@inproceedings{zhang-etal-2025-planning,
title = "Planning with Multi-Constraints via Collaborative Language Agents",
author = "Zhang, Cong and
Goh, Xin Deik and
Li, Dexun and
Zhang, Hao and
Liu, Yong",
editor = "Rambow, Owen and
Wanner, Leo and
Apidianaki, Marianna and
Al-Khalifa, Hend and
Eugenio, Barbara Di and
Schockaert, Steven",
booktitle = "Proceedings of the 31st International Conference on Computational Linguistics",
month = jan,
year = "2025",
address = "Abu Dhabi, UAE",
publisher = "Association for Computational Linguistics",
url = "https://aclanthology.org/2025.coling-main.672/",
pages = "10054--10082",
abstract = "The rapid advancement of neural language models has sparked a new surge of intelligent agent research. Unlike traditional agents, large language model-based agents (LLM agents) have emerged as a promising paradigm for achieving artificial general intelligence (AGI) due to their superior reasoning and generalization capabilities. Effective planning is crucial for the success of LLM agents in real-world tasks, making it a highly pursued topic in the community. Current planning methods typically translate tasks into executable action sequences. However, determining a feasible or optimal sequence for complex tasks with multiple constraints at fine granularity, which often requires compositing long chains of heterogeneous actions, remains challenging. This paper introduces Planning with Multi-Constraints (PMC), a zero-shot methodology for collaborative LLM-based multi-agent systems that simplifies complex task planning with constraints by decomposing it into a hierarchy of subordinate tasks. Each subtask is then mapped into executable actions. PMC was assessed on two constraint-intensive benchmarks, TravelPlanner and API-Bank. Notably, PMC achieved an average 42.68{\%} success rate on TravelPlanner, significantly higher than GPT-4 (2.92{\%}), and outperforming GPT-4 with ReAct on API-Bank by 13.64{\%}, showing the immense potential of integrating LLM with multi-agent systems. We also show that PMC works with small LLM as the planning core, e.g., LLaMA-3.1-8B."
}
<?xml version="1.0" encoding="UTF-8"?>
<modsCollection xmlns="http://www.loc.gov/mods/v3">
<mods ID="zhang-etal-2025-planning">
<titleInfo>
<title>Planning with Multi-Constraints via Collaborative Language Agents</title>
</titleInfo>
<name type="personal">
<namePart type="given">Cong</namePart>
<namePart type="family">Zhang</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Xin</namePart>
<namePart type="given">Deik</namePart>
<namePart type="family">Goh</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Dexun</namePart>
<namePart type="family">Li</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Hao</namePart>
<namePart type="family">Zhang</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Yong</namePart>
<namePart type="family">Liu</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<originInfo>
<dateIssued>2025-01</dateIssued>
</originInfo>
<typeOfResource>text</typeOfResource>
<relatedItem type="host">
<titleInfo>
<title>Proceedings of the 31st International Conference on Computational Linguistics</title>
</titleInfo>
<name type="personal">
<namePart type="given">Owen</namePart>
<namePart type="family">Rambow</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Leo</namePart>
<namePart type="family">Wanner</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Marianna</namePart>
<namePart type="family">Apidianaki</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Hend</namePart>
<namePart type="family">Al-Khalifa</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Barbara</namePart>
<namePart type="given">Di</namePart>
<namePart type="family">Eugenio</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Steven</namePart>
<namePart type="family">Schockaert</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<originInfo>
<publisher>Association for Computational Linguistics</publisher>
<place>
<placeTerm type="text">Abu Dhabi, UAE</placeTerm>
</place>
</originInfo>
<genre authority="marcgt">conference publication</genre>
</relatedItem>
<abstract>The rapid advancement of neural language models has sparked a new surge of intelligent agent research. Unlike traditional agents, large language model-based agents (LLM agents) have emerged as a promising paradigm for achieving artificial general intelligence (AGI) due to their superior reasoning and generalization capabilities. Effective planning is crucial for the success of LLM agents in real-world tasks, making it a highly pursued topic in the community. Current planning methods typically translate tasks into executable action sequences. However, determining a feasible or optimal sequence for complex tasks with multiple constraints at fine granularity, which often requires compositing long chains of heterogeneous actions, remains challenging. This paper introduces Planning with Multi-Constraints (PMC), a zero-shot methodology for collaborative LLM-based multi-agent systems that simplifies complex task planning with constraints by decomposing it into a hierarchy of subordinate tasks. Each subtask is then mapped into executable actions. PMC was assessed on two constraint-intensive benchmarks, TravelPlanner and API-Bank. Notably, PMC achieved an average 42.68% success rate on TravelPlanner, significantly higher than GPT-4 (2.92%), and outperforming GPT-4 with ReAct on API-Bank by 13.64%, showing the immense potential of integrating LLM with multi-agent systems. We also show that PMC works with small LLM as the planning core, e.g., LLaMA-3.1-8B.</abstract>
<identifier type="citekey">zhang-etal-2025-planning</identifier>
<location>
<url>https://aclanthology.org/2025.coling-main.672/</url>
</location>
<part>
<date>2025-01</date>
<extent unit="page">
<start>10054</start>
<end>10082</end>
</extent>
</part>
</mods>
</modsCollection>
%0 Conference Proceedings
%T Planning with Multi-Constraints via Collaborative Language Agents
%A Zhang, Cong
%A Goh, Xin Deik
%A Li, Dexun
%A Zhang, Hao
%A Liu, Yong
%Y Rambow, Owen
%Y Wanner, Leo
%Y Apidianaki, Marianna
%Y Al-Khalifa, Hend
%Y Eugenio, Barbara Di
%Y Schockaert, Steven
%S Proceedings of the 31st International Conference on Computational Linguistics
%D 2025
%8 January
%I Association for Computational Linguistics
%C Abu Dhabi, UAE
%F zhang-etal-2025-planning
%X The rapid advancement of neural language models has sparked a new surge of intelligent agent research. Unlike traditional agents, large language model-based agents (LLM agents) have emerged as a promising paradigm for achieving artificial general intelligence (AGI) due to their superior reasoning and generalization capabilities. Effective planning is crucial for the success of LLM agents in real-world tasks, making it a highly pursued topic in the community. Current planning methods typically translate tasks into executable action sequences. However, determining a feasible or optimal sequence for complex tasks with multiple constraints at fine granularity, which often requires compositing long chains of heterogeneous actions, remains challenging. This paper introduces Planning with Multi-Constraints (PMC), a zero-shot methodology for collaborative LLM-based multi-agent systems that simplifies complex task planning with constraints by decomposing it into a hierarchy of subordinate tasks. Each subtask is then mapped into executable actions. PMC was assessed on two constraint-intensive benchmarks, TravelPlanner and API-Bank. Notably, PMC achieved an average 42.68% success rate on TravelPlanner, significantly higher than GPT-4 (2.92%), and outperforming GPT-4 with ReAct on API-Bank by 13.64%, showing the immense potential of integrating LLM with multi-agent systems. We also show that PMC works with small LLM as the planning core, e.g., LLaMA-3.1-8B.
%U https://aclanthology.org/2025.coling-main.672/
%P 10054-10082
Markdown (Informal)
[Planning with Multi-Constraints via Collaborative Language Agents](https://aclanthology.org/2025.coling-main.672/) (Zhang et al., COLING 2025)
ACL