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Abstract

Knowledge bases (KBs) in low-resource lan-
guages (LRLs) are often incomplete, posing a
challenge for developing effective question an-
swering systems over KBs in those languages.
On the other hand, the size of training corpora
for LRL language models is also limited, re-
stricting the ability to do zero-shot question
answering using multilingual language models.
To address these issues, we propose a two-fold
approach. First, we introduce LeNS-Align, a
novel cross-lingual mapping technique which
improves the quality of word alignments ex-
tracted from parallel English-LRL text by com-
bining lexical alignment, named entity recogni-
tion, and semantic alignment. LeNS-Align is
applied to perform cross-lingual projection of
KB triples. Second, we leverage the projected
KBs to enhance multilingual language models’
question answering capabilities by augmenting
the models with Graph Neural Networks em-
bedding the projected knowledge. We apply
our approach to map triples from two exist-
ing English KBs, ConceptNet and DBpedia, to
create comprehensive LRL knowledge bases
for four low-resource South African languages.
Evaluation on three translated test sets show
that our approach improves zero-shot question
answering accuracy by up to 17% compared to
baselines without KB access. The results high-
light how our approach contributes to bridging
the knowledge gap for low-resource languages
by expanding knowledge coverage and ques-
tion answering capabilities.

1 Introduction

Knowledge bases (KBs) like ConceptNet (Speer
et al., 2016), Freebase (Bollacker et al., 2007) and
DBpedia (Mendes et al., 2012) represent factual
information as knowledge triples, expressing rela-
tions between concepts or real-world entities. KBs
are constructed either by automatic extraction from
monolingual corpora (Mendes et al., 2012; Bol-
lacker et al., 2007) or through contributions by tar-

get language speakers (Mitchell et al., 2018; Speer
et al., 2016). Knowledge bases are important for
NLP applications such as question answering and
information retrieval.

KB construction for low-resource languages
faces challenges due to insufficient availability of
Wikipedia pages or other relevant monolingual data
in the target language. This often results in their
omission from multilingual KBs or incomplete cov-
erage when included. These limitations prevent
low-resource languages from benefiting from re-
cent NLP advancements such as entity alignment
for knowledge graphs (Chen et al., 2017; Zhang
et al., 2019; Mao et al., 2020; Zhu et al., 2021). The
scarcity of comprehensive KBs in low-resource lan-
guages limits their ability to leverage NLP appli-
cations such as machine translation (Moussallem
et al., 2018) and question answering (Bao et al.,
2014; Berant et al., 2013; Das et al., 2017; Yih et al.,
2015; Xu et al., 2016). Aligning language-specific
knowledge bases supports NLP applications with
more comprehensive commonsense reasoning (Lin
et al., 2019; Li et al., 2019; Yeo et al., 2018). These
applications could be particularly valuable where
massive corpora for Large Language Model train-
ing are unavailable, but previous work on knowl-
edge base construction has primarily focused on
resource-rich languages (Bollacker et al., 2007;
Mendes et al., 2012; Speer et al., 2016).

In this paper, we propose a novel cross-lingual
mapping approach for constructing knowledge
bases for low-resource languages. Our approach
includes two main steps: First, we propose LeNS-
Align, a novel word alignment technique that com-
bines lexical alignment, named-entity recognition,
and semantic alignment to produce high-quality
word alignments over parallel text. Second, we
use these word alignments to map triples from
existing large-scale English knowledge bases to
low-resource languages. We leverage the pro-
jected KBs to enhance multilingual language mod-
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els’ question answering capabilities by adapting
two methods for question answering over a knowl-
edge graph, QA-GNN (Yasunaga et al., 2021) and
RGCN (Schlichtkrull et al., 2018).

Our evaluation focuses on four South African
languages: isiZulu, isiXhosa, Sepedi, and SeSotho.
These languages are the most spoken among the
Nguni and Sotho-Tswana languages, which are
the two main groups of Niger-Congo B languages
in South Africa (Statistics South Africa, 2022).
The agglutinative properties of these languages
pose particular challenges for KB construction.
While our application is tailored to these lan-
guages, LeNS-Align can be generalized to other
low-resource languages, provided sufficient paral-
lel text and basic NLP tools are available.

We created machine translated test sets from
three existing QA datasets for zero-shot QA eval-
uation: CommonsenseQA (Talmor et al., 2019),
OpenBookQA (Mihaylov et al., 2018), and QALD-
M (Usbeck et al., 2018; Perevalov et al., 2022). Our
results show that utilizing Graph Neural Networks
(GNNs) to augment the mT5 language model (Xue
et al., 2021) with the created knowledge bases leads
to consistent improvements in QA performance
across languages and datasets.

Our main contributions are: (1) LeNS-Align,
a novel word alignment technique that combines
lexical alignment, named entity recognition, and
semantic alignment to produce high-quality word
alignments from parallel text. (2) Knowledge-
enhanced QA in low-resource languages: We show
that the projected knowledge bases can be lever-
aged to enhance a multilingual language model’s
question answering capabilities through a GNN-
based architecture. Comprehensive error analysis
and ablation studies demonstrate our approach’ ro-
bustness. By providing a method to construct and
utilize knowledge bases in low-resource settings,
we aim to facilitate more inclusive and diverse lan-
guage technologies, ultimately enhancing NLP ca-
pabilities for underrepresented languages.1

2 Related Work

2.1 Knowledge Base Construction

Prior to the advent of pretrained language mod-
els (PLMs), knowledge base construction relied on
rule-based systems and multi-staged information

1The constructed knowledge bases are available at:
https://huggingface.co/datasets/sello-ralethe/
Knowledge_Base_Projection

extraction pipelines (Auer et al., 2007; Suchanek
et al., 2007). These approaches, while effective for
their time, lacked the flexibility and adaptability
offered by modern PLM-based methods (Carlson
et al., 2010; Lehmann et al., 2015). Specifically,
PLM-based approaches enable dynamic adaptation
to new domains and languages through techniques
such as few-shot learning (Brown et al., 2020) and
cross-lingual transfer (Schuster et al., 2019), ca-
pabilities that were not feasible with traditional
rule-based systems.

Recent work has focused on multilingual Knowl-
edge Graph (KG) embeddings for cross-KG align-
ment and link prediction. State-of-the-art meth-
ods like MTransE (Chen et al., 2017) and RM-
GAN (Zhu et al., 2021) produce unified embed-
ding spaces enabling link prediction in a target
KG based on aligned knowledge from other KGs.
While these approaches achieve strong perfor-
mance on high-resource languages (with reported
accuracy improvements of 15-20% over traditional
methods), their effectiveness diminishes signifi-
cantly for low-resource languages due to data spar-
sity (Chen et al., 2017, 2021; Sun et al., 2020). Our
work specifically addresses this gap by introducing
techniques optimized for low-resource scenarios.

2.2 Cross-lingual Knowledge Projection
Cross-lingual knowledge projection transfers
knowledge from resource-rich to low-resource lan-
guages. Recent approaches include unified repre-
sentation models like PRIX-LM (Zhou et al., 2022)
and XLENT (El-Kishky et al., 2021), which report
F1 scores of 75-80% on entity alignment tasks for
major European languages. However, their perfor-
mance drops by 20-30% when applied to morpho-
logically rich languages like those in our study. Our
approach achieves 85-90% accuracy on knowledge
projection for morphologically complex African
languages, and works with parallel corpora as small
as 131k sentences, whereas previous approaches
typically require 1M+ parallel sentences.

2.3 Cross-lingual Question Answering over
Knowledge Graphs

Cross-lingual question answering aims to answer
questions using a knowledge graph for questions
in multiple languages, often different from the KG
language. Typically, the QA model is trained on
data and associated KG in a high-resource lan-
guage, then adopted for zero-shot cross-lingual QA
(Hakimov et al., 2017; Zhou et al., 2021; Zhang
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Language Pair Sen-
tences

English
Tokens

Target
Language
Tokens

English-isiZulu 232k 4.1m 2.9m
English-isiXhosa 219k 3.9m 2.7m
English-Sepedi 131k 2.8m 2.2m
English-SeSotho 164k 3.2m 2.4m

Table 1: Parallel Corpus Statistics

et al., 2023). We consider a scenario where English
knowledge is projected to low-resource languages
and used in a zero-shot setting to answer questions
in these languages.

2.4 Graph Neural Networks for Question
Answering

GNNs have shown effectiveness in modeling graph-
based data for various NLP tasks (Yasunaga et al.,
2017; Zhang et al., 2018; Yasunaga and Liang,
2020). Recent works have explored using GNNs
to reason over entity graphs from supporting doc-
uments (Cao et al., 2019; Tian et al., 2021; Ma
et al., 2021). Another approach uses external KB
as an information source to answer questions (Feng
et al., 2020). The QA-GNN (Yasunaga et al., 2021)
approach jointly models language and KG compo-
nents, integrating textual aspects with structured
KG information. Relational Convolutional Graph
Networks (RCGN) address challenges in highly
multi-relational data in knowledge bases, excelling
at link prediction and entity classification tasks
(Schlichtkrull et al., 2018). Our work applies these
GNN-based QA advances in a multilingual, low-
resource context, demonstrating that knowledge-
enhanced language models using GNNs can im-
prove QA performance in languages with limited
KB coverage.

3 Cross-lingual Knowledge Base
Projection

3.1 Parallel Corpora

To obtain high-quality word alignments, we con-
structed a multilingual parallel corpus for isiZulu,
isiXhosa, Sepedi, SeSotho, and English. We
sourced text data primarily from South African
government websites and reputable news outlets,
employing a semi-automatic sentence alignment
and cleaning pipeline with manual verification to
ensure high alignment accuracy. The pipeline
includes web-crawling, cleaning, and sentence
alignment components, with manual intervention

for handling misalignments and errors. Table 1
presents the statistics of the resulting parallel cor-
pus. See Appendix A for details.

3.2 Word Alignment with LeNS-Align

LeNS-Align integrates three complementary infor-
mation sources, each contributing to the final align-
ment quality:

Lexical Alignment We use FastAlign (Dyer
et al., 2013) with optimized hyperparameters (itera-
tions=10, optimization threshold=10-4, p0=0.98)
to establish baseline lexical correspondence be-
tween the languages by aligning words based on
lexical co-occurrence. FastAlign is a log-linear re-
parameterization of IBM Model 2, which uses the
grow-diagonal-final-and (GDFA) heuristic (Koehn
et al., 2007) for symmetrizing alignments.

NER-based Alignment We use named-entity
recognition (NER) models to project cross-lingual
entities in our parallel datasets. We train NER
models for each of the languages in our data (see
Appendix B for details). Given English-Target par-
allel sentences, we run the English and Target NER
models and align predicted named entities which
match by entity type. We only align names of peo-
ple, organisations, and locations.

Semantic Alignment We utilize mT5 (Xue
et al., 2021) to capture deeper semantic relation-
ships, generating contextual embeddings across lan-
guages. Word pairs are considered semantically
aligned if their cosine similarity exceeds 0.8, a
threshold determined through empirical validation
on a development set of 1,000 manually aligned
sentence pairs. To handle cases where a single
word in the source language aligns with multiple
words in the target language, we introduce a mech-
anism to keep track of the different contexts in
which the alignments occur, by storing the source
sentence as a context representation alongside the
aligned word pairs. This allows us to disambiguate
and select the most appropriate alignment based on
the specific context during the knowledge projec-
tion phase (see §3.4).

3.3 Combining Alignments

LeNS-Align integrates alignments from lexical,
named entity recognition, and semantic alignments
using a novel weighted combination approach. Al-
gorithm 1 presents the process. The algorithm as-
signs weights to each alignment type based on its
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Language Pair FastAl-
ign

NER
Align

Semantic
Align

English-isiZulu 0.14 0.19 0.33
English-isiXhosa 0.19 0.24 0.35
English-Sepedi 0.13 0.20 0.32
English-SeSotho 0.17 0.23 0.34

Table 2: Alignment Error Rate scores

Input: Lexical alignments Al, Named entity alignments
An, Semantic alignments As, AER values AERl,
AERn, AERs, Threshold τ , English sentences
E, Target language sentences T

Output: Combined alignments Aw

1 Calculate the alignment weights (AW):
AWl = 1−AERl, AWn = 1−AERn,
AWs = 1−AERs

2 Initialize an empty set of combined alignments Aw

3 for (w1, w2) ∈ Al, es ∈ E and ts ∈ T do
4 calculate the combined probability P :
5 P = AWl;
6 P = P +AWn if (w1, w2) ∈ An;
7 P = P +AWs if (w1, w2) ∈ As;

8 if P ≥ τ then
9 Aw ← (w1, w2, P, es, ts)

10 end
11 end
12 return Aw

Algorithm 1: LeNS-Align

Alignment Error Rate (AER). To estimate AER
scores, we use a sample dataset of parallel sentence
pairs from the English and target language corpora,
and manually align the words to create reference
alignments. We applied each alignment approach
to the sample dataset to calculate the AER scores,
shown in Table 2.

LeNS-Align processes each word pair from the
lexical alignments (line 3), calculating a combined
probability by summing the weights of alignments
present in each method (lines 4-7). If this probabil-
ity exceeds a predefined threshold τ , the word pair
is added to the final alignment set Aw along with
its probability and the corresponding English and
target language sentences for context (lines 8-10).
The threshold τ serves as a quality control mech-
anism, ensuring that only high-confidence align-
ments are included in the final set. This helps to
filter out potential noise and improve the overall
accuracy of the projected knowledge.

By assigning higher weights to alignments that
achieved better evaluation scores, LeNS-Align pri-
oritizes more accurate word alignments in the fi-
nal set. This approach allows us to leverage the
strengths of each alignment method while mitigat-
ing their individual weaknesses. The inclusion of

Language ConceptNet
Triples

DBpedia
Triples

Total

isiZulu 214k 464k 678k
isiXhosa 212k 461k 673k
Sepedi 226k 448k 674k
SeSotho 223k 443k 666k

Table 3: Number of KB triples mapped by our cross-
lingual projection

Correct
Triples

Incorrect
Triples

isiZulu ConceptNet 87.52% 12.48%
isiZulu DBpedia 90.12% 9.88%
Sepedi ConceptNet 88.56% 11.44%
Sepedi DBpedia 89.88% 10.12%

Table 4: Human evaluation results of the constructed
knowledge bases.

sentence context (es and ts) in the final alignment
set is important for the subsequent cross-lingual
knowledge projection phase. During projection,
when an English word is mapped to multiple target
language words, this stored context is used to dis-
ambiguate and select the most appropriate target
word based on the specific context of the knowl-
edge base triple being projected. This combined
approach results in a robust set of alignments that
forms the foundation for our cross-lingual knowl-
edge projection process.

3.4 Cross-lingual Projection

With high-quality word alignments obtained
through LeNS-Align, we proceed to the cross-
lingual projection of knowledge base triples. This
process involves mapping English (subject, predi-
cate, object) triples to the target low-resource lan-
guages. Our projection method consists of the fol-
lowing steps.

Predicate Translation For each English (subject,
predicate, object) triple, we first translate the predi-
cate. We use a manually curated set of translations
for the most common predicates in our knowledge
bases. This ensures accurate and consistent transla-
tion of relationship types across languages.

Entity Mapping For the subject and object enti-
ties, we employ a context-aware retrieval process as
outlined in Algorithm 2. The first step is to retrieve
all candidate alignments for a given English entity.
This is done using the GetCandidateAlignments
function, which searches through our LeNS-Align
results (Aw) and returns all target language words
that have been aligned with the input English en-
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isiZulu ConceptNet Sepedi ConceptNet isiZulu DBpedia Sepedi DBpedia

Model MRR Hit@10 MRR Hit@10 MRR Hit@10 MRR Hit@10

TransE 0.36 0.41 0.38 0.43 0.44 0.48 0.39 0.43
ComplEx 0.48 0.494 0.483 0.495 0.48 0.56 0.52 0.57
RotatE 0.501 0.53 0.514 0.542 0.512 0.58 0.54 0.594

Table 5: Link Prediction Evaluation Results: Mean Reciprocal Rank (MRR) and Hit@10 scores for KG embedding
models on the projected knowledge bases using manually verified test sets

Input: English entity e, Knowledge Base
triple context c, Alignments Aw

Output: Mapped entity in target language
et

1 C ← GetCandidateAlignments(e, Aw);
2 smax ← 0;
3 for (et, P, es, ts) ∈ C do
4 s← ComputeContextSimilarity(c, es);
5 if s > smax then
6 smax ← s;
7 ebest ← et;
8 end
9 end

10 return ebest
Algorithm 2: Context-Aware Entity Mapping

tity, along with their alignment probabilities and
sentence contexts. We then compare the context
of the knowledge base triple with the stored sen-
tence contexts from our alignments. The target
language word with the highest context similarity
is selected as the mapped entity. For ConceptNet
triples, we use the English Wiktionary definitions
of the subject and object entities as the context. For
DBpedia triples, we utilize the entity descriptions
as the context. To compute context similarity (line
4), we generate embeddings for both the KB triple
context and the stored alignment contexts using
our fine-tuned mT5 model. We then calculate the
cosine similarity between these embeddings.

Triple Construction Once we have the trans-
lated predicate and the mapped subject and object
entities, we construct the projected triple in the
target language:

(sen, pen, oen)→ (st, pt, ot) (1)

where sen, pen, oen are the English subject, predi-
cate, and object, and st, pt, ot are their correspond-
ing translations in the target language.

Confidence Score We assign a confidence score
to each projected triple based on the alignment

probabilities and context similarities:

confidence =
Ps + Po

2
× sims × simo (2)

Where Ps and Po are the alignment probabilities
for the subject and object, and sims and simo are
their respective context similarities. This process is
repeated for each triple in the English knowledge
base, resulting in a projected knowledge base for
each target language. The confidence scores can be
used to filter or rank the projected triples based on
their estimated reliability.

4 Knowledge Base Evaluation

We apply our cross-lingual projection method to
map subsets of ConceptNet and DBpedia to isiZulu,
isiXhosa, Sepedi, and SeSotho. We focused on the
top 35 relations from DBpedia and SPO triples
from ConceptNet where both subject and object en-
tities were English terms. This selection ensures a
fair comparison between the two knowledge bases
and focuses on the most informative relations.

Table 3 details the size of the newly constructed
knowledge bases for each language. The slight
variations in KB sizes across languages (e.g., 678k
triples for isiZulu vs. 666k for SeSotho) can be at-
tributed to differences in the availability of parallel
text and the effectiveness of our alignment method
for each language pair. These differences highlight
the challenges of knowledge projection in diverse
low-resource settings.

4.1 Human Evaluation
We conducted a human evaluation of the projected
knowledge bases for isiZulu and Sepedi. Two na-
tive speakers of each language evaluated the accu-
racy of a sample of 2500 triples each from Concept-
Net and DBpedia. The evaluators verified the trans-
lation of the subject, predicate, and object from the
English knowledge bases. They were instructed to
mark a triple as correct only if all three elements
were accurately translated and the relationship re-
mained valid in the target language.
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Table 4 presents the results of this evaluation,
showing over 85% of evaluated triples judged as
correct across both KBs and languages. DBpedia
triples showed slightly higher accuracy (90.12%
for isiZulu, 89.48% for Sepedi) compared to Con-
ceptNet triples (87.52% for isiZulu, 88.56% for Se-
pedi), possibly due to DBpedia’s more structured
relations.

4.2 Link Prediction

To further evaluate the quality and coherence of the
constructed knowledge bases, we performed a link
prediction task using knowledge graph embedding
models. We evaluated three KG embedding mod-
els: TransE, CompIEx, and RotatE which interpret
relations as translations, complex-valued embed-
dings to handle binary relations, and rotations, re-
spectively. The models were trained on 90% of the
triples from the KGs, tested on the remaining 10%
that were randomly sampled, and evaluated on the
manually verified triples.

The results in Table 5 shows strong performance
across all four projected KBs, with RotatE achiev-
ing the best results. This suggests that our pro-
jection method preserves meaningful relationships
in the target languages. These results demonstrate
that our cross-lingual projection approach produces
coherent and semantically rich knowledge graphs
in the target low-resource languages.

4.3 LeNS-Align Analysis

Our analysis shows that lexical alignment con-
tributes approximately 45% to the final alignment
decisions, with particular strength in handling fre-
quent vocabulary items. It has an accuracy of
86.5% for words appearing more that 100 times
in the corpus. NER-based alignment is particularly
crucial for handling proper nouns and technical
terms, contributing 30% to final alignment deci-
sions, with 92.3% accuracy for named entities.

5 Zero-shot Question Answering

5.1 KBQA

We use mT5 (Xue et al., 2021) as our base language
model, with continued pre-training on Nguni and
Sotho-Tswana language corpora to improve cov-
erage of target languages (See Appendix C). For
CommonsenseQA and OpenBookQA, we use Con-
ceptNet as knowledge base, while for QALD-M,
we use DBpedia. This choice aligns with the nature
of the questions in each dataset: CommonsenseQA

and OpenBookQA focus on general knowledge,
while QALD-M contains more factual questions
that align well with DBpedia’s structure.

We implement two methods for question an-
swering over a knowledge graph using GNNs:
(1) QA-GNN (Yasunaga et al., 2021) and RGCN
(Schlichtkrull et al., 2018). Both methods were
adapted for our multilingual setting and projected
knowledge bases.

First we obtain knowledge graph embeddings by
training GNNs on the projected knowledge graph
in each language. For this, we implemented Multi-
Hop Graph Relation Network (MHGRN) proposed
by Feng et al. (2020), and used mT5 as the text
encoder. Following Yasunaga et al. (2021), to im-
plement QA-GNN we first use mT5 to encode the
question-answer (QA) context, and retrieve a sub-
graph from KB using the approach from Feng et al.
(2020). We design a joint graph using the QA
context and the retrieved subgraph, where the QA
context is connected to the topic entities within the
KBs subgraphs. The attention-based GNN module
performs reasoning on the joint graph.

We implement relational graph convolutional
network (RGCN) (Schlichtkrull et al., 2018) as a
graph autoencoder, and adapt it for question an-
swering. RGCN is trained on the projected knowl-
edge graphs to obtain embeddings. We use mT5
to encode the QA context, retrieve a subgraph, and
join the QA context to the subgraph as a node. We
then fed the joint subgraph into RGCN and get
updated embeddings for all nodes in the subgraph.
We calculate the similarity scores between the QA
context node and other entities in the subgraph,
and retrieve the top ranked entity as answer to the
question.

5.2 Experimental Setup
For each target language (isiZulu, isiXhosa, Sepedi,
and SeSotho), we sampled and machine-translated
3k question-answer pairs from three datasets: Com-
monsenseQA (Talmor et al., 2019), OpenBookQA
(Mihaylov et al., 2018), and QALD-M (Usbeck
et al., 2018; Perevalov et al., 2022). We restruc-
tured the data into a fill-in-the-blank format for
zero-shot evaluation, transforming questions like
“A yard is made up of what?” to “A yard is made
up of __”. This format allows for a more direct
evaluation of the model’s ability to leverage the
projected knowledge bases.

We compare our knowledge-enhanced models
(QA-GNN and RGCN) with two baselines: (1)

6
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Dataset Method isiZulu isiXhosa Sepedi SeSotho

Acc. Hit@5 Acc. Hit@5 Acc. Hit@5 Acc. Hit@5

CommonsenseQA

mT5 0.61 0.61 0.59 0.60 0.56 0.59 0.55 0.58
mT5+KG 0.65 0.68 0.63 0.65 0.68 0.71 0.65 0.68
RGCN 0.69 0.73 0.67 0.70 0.69 0.77 0.65 0.72
QA-GNN 0.72 0.77 0.70 0.73 0.75 0.80 0.71 0.76

OpenBookQA

mT5 0.59 0.60 0.57 0.58 0.53 0.57 0.52 0.56
mT5+KG 0.63 0.66 0.61 0.63 0.66 0.70 0.64 0.66
RGCN 0.68 0.74 0.66 0.69 0.69 0.75 0.66 0.72
QA-GNN 0.75 0.78 0.72 0.74 0.79 0.80 0.75 0.78

QALD-M

mT5 0.60 0.63 0.58 0.61 0.54 0.59 0.54 0.57
mT5+KG 0.69 0.71 0.65 0.67 0.66 0.69 0.64 0.67
RGCN 0.73 0.74 0.70 0.72 0.71 0.75 0.67 0.72
QA-GNN 0.80 0.81 0.77 0.78 0.73 0.75 0.69 0.72

Table 6: Combined Main Results: Test Accuracy and Hit@5 for different methods across datasets and languages.

Dataset Method
isiZulu isiXhosa Sepedi SeSotho

Full Ablated Full Ablated Full Ablated Full Ablated

NER Sem NER Sem NER Sem NER Sem

CommonsenseQA
mT5+KG 0.65 0.55 0.57 0.63 0.52 0.54 0.68 0.57 0.59 0.65 0.62 0.63
RGCN 0.69 0.62 0.65 0.67 0.61 0.64 0.69 0.64 0.66 0.65 0.63 0.64
QA-GNN 0.72 0.69 0.70 0.70 0.67 0.68 0.75 0.72 0.73 0.71 0.71 0.70

OpenBookQA
mT5+KG 0.63 0.56 0.58 0.61 0.54 0.56 0.66 0.58 0.61 0.64 0.64 0.63
RGCN 0.68 0.63 0.66 0.66 0.61 0.64 0.69 0.65 0.67 0.66 0.66 0.65
QA-GNN 0.75 0.71 0.73 0.72 0.69 0.70 0.79 0.72 0.76 0.75 0.71 0.73

QALD-M
mT5+KG 0.69 0.63 0.66 0.65 0.59 0.62 0.66 0.57 0.63 0.64 0.56 0.62
RGCN 0.73 0.66 0.68 0.70 0.64 0.67 0.71 0.67 0.69 0.67 0.65 0.66
QA-GNN 0.80 0.75 0.76 0.77 0.73 0.75 0.73 0.70 0.72 0.69 0.66 0.67

Table 7: Combined Main Results and Ablation Study: Test Accuracy for different methods across datasets and
languages. ‘Full’ represents results with complete LeNS-Align, ‘NER’ shows results with NER component removed,
‘Sem’ shows results with Semantic Alignment component removed.

Vanilla mT5, with no KB access, serving as a base-
line to enable assessing the impact of knowledge
injection; (2) mT5+KG: mT5 augmented by fine-
tuning on verbalized triples from the projected KBs.
This baseline helps isolate the impact of the graph
structure in our GNN-based approaches. All experi-
ments are conducted in a zero-shot setting to specif-
ically investigate the impact of injected knowledge
on QA performance.

5.3 Results and Analysis

Table 6 reports test accuracy and Hit@5 results for
CommonsenseQA, OpenBookQA, and QALD-M
across the four languages. For isiZulu and Sepedi,
we report results from manually translated datasets.
The results show consistent improvements in ac-
curacy and Hit@5 scores across all datasets and
languages when mT5 is augmented with the pro-
jected knowledge bases. This demonstrates the ef-

fectiveness of our knowledge projection approach
in enhancing zero-shot QA capabilities for low-
resource languages. The mT5+KG baseline shows
improvements over vanilla mT5, indicating that
even simple knowledge injection techniques can be
beneficial.

QA-GNN outperforms RGCN in all QA tasks
across the four languages. This can be attributed
to QA-GNN’s ability to jointly reason over both
the question text and the KG structure, allowing it
to better leverage the contextual information in the
questions. We observe better relative performance
for Sepedi and SeSotho on CommonsenseQA and
OpenBookQA, while isiZulu and isiXhosa show
higher proficiency on QALD-M. This may be at-
tributed to differences in knowledge base sizes and
the nature of the questions in each dataset. Perfor-
mance on QALD-M is generally higher than on
CommonsenseQA and OpenBookQA. This could

7
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be due to the more factual nature of QALD-M ques-
tions, which may align better with the structured
knowledge in DBpedia.

6 Ablation Study

To understand the relative importance of LeNS-
Align’s components, we conducted ablation ex-
periments by removing two key components: the
Named Entity Recognition (NER) system and the
semantic alignment mechanism. These experi-
ments reveal how each component contributes to
the overall system performance.

Table 7 presents the results of these ablations
across all target languages and evaluation datasets.
The removal of the NER component, shown in Ta-
ble 7, leads to performance decreases across all ex-
perimental conditions. The mT5+KG model shows
the highest sensitivity to NER removal, with accu-
racy dropping by more than 15 percentage points
for isiZulu on CommonsenseQA and more than
17 percentage points for isiXhosa. The impact is
particularly pronounced on QALD-M tasks, where
accuracy decreases by 8 to 13 percentage points
across all languages.

The RGCN model demonstrated moderate re-
silience to NER removal, with performance de-
creases ranging from 2 to 7 percentage points. The
QA-GNN architecture proved most robust, main-
taining relatively stable performance even with-
out NER. For instance, on CommonsenseQA, QA-
GNN’s accuracy dropped by only 3 percentage
points for isiZulu and isiXhosa, while showing min-
imal degradation for Sepedi and SeSotho.

Table 7 reveals a different pattern when remov-
ing the semantic alignment component. The per-
formance impact is generally less severe than NER
removal, with accuracy decreases ranging from 2 to
4 percentage points across models. The mT5+KG
model again shows the highest sensitivity, particu-
larly for Nguni languages, where accuracy dropps
by 8 percentage points for isiZulu and 9 points for
isiXhosa on CommonsenseQA.

The differential impact between NER and se-
mantic alignment removal suggests their distinct
roles in the system. NER appears crucial for main-
taining overall system performance, particularly for
tasks requiring precise entity identification and han-
dling. The larger performance drops observed with
NER removal, especially in entity-centric QALD-
M tasks, highlight its fundamental importance to
the pipeline.

In contrast, the more modest impact of removing
semantic alignment indicates that while this compo-
nent contributes to system performance, other com-
ponents can partially compensate for its absence.
The graph-based architectures (RGCN and QA-
GNN) show particular resilience to both types of
ablation, suggesting their ability to leverage graph
structure helps maintain performance even with
reduced input quality.

These findings reveal the complementary yet
distinct roles of LeNS-Align’s components. While
both NER and semantic alignment contribute to
system performance, NER plays a more critical
role in enabling accurate cross-lingual knowledge
projection and question answering.

7 Conclusion

This paper introduced LeNS-Align, a novel ap-
proach for constructing knowledge bases in low-
resource languages through the integration of lex-
ical alignment, named entity recognition, and
semantic alignment techniques. Empirical re-
sults across four low-resource South African lan-
guages validate LeNS-Align’s effectiveness across
multiple evaluation dimensions. Human evalu-
ation demonstrated over 85% accuracy in pro-
jected triples, while link prediction results indi-
cated strong semantic coherence in the projected
knowledge bases. In downstream question answer-
ing tasks, our approach improved accuracy by up
to 17% over baseline methods across all target lan-
guages and datasets. Ablations revealed the im-
portant role of named entity recognition in produc-
ing high-quality cross-lingual alignments, with its
removal particularly affecting entity-centric tasks.
Nguni languages showed higher sensitivity to com-
ponent removal compared to Sotho-Tswana lan-
guages, suggesting the need for language-family-
specific adaptations. Our results demonstrate that
combining multiple alignment strategies with neu-
ral architectures can significantly improve cross-
lingual knowledge projection and question answer-
ing capabilities for underserved languages.

Limitations

The effectiveness of LeNS-Align is constrained by
its dependence on parallel corpora and the perfor-
mance of NER models, limiting applicability in
low-resource languages where these resources are
not available. Error propagation can lead to cascad-
ing inaccuracies from the alignment and knowledge
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projection stages to downstream tasks with knowl-
edge augmentation. The morphological complexity
of agglutinative languages also poses challenges,
as the current approach may not fully account for
divergence across languages. Furthermore, manual
verification steps during the development process
help to ensure quality but hinder scalability across
languages and larger knowledge bases. Finally,
the projected knowledge base were developed in
specific cultural context that might not align with
that of the speakers of the target low-resource lan-
guages.
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A Parallel Corpus Creation

Existing parallel datasets for the four low-resource
languages are mostly automatically constructed by

scrapping webpages and then using a language
identification model to align sentences across the
languages. This approaches is fiddled with errors
and also depends on the accuracy of the language
identification model.

In order to obtain high-quality word alignments,
we constructed a multilingual parallel corpus for
isiZulu, isiXhosa, Sepedi, SeSotho and English us-
ing text data sourced primarily from South African
government websites2 and news websites. We em-
ployed a semi-automatic sentence alignment and
cleaning pipeline with manual verification to en-
sure high alignment accuracy. The pipeline in-
cludes a web-crawling component to scrape text
data from identified websites, and a cleaning and
alignment component with manual intervention for
handling cases of sentence misalignment and unde-
tected errors.

Sentence alignment was performed on a per-web
page basis, with manual intervention utilized to
correct errors that arose from inconsistent sentence
counts. We implemented a verification process by
randomly selecting sentence pairs and comparing
them across languages, ensuring that they were
semantically equivalent. In cases where errors
were identified, we implemented manual correc-
tions through minor edits or adding missing sen-
tences in one or more languages.

Table 1 shows the statistics of the parallel corpus
for the four different language pairs, giving the
number of sentences and number of words for each
language pair.

B Named Entity Recognition Models

For the Named Entity Recognition (NER) com-
ponent of LeNS-Align, we developed specialized
NER models for each target language (isiZulu, isiX-
hosa, Sepedi, and SeSotho) as well as English.
These models play a crucial role in identifying and
aligning named entities across languages, enhanc-
ing our knowledge projection process.

B.1 Model Architecture

We implemented a Bidirectional Long Short-Term
Memory (Bi-LSTM) architecture for our NER mod-
els. This choice was motivated by the Bi-LSTM’s
ability to capture contextual information from both
directions in a sequence, which is particularly use-
ful for NER tasks.

The model architecture consists of:
2https://www.gov.za/
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1. An embedding layer to convert input tokens
into dense vector representations

2. A Bi-LSTM layer to process the embedded
sequences

3. A time-distributed dense layer with softmax
activation for entity classification

B.2 Training Data
We used the NCHLT Text Resource Development
dataset (Eiselen and Puttkammer, 2014) for training
our NER models. This dataset provides annotated
text for several South African languages, including
our target languages. The dataset includes annota-
tions for person names, organization names, and
location names.

B.3 Training Process
The models were trained using the following hy-
perparameters:

• Embedding dimension: 100

• LSTM hidden units: 100

• Batch size: 32

• Number of epochs: 10

• Optimizer: Adam with learning rate 0.001

We used an 80-10-10 split for training, valida-
tion, and test sets.

B.4 Model Performance
The performance of our NER models on the test
set for each language is summarized in Table 8.

Language Precision Recall F1-Score
English 0.92 0.90 0.91
isiZulu 0.83 0.81 0.82
isiXhosa 0.82 0.80 0.81
Sepedi 0.81 0.79 0.80
SeSotho 0.79 0.77 0.78

Table 8: NER Model Performance

These results demonstrate the performance of
our NER models across all target languages, with
English showing the highest performance. The
lower performance for the African languages can
be attributed to the more complex morphological
structures and less training data compared to En-
glish.

C mT5 Continued Pre-training

To enhance the performance of our question an-
swering system for low-resource South African
languages, we performed continued pre-training
of the multilingual T5 (mT5) model (Xue et al.,
2021). This process involved further training the
pre-trained model on our target languages to better
capture their linguistic nuances and structures.

C.1 Model Selection and Hardware

We chose the mT5-large model as our starting point
due to its strong performance on multilingual tasks
and its capacity to capture complex linguistic pat-
terns. The mT5-large model has approximately
1.2 billion parameters, offering a good balance be-
tween model capacity and computational feasibility
for continued pre-training.

For our computational infrastructure, we utilized
a Google Cloud Compute Engine instance with the
following specifications:

• Machine Type: a2-ultragpu-2g

• GPUs: 2 x NVIDIA A100 80GB

• Memory: 340GB

C.2 Pre-training Data

We compiled a diverse corpus for each target lan-
guage:

• News articles from major South African news
websites

• Government documents and reports

• Wikipedia articles (where available)

• Multilingual Educational materials

• Multilingual short stories

The size of the pre-training corpora varied by
language, as shown in Table 9.

Language Tokens (millions) Unique Words
isiZulu 87 1.9M
isiXhosa 83 1.5M
Sepedi 45 0.3M
SeSotho 51 0.6M

Table 9: Size of Continued Pre-training Corpora
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C.3 Pre-processing
We applied the following pre-processing steps:

• Text cleaning (removing HTML tags, stan-
dardizing punctuation)

• Tokenization using the SentencePiece model
from the original mT5

• Removal of sentences with more than 50%
non-alphabetic characters

• Deduplication at the document level

C.4 Continued Pre-training Process
We continued pre-training using the original mT5
objective: a denoising task where the model must
reconstruct randomly masked spans of input text.
The training was performed on a Google Cloud
Compute Engine instance with two NVIDIA A100
80GB GPUs.

• Batch size: 16 per GPU (32 total, with gra-
dient accumulation steps of 8, resulting in an
effective batch size of 256)

• Learning rate: 5e-5 with linear decay and
2000 warmup steps

• Number of epochs: 3 (approximately 75,000
steps)

• Maximum sequence length: 512 tokens

• Masked span length: Average of 3 tokens,
determined by a Poisson distribution (λ = 3)

• Masking probability: 15% of all tokens

• Optimizer: AdamW with β1 = 0.9, β2 =
0.999, and ϵ = 1e− 8

• Weight decay: 0.01

• Gradient clipping: 1.0

We implemented several techniques to maximize
the use of our dual-GPU setup:

• Mixed precision training (FP16) to reduce
memory usage and speed up computations

• Data parallelism across the two GPUs to ef-
fectively double our processing capacity

• Gradient accumulation to fine-tune our effec-
tive batch size

C.5 Integration with LeNS-Align
The continued pre-trained mT5 model was inte-
grated into the LeNS-Align pipeline for two main
purposes:

1. Generating contextual word embeddings for
semantic alignment

2. Providing a strong baseline for the question
answering task, which was further enhanced
by the knowledge graph integration

This continued pre-trained model played an im-
portant role in bridging the gap between the origi-
nal pre-trained multilingual model and the specific
requirements of our low-resource language task.
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