly improves performance across all lan-
guages, resulting in a more balanced multilingual
model. This process demonstrates the effectiveness
of our approach in adapting Llama2 to handle Ti-
betan, Uyghur, and Chinese while maintaining its
English capabilities.

4 Evaluation Tasks and Results

To evaluate the practical value of the CUTE dataset
and investigate the impact of multilingual par-
allel corpora on cross-lingual knowledge trans-
fer, we construct two foundation models based
on the Llama2-7B architecture: CUTE-Llama-P
(trained with parallel corpora) and CUTE-Llama-
NP (trained with non-parallel corpora). The vocab-

ularies of both models are expanded to include Chi-
nese, Uyghur, and Tibetan, with the embeddings of
newly added tokens initialized using mean values.
Subsequently, we conduct continuous pre-training
on these models using parallel and non-parallel
corpora from CUTE, respectively.

Our experimental design is as follows: We first
fine-tune these two foundation models using down-
stream task data from resource-rich languages, then
assess the cross-lingual zero-shot transfer learn-
ing capabilities of the fine-tuned models on low-
resource languages. This process aims to validate
the efficacy of the CUTE dataset and compare the
differences between parallel and non-parallel cor-
pora in facilitating cross-lingual knowledge trans-
fer.

4.1 Evaluation Datasets
Public test sets for Uyghur and Tibetan are lim-
ited in quantity and narrow in domain coverage.
To address this issue, we identify corresponding
datasets with similar training tasks in resource-rich
languages. WCM-v2 (Yang et al., 2022) is a mul-
tilingual dataset containing 10 categories of text
classification tasks, including classification tasks
for Chinese, Uyghur, and Tibetan. As the train-
ing set of WCM-v2 only contains Chinese data,
we fine-tune the model using the Chinese training
set and evaluate it on test sets in Chinese, Uyghur,
and Tibetan. TibetanQA (Sun et al., 2021) is a
Tibetan machine reading comprehension dataset,
primarily used to assess model performance on ex-
tractive reading comprehension tasks. CMRC (Cui
et al., 2019), as a Chinese machine reading com-
prehension dataset, shares the same task type as
TibetanQA. Therefore, we fine-tune CUTE-Llama
using CMRC and utilize TibetanQA to test the
model’s transfer ability from Chinese to Tibetan.
SQuAD (Rajpurkar, 2016) is a widely used English
machine reading comprehension dataset contain-
ing question-answer pairs from Wikipedia articles.
We fine-tune CUTE-Llama using SQuAD and eval-
uate its transfer ability from English to Tibetan
through TibetanQA. The Chinese relation extrac-
tion dataset released by Baidu, which we refer to
as Baidu-KG for convenience, encompasses type
definitions for 50 relation extraction tasks. Based
on this, we construct a Tibetan relation extraction
dataset, which we name Tibetan-KG, containing
11 relation types to test the model’s performance.
The Flores-200 (Costa-jussà et al., 2022) dataset
includes machine translation tasks for Tibetan and
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Uyghur. We employ a few-shot prompting ap-
proach to complete this task.

4.2 Compared Models

We compare the CUTE-Llama model with
CINO (Yang et al., 2022), Llama2-7B (Touvron
et al., 2023), BLOOM7.1B (BigScience et al.,
2022), and Llama3.1-8 (Dubey et al., 2024). CINO
is a pre-trained model for ethnic minority languages
in China, incorporating training data from Chinese,
Uyghur, and Tibetan languages. BLOOM-7.1B
is pre-trained on more than 45 languages, while
both Llama2-7B and Llama3.1-8B are multilingual
models developed by Meta.

4.3 Experimental Setup and Results

We compare and analyze the experimental results
for text classification, relation extraction, machine
reading comprehension, and translation in this sec-
tion.

Text Classification We evaluate the models’ per-
formance on the WCM-v2 dataset, which includes
Chinese (zh), Tibetan (bo), and Uyghur (ug) lan-
guages. The dataset comprises 32,000 Chinese
samples for training. For testing, we use 4,000
Chinese, 1,110 Tibetan, and 300 Uyghur samples.
Models are fine-tuned on the Chinese training data
and tested on all three languages to assess zero-shot
transfer capabilities. Table 6 presents the classifi-
cation results.

Relation Extraction For the relation extraction
task, we use Baidu-KG (194,747 samples) as the
training set and our self-constructed Tibetan-KG
(3,510 samples) as the test set. This setup evalu-
ates the models’ ability to transfer knowledge from
Chinese to Tibetan in relation extraction. Table 7
shows the results.

Model Precision Recall F1

Llama2-7B 0.2379 0.1338 0.1614
BLOOM-7.1b 0.2707 0.1435 0.1760
Llama3.1-8B 0.2781 0.1712 0.1982
CUTE-Llama-NP 0.7038 0.4006 0.4718
CUTE-Llama-P 0.7312 0.4118 0.4843

Table 7: Performance comparison on the Tibetan-KG
relation extraction task.

Machine Reading Comprehension We evaluate
the models’ performance on the TibetanQA dataset

to assess their machine reading comprehension ca-
pabilities in Tibetan. The models are fine-tuned
on Chinese (CMRC) or English (SQuAD) datasets
and tested on TibetanQA to measure cross-lingual
transfer. Table 8 presents the results using Exact
Match (EM) and F1 scores.

Model CMRC-trained SQuAD-trained
EM F1 EM F1

Llama2-7B 0.0767 0.6646 0.0612 0.6103
BLOOM-7.1b 0.0568 0.6513 0.0437 0.5924
Llama3.1-8B 0.0065 0.4859 0.0041 0.4213
CUTE-Llama-NP 0.1455 0.7927 0.1187 0.7352
CUTE-Llama-P 0.1674 0.8071 0.1346 0.7489

Table 8: Performance comparison on the TibetanQA ma-
chine reading comprehension task, with models trained
on CMRC (Chinese) and SQuAD (English) datasets.

Translation For the translation task, we evaluate
the models’ performance on Chinese-to-Tibetan
(zh-bo) and Chinese-to-Uyghur (zh-ug) translation
using the Flores-200 dataset. We employ few-shot
prompting with 3 examples for each language pair.
Table 9 presents the results using BLEU, chrF, and
TER (Translation Edit Rate) metrics.

4.4 Analysis of Results

The experimental results demonstrate the signif-
icant potential of the CUTE dataset. In the text
classification task, the CUTE-Llama-P model ex-
hibits exceptional cross-lingual zero-shot transfer
capabilities, with particularly noteworthy perfor-
mance in Tibetan and Uyghur languages. Com-
pared to Llama3.1-8B, our model shows accuracy
improvements of 13.87 and 18.67 percentage points
for these two languages, respectively. Even more
promising is the model’s performance in machine
reading comprehension tasks, where CUTE-Llama-
P excels even in cross-family language transfer
from English to Tibetan. In translation tasks, the
performance of CUTE-Llama models further cor-
roborates the importance of parallel corpora. Even
in few-shot scenarios, models trained on parallel
corpora consistently outperform their counterparts
trained on non-parallel data in Chinese-to-Tibetan
and Chinese-to-Uyghur translations, with signifi-
cant improvements in BLEU scores. These results
highlight the high quality and practical value of
the CUTE dataset while emphasizing the crucial
role of parallel corpora in enhancing cross-lingual
transfer learning effectiveness.
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Model Classification (Accuracy / F1) Average
zh bo ug Minorities All

CINO-base - / 78.0 - / 36.2 - / 33.4 - / 34.8 - / 47.6
CINO-large - / 79.2 - / 40.6 - / 28.8 - / 34.7 - / 48.4
Llama2-7B 90.0 / 90.02 26.13 / 25.43 78.0 / 82.42 52.07 / 53.93 76.23 / 76.34
BLOOM-7.1b 90.025 / 89.99 25.23 / 27.10 35.67 / 49.86 30.45 / 38.48 73.72 / 74.86
Llama3.1-8B 90.225 / 90.13 37.21 / 39.85 68.33 / 77.92 52.77 / 58.89 78.13 / 79.14
CUTE-Llama-NP 90.1 / 89.98 49.91 / 48.44 86.33 / 87.97 68.12 / 68.21 81.65 / 81.34
CUTE-Llama-P 90.25 / 90.17 51.08 / 48.46 87.0 / 89.08 69.04 / 68.77 82.03 / 81.56

Table 6: Performance comparison of different models on the WCM-v2 dataset for text classification tasks. The best
scores are in bold, with the second best underlined. For CINO models, only F1 scores are available. The Minorities
average for CINO models is calculated as the mean of bo and ug F1 scores, while for other models it’s the average
of both Accuracy and F1 scores for bo and ug.

Model Chinese-to-Tibetan (zh-bo) Chinese-to-Uyghur (zh-ug)
BLEU↑ chrF↑ TER↓ BLEU↑ chrF↑ TER↓

BLOOM-7.1b 4.2 0.297 0.881 4.9 0.319 0.862
Llama2-7B 4.7 0.311 0.865 5.4 0.334 0.847
Llama3.1-8B 6.8 0.364 0.811 7.5 0.376 0.798
CUTE-Llama-NP 8.3 0.401 0.773 9.0 0.419 0.762
CUTE-Llama-P 9.5 0.427 0.745 10.2 0.443 0.738

Table 9: Translation performance comparison on Flores-200 dataset using few-shot prompting (3 examples). ↑:
higher is better, ↓: lower is better. The best scores are in bold, with the second best underlined.

5 Conclusion

This study constructs and open-sources the CUTE
dataset, providing the largest open resource to date
for Uyghur and Tibetan NLP research. The CUTE-
Llama model developed based on this dataset
demonstrates excellent multilingual processing ca-
pabilities, particularly excelling in Uyghur and Ti-
betan tasks. The experimental results not only val-
idate the effectiveness of machine translation in
generating training data for low-resource languages
but also highlight the crucial role of parallel cor-
pora in facilitating cross-lingual knowledge trans-
fer. The public release of the CUTE dataset and
CUTE-Llama model opens up new possibilities for
NLP research and applications in China’s minority
languages.

Limitations

The CUTE dataset provides rich resources for
low-resource language research; however, its large
scale inevitably leads to some errors in the trans-
lation process, especially in sentences with com-
plex grammar or significant cultural differences.
The heavy reliance on machine translation may

also result in the loss of cultural-specific expres-
sions and linguistic features unique to Uyghur and
Tibetan languages. While the selection of data
emphasizes diversity and balance, coverage of cer-
tain domains may still be inadequate, limiting the
model’s performance in specific fields. Further-
more, although CUTE-Llama demonstrates out-
standing performance in handling low-resource lan-
guage tasks, its performance in more complex lan-
guage understanding tasks (such as deep reasoning
or generation tasks) still requires further evaluation
and optimization.
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