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Abstract

With the rapid development of large language
models (LLMs), traditional full-parameter fine-
tuning methods have become increasingly ex-
pensive in terms of computational resources
and time costs. For this reason, parame-
ter efficient fine-tuning (PEFT) methods have
emerged. Among them, Low-Rank Adaptation
(LoRA) is one of the current popular PEFT
methods, which is widely used in large lan-
guage models. However, the low-rank update
mechanism of LoRA somewhat limits its abil-
ity to approximate full-parameter fine-tuning
during the training process. In this paper,
we propose a novel PEFT framework, MoKA
(Mixture of Kronecker Product Adaptation),
which combines the Kronecker product with
the Mixture-of-Experts (MoE) method. By
replacing the low-rank decomposition of the
weight update matrix with Kronecker prod-
ucts and utilizing a sparse MoE architecture,
MoKA achieves parameter efficiency and bet-
ter model performance. Additionally, we de-
sign an efficient routing module to further com-
press the parameter size. We conduct extensive
experiments on the GLUE benchmark, E2E
NLG Challenge, and instruction tuning tasks
for LLMs. The results demonstrate that MoKA
outperforms existing PEFT methods.

1 Introduction

In recent years, the rapid development of large
language models (LLM), such as GPT-3 (Brown,
2020) and LLaMA (Touvron et al., 2023), has sig-
nificantly enhanced the ability to handle a variety
of downstream tasks through self-supervised pre-
training on extensive, unlabeled text data. How-
ever, these models typically have over a billion pa-
rameters, making traditional fine-tuning methods
prohibitively expensive in terms of computational
resources and time. Considering these challenges,
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Figure 1: Comparison of the PEFT methods on GLUE
Benchmark. MoKA achieves higher scores with a
smaller number of trainable parameters.

parameter-efficient fine-tuning (PEFT) methods,
which involve fine-tuning only a relatively small
number of parameters, have emerged as a poten-
tial solution to offset the huge computational and
storage costs associated with full-parameter fine-
tuning.

Among the current PEFT methods, Adapter-
based methods (Houlsby et al., 2019; Wang et al.,
2022) perform fine-tuning by inserting small, train-
able linear modules into the existing network archi-
tecture. Prompt-based methods (Lester et al., 2021;
Razdaibiedina et al., 2023) add trainable soft tokens
as prompts at the beginning of the input, and these
prompts are fine-tuned during training. Low-Rank
Adaptation (LoRA) (Hu et al., 2021) employs low-
rank decomposition to represent weight updates
with smaller matrices, allowing the model to adapt
to new data while keeping the core weight matrices
unchanged. Among these methods, LoRA has been
the most widely used due to its strong adaptability
across various downstream tasks and ease of im-
plementation. However, as model sizes grow and
tasks become more complex, a performance gap re-
mains between parameter-efficient fine-tuning and
full-parameter fine-tuning.
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Recently, combining PEFT with Mixture-of-
Experts (MoE) has emerged as a promising strategy
that further pushes the performance upper bound
of PEFT. Such work currently focuses on apply-
ing MoE to LoRA by learning multiple low-rank
matrices (called LoRA experts) and routing the re-
quired expert weights for each input. Dou et al.
(2023) explore a novel approach that integrates
LoRA and MoE to mitigate LLMs’ tendency to
forget world knowledge, while also ensuring align-
ment with downstream tasks. Wu et al. (2024)
combines multiple LoRA modules in a MoE frame-
work to improve task performance through hierar-
chical control and branch selection. Although such
approaches show promising results, two major lim-
itations remain: (i) The low-rank approximation of
LoRA remains, which may lead to a significant per-
formance gap with full parameter fine-tuning. (ii)
The efficiency of routing parameters in MoE-based
PEFT methods has not been explored.

Kronecker product does not rely on low-rank
structures and has recently been tried to improve
PEFT technology. He et al. (2022) attempted to
apply the Kronecker product decomposition with
PEFT methods and achieved superior parameter
efficiency and performance in the image domain.
Inspired by this, we propose a novel PEFT frame-
work, called MoKA, which combines both parame-
ter efficiency and high-rank approximation by com-
bining the Kronecker product decomposition and
the mixture of experts (MoE) techniques. Unlike
LoRA, the MoKA method approximates the weight
update matrix using the Kronecker product of two
trainable mini-matrices. To further improve the
model capacity and parameter efficiency, we re-
place the single Kronecker decomposition with a
sparse MoE architecture that uses multiple matri-
ces as expert modules for better data adaptability
through conditional computation.

In the parameter-efficient fine-tuning framework
incorporating MoE structure, the parameter effi-
ciency is mainly affected by the joint influence
of the expert module and the router module. We
significantly improve the parameter efficiency of
the expert module by introducing the Kronecker
product decomposition approximation for gradient
updating. However, the relatively large parame-
ter overhead of the router module becomes more
and more noticeable in the overall model. To ad-
dress this issue, we propose an efficient router mod-
ule that further compresses the parameter scale of
MoKA. Figure 1 illustrates the parameter efficiency

of MoKA compared to the most recent PEFT meth-
ods.

Overall, our main contributions are as follows:
1. We propose a novel PEFT method, MoKA,

which combines the MoE mechanism with the Kro-
necker product decomposition in an efficient way,
and also design a parameter-efficient router that
further compresses the model parameters.

2. We conduct extensive experiments on natural
language understanding, natural language genera-
tion, and instruction tuning tasks. The results show
that our PEFT methods achieves significant param-
eter efficiency along with better performance.

2 Related Work

2.1 Parameter-efficient fine-tuning (PEFT)

Parameter-efficient fine-tuning (PEFT), which se-
lectively tunes a limited number of parameters or
introduces additional trainable parameters, has re-
ceived increasing attention from researchers. To
approximate the updated weights (∆W ) during
fine-tuning, Hu et al. (2021) introduces a Low-
Rank Adaptation method (LoRA) that utilizes train-
able low-rank matrices to perform approximate
weight updates, which is widely used in many
fields. Kim et al. (2024) combines parallel and se-
quential branch to improve the PEFT performence.
Ren et al. (2024) stacks multiple mini LoRAs in par-
allel, maintaining a higher rank and thus providing
better performance potential. However, compared
to full-parameter fine-tuning, LoRA is constrained
by low-rank updates and exhibits lower accuracy.
The Kronecker product has recently been used to
improve the PEFT technique and is often used to
parametrically reconstruct the weight matrix. For
example, He et al. (2022) attempts to apply decom-
position with the Kronecker product to paramet-
rically efficient fine-tuning methods in the image
domain, achieving superior parameter efficiency
and performance. Braga et al. (2024) proposes an
adapter-based fine-tuning using Kronecker prod-
ucts.

2.2 Mixture-of-Experts

Mixture-of-Experts (MoE) is often viewed as a
system consisting of multiple sub-modules (i.e.,
“experts”) and a router. These sub-modules are se-
lectively activated through a routing mechanism
that depends on input features to integrate the out-
puts of various expert models. This technique has
demonstrated strong performance in other domains
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Figure 2: The overall framework of our MoKA method. MoKA is applied to each transformer block of the
pre-trained model. It utilises kronecker product factors as dynamically selected experts and a router to determine
the activation of the expert sets them at each transformer block. During the training process, only the experts and
the router are optimised.

(Shazeer et al., 2017). However, in Parameter-
Efficient Fine-Tuning (PEFT) approaches, model
weights are typically applied to every input, which
can lead to suboptimal parameter efficiency since
a given input may not necessarily require the full
capacity of the model. Recently, the application
of MoE in the PEFT field has garnered significant
attention from researchers. Advances in research
have combined the LoRA framework with MoE
to further improve model adaptability and perfor-
mance. Dou et al. (2023) integrates LoRA mod-
ules through a network of routers to mitigate catas-
trophic forgetting. Luo et al. (2024) utilizes the
MoE architecture to enable the dynamic combina-
tion of multiple LoRA modules to better catering
to the requirements of downstream tasks. While
these studies contribute valuable insights into the
fusion of MoE and LoRA, current exploration of
MoE in PEFT is still in its early stages: first, the
performance of LoRA-MoE is constrained by in-
herent low-rank approximations, and on the other
hand, while the parameter scale of MoE routers in
fully fine-tuned large language models (LLMs) is
negligible, it becomes non-negligible in the PEFT
context. To address this, we propose a novel ar-
chitecture, MoKA, which decomposes the weight
matrix using Kronecker product and incorporates
the concept of Mixture-of-Experts.

3 Method

In this section, we elaborate on the implementation
of the MoKA method. MoKA combines the Mix-
ture of Experts (MoE) with the Kronecker Product
enhancing the model’s rank and expressive capacity
while maintaining a small trainable parameter size.
Moreover, an efficient routing mechanism further
reduces the parameter scale of the MoKA architec-
ture. Figure 2 illustrates the overall architectural
design of the MoKA method. Next, we will ex-
plore the core mechanisms of the approach from
three key aspects: Kronecker product, Mixture-of-
Experts, and Efficient Router.

3.1 Kronecker product
The Kronecker product is an operation on two input
matrices A ∈ Rp×q and B ∈ Rm×l, resulting in a
block matrix W ∈ Rpm×ql. Its mathematical form
is as follows:

W = A⊗B =

a11B · · · a1qB
...

. . .
...

ap1B · · · apqB

 (1)

where ⊗ represents the Kronecker product.
During model fine-tuning, the weight updates

can be reparameterized as follows:

h = W0x+∆Wx (2)
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where x ∈ Rdin denotes the input activation fea-
ture, h ∈ Rdout denotes the output feature, W0 ∈
Rdin×dout denotes the model parameter weight,
∆W ∈ Rdin×dout denotes the the weight adjust-
ment matrix.

Unlike previous work (Hu et al., 2021; Luo et al.,
2024), we use the Kronecker product decomposi-
tion for the reparameterization of ∆W to overcome
the limitations of the low-rank decomposition. This
process is formalized as follows:

xr = reshape(x)

h = W0x+ (A⊗B)x

= W0x+ flatten
(
BxrA

⊤
) (3)

where din = p×m and dout = q× l, the reshape
operation transforms x into an Rp×m matrix, which
is then converted back to a dout dimensional vector
by the flatten operation following the Kronecker
product operation.

Unlike the low-rank decomposition employed
in LoRA, the Kronecker product decomposition
maintains the full rank of ∆W , enabling it to cap-
ture the complete information of a full-rank matrix
without the limitations of low-rank approximations.
However, a single Kronecker module’s reliance on
shared parameters to adapt to diverse input features
and data can restrict both parameter efficiency and
model capacity. This trade-off may lead to less
than desirable performance when handling com-
plex tasks requiring more specialized adaptation.

3.2 Mixture-of-Experts
Mixture-of-Experts (MoE) is a neural network that
enables conditional computation by activating dif-
ferent experts through a gating mechanism. Based
on this, we propose the MoKA method, which uses
a MoE-based approach to re-model ∆W decompo-
sition factors A and B. Specifically, we use a soft
merging modeling approach (Zadouri et al., 2023)
and utilize a lightweight sparse activation MoE net-
work to model the two decomposition factors A
and B as MA and MB , respectively.

Specifically, we apply a soft merging computa-
tion (Zadouri et al., 2023) and utilize a lightweight
sparsely activated MoE network to represent these
factors as MA and MB , respectively. This design
allows for more flexible and efficient modeling of
∆W through the dynamic activation of specialized
experts. The MA is generated by the MoA mod-
ule, which comprises a gating network GA and a set
of n experts EA

1 , ..., E
A
n . Each expert EA

i ∈ Rp×q

represents a linear transformation matrix. Similarly,
MB is produced by the MoB module, consisting
of a gating network GB and a set of n experts
EB

1 , ..., EB
n , where expert EB

i ∈ Rm×l.
First, we derive the router weights for both MoA

and MoB using a combination of routing transfor-
mation and the softmax operation. We then apply
the TopK function to achieve sparse activation,
reducing computational cost and improving effi-
ciency. The formulas are given as follows:

SA = Softmax(TopK(GAx), k) (4)

SB = Softmax(TopK(GBx), k) (5)

where SA = {sA1 , sA2 , ..., sAn } and SB =
{sB1 , sB2 , ..., sBn } denote the routing weights ob-
tained after sparse activation by TopK operation.
Here, TopK(GA(x))i := GA(x)i if GA(x)i is
among the top-k coordinates of logits GA(x) ∈ Rn,
and TopK(GA(x))i := −∞ otherwise. The hy-
perparameter k, which represents the number of
experts selected per token, adjusts the amount of
computational parameter required to process each
token.

Then MA and MB are obtained by routing
through soft merging.

MA =
n∑

i=1

sAi · EA
i (6)

MB =
n∑

i=1

sBi · EB
i (7)

The MoKA method improves flexibility and pa-
rameter efficiency by dynamically routing compu-
tational resources to relevant experts, minimizing
redundant computations. Finally, the whole repa-
rameterization process is modeled as:

h = W0x+ (MA ⊗MB)x (8)

3.3 Efficient Router
Efficient expert modeling in MoKA significantly
reduces GPU memory footprint and improves pa-
rameter efficiency. However, compared to the
extremely parameter-efficient expert module, the
number of parameters in the router module instead
becomes a performance bottleneck for fine-tuning.
In the MoKA framework, we focus on fine-tuning
the model weights WQ as an illustrative example,
where din = dout = dq. For the MoA module,
we assume there are n experts, with each expert
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EA
i having dimensions

√
dq×

√
dq. Consequently,

each expert’s parameter count is dq. The routing
module has a parameter count of n× dq, while the
experts collectively contribute n× dq parameters.
This configuration results in the routing module
constituting approximately 50% of the total param-
eter count in the MoKA method. Therefore, there is
an urgent need to conduct in-depth research on rout-
ing mechanisms with higher parameter efficiency.

The parameter efficient router method works by
compressing the features of the input xr in two
dimensions, and then using the downscaled features
xa and xb for the calculation of the routing weights:

xa = fcompress(xr,−1) (9)

xb = fcompress(xr,−2) (10)

SA = Softmax(TopK(GA
e xa), k) (11)

SB = Softmax(TopK(GB
e xb), k) (12)

where compress is one of the set
{mean, max, weighted}, the weighted repre-
sents a weighted sum of the dimensions to be
compressed. The GA

e ∈ Rp×n and GB
e ∈ Rm×n.

3.4 Parameter Efficiency Comparison
We compared the parameter efficiency of MoKA
(including both the total number of parameters and
the number of trainable parameters) with LoRA
and LoRA-MoE, as shown in the Table 1.

Let’s consider a transformer model with L fine-
tuned layers, each consisting of number of weight
matrices W ∈ d × d. For simplicity and fairness
of comparison, we set the hyperparameters appro-
priately for the different methods. For LoRA, we
set the rank to r. For LoRA-MoE, we set the max-
imum number of experts to n and the number of
activated experts to k. For MoKA, we set the size
of the Kronecker factor A to be p × q and factor
B to be m × l. To obtain a higher efficiency of
the parameters, we set p = q = m = l =

√
d.

For MoE settings, we keep the number of experts
consistent with LoRA-MoE.

For the approximation part of ∆W , it can be
seen that the number of parameters required by
LoRA-MoE grows linearly with r. Compared to
LoRA-MoE, MoKA has a naturally high rank prop-
erty because of the Kronecker product. For the
routing part, we compress the router parameters by
the efficient router method, which reduces the pa-
rameter overhead from the original nd to n

√
d. To

Summary, the number of LoRA-MoE’s parameters

is significantly larger than that of MoKA, which
demonstrates the advantage of MoKA in terms of
parameter efficiency.

Method Total Param Trainable Param

LoRA 2rd 2rd
LoRA-MoE 2nrd + nd 2krd + nd

MoKA (wo ER) 2nd + 2nd 2kd + 2nd
MoKA 2nd + 2n

√
d 2kd + 2n

√
d

Table 1: Parameter Efficiency Comparison of MoKA,
LoRA and LoRA-MoE, where ER represent Efficient
Router Method

4 Experiment

In this section, we conduct a comprehensive set
of experiments to evaluate our fine-tuning method
across a variety of downstream language tasks.
Moreover, we conduct further experiments to ana-
lyze the impacts of various details within this study.

4.1 Experiment setup

4.1.1 Evaluation Tasks
To fully demonstrate the effectiveness of our ap-
proach, we carry out extensive experiments on nat-
ural language understanding (NLU), natural lan-
guage generation (NLG), and large language model
instruction fine-tuning. The tasks we used to evalu-
ate the performance are as follows:

GLUE benchmark: The GLUE benchmark
is for NLU tasks and includes classification
tasks, similarity and paraphrase tasks, and natu-
ral language inference tasks. The GLUE bench-
mark consists of eight types of natural lan-
guage understanding tasks, Linguistic Acceptabil-
ity (CoLA (Warstadt, 2019)), Sentiment Analysis
(SST-2 (Socher et al., 2013)), Similarity and Para-
phrase tasks ((MRPC (Dolan and Brockett, 2005)),
STS-B (Cer et al., 2017), QQP (Wang et al., 2018)),
and Natural Language Inference (MNLI (Williams
et al., 2017), QNLI (Rajpurkar, 2016), RTE (Dolan
and Brockett, 2005). We adopt the same evalua-
tion metrics as used in Hu et al. (2021) to ensure
consistency in comparison.

E2E NLG Challenge: The E2E NLG Challenge
dataset is a widely recognized benchmark for evalu-
ating Natural Language Generation (NLG) models.
It comprises 51,200 samples distributed as follows:
42,200 for training, 4,600 for validation, and 4,600
for testing. This dataset is frequently utilized to



10177

measure the effectiveness of NLG models and pro-
vides a robust framework for evaluating various
NLG tasks. We evaluate model performance using
the BLEU (Papineni et al., 2002), NIST (Dodding-
ton, 2002), Meteor (Banerjee and Lavie, 2005),
ROUGE-L (Lin, 2004), and CIDEr (Vedantam
et al., 2015) metrics in the E2E NLG Challenge
dataset.

Instruction tuning: Instruction tuning is the
fine-tuning of a model through a set of instruc-
tions or prompts used to improve the performance
of a language model so that it can better under-
stand and follow specific instructions. For instruc-
tion tuning experiments, we use the LLaMA2-7B
models, trained on 100k samples of the Meta-
MathQA (Yu et al., 2023) dataset and evalu-
ated on the GSM8K (Cobbe et al., 2021) and
MATH (Hendrycks et al., 2021) benchmarks.

4.1.2 Implementation Details
We use an NVIDIA A800 GPU to train our model
for extensive experiments on natural language un-
derstanding and generative tasks. For the GLUE
benchmark and E2E challenge datasets, we set the
total number of experts for our MoKA method to
16, the number of activated experts to 2, and the
shapes of expert EA and EB to (32, 32). For the
instruction tuning task, we set the total number
of experts to 128, the number of activated experts
to 16, and the shapes of EA and EB to (64,64).
Full experimental details can be found in the Ap-
pendixA. We performed five runs using different
random seeds, recorded the best epoch results for
each run, and reported the median of these results.

To fully demonstrate the validity of our work, we
conducted a comparison between AdapterP (Pfeif-
fer et al., 2021), PrefixTuning (Li and Liang, 2021),
LoRA (Hu et al., 2021), LoRA-FA (Zhang et al.,
2023), MELoRA (Ren et al., 2024), LoRA-MoE
and MoKA and reuse their reported numbers when-
ever possible. It is worth noting that compared to
our MoKA method, LoRA-MoE only replaces the
Kronecker-Product module with LoRA, while all
other settings remain unchanged.

4.2 Main Result

4.2.1 GLUE Benchmark
For the GLUE benchmark dataset, we use
RoBERTa-Large (Liu, 2019) as the backbone lan-
guage model on the GLUE benchmarks. The re-
sults of all methods on GLUE are shown in Table
2. We can see that MoKA exhibits very competi-

tive performance, outperforming most mainstream
PEFT methods such as LoRA overall. Especially
for datasets such as MRPC, RTE and CoLA, MoKA
has achieved significant improvement. Compared
to LoRA-MoE, our method still has a performance
advantage in terms of overall metrics under the con-
dition that the number of trainable parameters is
much smaller (Only 10% of LoRA-MoE). Over-
all, MoKA significantly reduces the number of
trainable parameters and achieves enhanced perfor-
mance on the vast majority of datasets, demonstrat-
ing a good balance between model performance
and parameter efficiency.

4.2.2 E2E Benchmark
In the E2E NLG Challenge dataset, we use GPT-2
medium model (Radford et al., 2019) as the back-
bone language model and compared our method
MoKA with LoRA and other baselines. The ex-
perimental results are shown in Table 3. With only
0.09M model parameters trained, MoKA shows ex-
cellent performance, outperforming the baselines
significantly in most metrics. Through experiments
on the E2E dataset, we demonstrate that MoKA is
not only suitable for NLU, but still performs well
on NLG tasks.

4.2.3 Instruction tuning
We fine-tuned the LLaMA2-7B model (Touvron
et al., 2023) using the MetaMathQA dataset to
evaluate its instruction tuning and mathematical
reasoning capabilities on the GSM8K and MATH
validation sets. Table 4. shows the results of our
instruction tuning experiments. The results of ap-
plying MoKA to the large language model are com-
petitive with LoRA and full fine-tuning methods.
This demonstrates that the MoKA approach is still
applicable on large-scale language models and is
also capable of handling complex reasoning tasks.

4.3 Further Analysis

4.3.1 Impact of Compression Functions in
Router

In order to explore the role of router compres-
sion methods in MoKA, including mean, max, and
weighted mean. we tested the performance of var-
ious compression methods on the GLUE Bench-
mark. The results are presented in Table 5. It
can be found that the use of max leads to a cer-
tain degree of performance degradation, indicating
that there is significant information loss with this
compression method. With parameter compression
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Models Param MNLI SST-2 MRPC CoLA QQP RTE STS-B QNLI Avg.

Full FT 355.0M 87.6 96.4 90.9 68.0 92.2 86.6 92.4 94.7 88.9

AdptP† 0.8M 90.5 96.6 89.7 67.8 91.7 80.1 91.9 94.8 87.9
LoRA† 0.8M 90.6 96.2 90.2 68.2 91.6 85.2 92.3 94.8 88.6

LoRA-FA† 0.4M 90.1 96 90 68 91.1 86.1 92.0 94.4 88.5
MELoRA† 0.8M 90.5 96.3 90.5 68.8 90.9 87.1 91.9 94.5 88.8
LoRA-MoE 2.0M 90.6 96.3 90.7 68.5 91.7 87.0 92.5 94.8 89.0

Kronecker 0.1M 90.0 95.9 90.3 66.7 90.2 86.4 91.8 94.7 88.3
MoKA(ours) 0.2M 90.6 96.3 91.2 69.3 91.1 87.4 92.2 94.9 89.1

Table 2: RoBERTa-large model performance on GLUE benchmark. We report Matthew’s correlation for CoLA,
Pearson correlation for STS-B, and accuracy for the remaining tasks. † indicates that the experimental results are
from the original paper. Higher value is better for all metrics.

Models Param. BLEU NIST METEOR ROUGE-L CIDEr

Full FT 355.0M 68.2 8.62 46.2 71.0 2.47

LoRA† 0.35M 69.8 8.80 46.7 71.7 2.52
PrefixTuning 0.35M 70.3 8.85 46.2 71.7 2.47
LoRA-MoE 0.88M 70.3 8.84 47.2 72.4 2.56

Kronecker 0.04M 70.4 8.72 46.3 71.4 2.48
MoKA(ours) 0.09M 71.4 8.76 47.9 73.3 2.56

Table 3: GPT-2 medium model performance on E2E NLG Challenge, † indicates that the experimental results are
from the original paper. Higher value is better for all metrics.

Models Param. GSM8K MATH

Full FT 6738M 56.2 10.4
LoRA 160M 55.4 9.4

MELoRA 160M 55.1 9.8
Kronecker 2.4M 54.2 7.5

MoKA(ours) 38.3M 56.5 10.2

Table 4: LLaMA2-7B model performance on GSM8K
and MATH Benchmarks, Higher value is better for all
metrics.

using the mean method and the weighted average
method, the model capability is almost unaffected.
And without the router compression strategy, the
parameter size of the router reaches 16.38K, even
exceeding our expert module. It also proves that
the exploration of router efficiency is of great sig-
nificance.

Models Param. MRPC CoLA RTE

w/o compress 16.38K 91.1 69.4 87.6
max 0.51K 89.8 67.7 87.1
mean 0.51K 91.2 69.3 87.4

weighted 0.54K 90.8 68.5 87.6

Table 5: Impact of compression functions on selected
GLUE tasks.

4.3.2 Impact of the Max Number of Experts

The results in Table 6 demonstrate the effect of the
maximum number of experts on the model perfor-
mance. To maintain the same number of trainable
parameters, we keep the number of activated ex-
perts in the model constant while varying only the
maximum number of experts. We observe that
increasing the maximum number of experts signif-
icantly improves the accuracy of the model when
the number of experts is less than 16. This trend
suggests that more experts can expand the potential
learning space for the model, allowing it to better
adapt to complex data. However, when continuing
to increase the number of experts, the model per-
formance tends to stagnate. This may be due to
the fact that too many experts cannot be adequately
trained within the constraints of a fixed number of
activated experts, resulting in a model that cannot
be further optimized.

Expert Nums MRPC CoLA RTE

2 90.6 67.9 86.6
4 90.9 68.6 86.8
8 90.8 68.7 87.2

16 91.2 69.3 87.4
32 91.2 68.9 87.5

Table 6: Performance according to the Max Number of
Experts on selected GLUE tasks.
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4.3.3 Impact of the Activated Number of
Experts

In this section, we designed a series of experiments
to investigate the impact of the number of activated
experts on model performance. Specifically, we
fixed the maximum number of experts at 16 and
incrementally increased the number of activated
experts from 1 to 16 during the experiments, ob-
serving the performance changes on the CoLA and
RTE datasets.
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Figure 3: Performance according to Activated Number
of Experts, CoLA(left), RTE(right).

The results in Figure 3 indicate that when the
number of activated experts is low, the model’s per-
formance significantly improves as the number of
activated experts increases. Notably, once the num-
ber of activated experts reaches a certain threshold,
the performance gains begin to diminish and even-
tually stabilize, while the training costs continue to
rise steadily. Therefore, in practical applications,
it is essential to select an appropriate number of
activated experts based on specific requirements
and resource constraints.

4.3.4 Impact of Model Initialization
Table 7 demonstrates the impact of the initialisation
strategies for the Kronecker product module and
the router module on the performance of the model.
The results show that the model achieves the best
results when the Kronecker module EA and router
modules R are initialized using the uniform version
of Kaiming initialization and the EB is set to zero.
Meanwhile, we observe that the effect of changing
the initialisation strategy on the model is relatively
weak, proving the stability and robustness of our
proposed MoKA.

5 Conclusion

We have introduced MoKA, a novel Parameter-
Efficient Fine-Tuning (PEFT) technique that com-
bines Kronecker products with Mixture-of-Experts
(MoE) technology, effectively enhancing model
performance under conditions of a lower scale of

Kronecker Init. Router Init. MRPC CoLA RTE

EA ∼ Kaiming, EB = 0R ∼ Kaiming 90.9 68.9 88.1
EA ∼ Kaiming, EB = 0 R = 0 90.7 68.3 87.6
EA = 0, EB ∼ Kaiming R ∼ Kaiming 90.5 69.1 87.9
EA = 0, EB ∼ Kaiming R = 0 90.6 68.5 87.6

Table 7: Impact of different initialization strategies on
selected GLUE tasks.

trainable parameters. Additionally, we have opti-
mized the MoE router module and explored meth-
ods for compressing routing parameters. Exper-
iments on the GLUE benchmark and E2E chal-
lenge demonstrate that MoKA outperforms exist-
ing PEFT methods in both parameter efficiency
and performance. Furthermore, in instruction fine-
tuning tasks, we have shown that MoKA can still
provide competitive performance in the instruc-
tion fine-tuning of large-scale language models.
Overall, MoKA achieves a convincing balance be-
tween parameter efficiency and model performance
through the use of Kronecker products, MoE, and
an efficient routing mechanism. In future work,
we plan to extend our method to multi-task and
multi-modal domains to more broadly and compre-
hensively explore the effectiveness of MoKA.

6 Limitations

Although MoKA achieves a balance between pa-
rameter efficiency and model performance by com-
bining the Kronecker product and MoE techniques,
there are still some shortcomings. First, while
MoKA has enhanced the MoE-based parameter-
efficient fine-tuning mechanism and increased com-
putational efficiency, it still fails to address the in-
herent limitations of the MoE mechanism itself.
Specifically, the additional parameters introduced
during fine-tuning cannot be merged, which in-
creases the parameter processing requirements dur-
ing the inference phase and consequently elevates
inference costs. Furthermore, MoKA incorporates
additional hyperparameters, such as the number
of experts and top-k selection, which leads to the
complexity of model parameter optimization.
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A Hyperparameters

Hyper-Parameter MNLI SST-2 MRPC CoLA QNLI QQP RTE STS-B

Optimizer AdamW
Warmup Ratio 0.06
LR Schedule Linear
Batch Size 32 32 32 32 32 32 32 32
# Epochs 20 30 30 30 20 20 30 30
Learning Rate 2E-03 2E-03 2E-03 1E-03 1E-03 1E-03 3E-03 4E-03
Weight Decay 0.1
Max Seq. Len. 128

Table 8: Hyperparameters and computing resources
for natural language understanding experiments on the
GLUE benchmark.

Hyper-Parameter E2E NLG Challenge

Optimizer AdamW
Warmup Ratio 0.06
LR Schedule Linear
Batch Size 8
# Epochs 5
Learning Rate 1e-2
Weight Decay 0.1
Beam Num 10
No Repeat Ngram 5
length penalty 1.2
Max Seq. Len. 128

Table 9: The hyperparameters we used for GPT2-
medium.

Hyper-Parameter Instruction tuning

Optimizer AdamW
Warmup Ratio 0.06
LR Schedule Linear
Batch Size 64
# Epochs 2
Learning Rate 1e-3
Weight Decay 0.1
Max Seq. Len. 512

Table 10: The hyperparameters we used for LLaMA2-
7B.
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