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Abstract

Theory of Mind (ToM) is the ability to under-
stand and reflect on the mental states of oth-
ers. Although this capability is crucial for hu-
man interaction, testing on Large Language
Models (LLMs) reveals that they possess only
a rudimentary understanding of it. Although
the most capable closed-source LLMs have
come close to human performance on some
ToM tasks, they still perform poorly on com-
plex variations of the task that involve more
structured reasoning. In this work, we utilize
the concept of "pretend-play", or “Simulation
Theory” from cognitive psychology to propose
“Decompose-ToM”: an LLM-based inference
algorithm that improves model performance
on complex ToM tasks. We recursively simu-
late user perspectives and decompose the ToM
task into a simpler set of tasks: subject identi-
fication, question-reframing, world model up-
dation, and knowledge availability. We test
the algorithm on higher-order ToM tasks and a
task testing for ToM capabilities in a conversa-
tional setting, demonstrating that our approach
shows significant improvement across models
compared to baseline methods while requiring
minimal prompt tuning across tasks and no ad-
ditional model training. Our code is publicly
available.

1 Introduction

Social reasoning, the ability to understand and
navigate complex interpersonal dynamics and so-
cial contexts, is crucial for large language models
(LLMs) as it both enables better interactions with
users (Salam et al., 2022, 2023), and paves the way
for more powerful LLM-based systems that may
act in socially appropriate and helpful ways within
the same environment as humans (Li et al., 2023;
Jiang et al., 2024). A key factor in the human abil-
ity to socially reason is the presence of the theory
of mind (ToM) (Baron-Cohen, 1995; Christensen
and Michael, 2012). ToM is the ability to attribute

and infer the mental states of others, a capability
children start developing at a young age (Premack
and Woodruff, 1978). However, the performance
of LLMs on this task is contentious. In the ToMi
(Le et al., 2019) dataset, some recent methods have
improved the capabilities of frontier models to near-
human levels (Sclar et al., 2023; Wilf et al., 2024).
At the same time, the research community has de-
signed newer datasets with variations to the ToM
task that continue to be a challenge for LLMs.

For example, higher-order ToM capabilities in-
volve the ability to model the beliefs of others
about the beliefs of others and so on (Kinderman
et al., 1998). Studies have highlighted the pivotal
role of higher-order Theory of Mind (ToM) not
only in managing intricate communication scenar-
ios such as discussions involving multiple parties
(Liddle and Nettle, 2006), but also in fostering
empathetic interactions and providing emotional
support (Mitchell and Phillips, 2015). However,
LLM models continue to perform poorly in tasks
that aim to measure this capability (Wu et al.,
2023). Likewise, LLM models struggle to general-
ize even lower-order Theory of Mind (ToM) reason-
ing demonstrated in datasets like ToMi to more real-
istic dialogue-based scenarios, as observed by Kim
et al. (2023). This raises the question: Can LLMs
or LLM-based approaches effectively address these
challenges while maintaining task generalization?

Insights from developmental psychology offer
potential solutions. The development of ToM in
children has been closely linked to the act of “pre-
tend play” (Kavanaugh, 2006; Lillard, 1993; Qu
et al., 2015). Emerging around 18 months of age—
significantly earlier than the age at which chil-
dren reliably solve Theory of Mind (ToM) tasks
like those in ToMi—this process involves role-
taking and the attribution of mental states, both
of which are essential for developing ToM capabil-
ities (Leslie, 1987). Similarly, another precursor to
ToM capabilities in children is the ability to solve

https://github.com/Xarangi/Decompose-ToM
https://github.com/Xarangi/Decompose-ToM
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“knowledge-access”. Children as young as 3 years
of age begin to understand the connection between
perception and knowledge, recognizing that visual
access to information leads to knowing (Wellman
and Liu, 2004).

Parallel insights can also be drawn from compu-
tational approaches to reasoning, particularly the
recursive reasoning frameworks employed in Ratio-
nal Speech Act (RSA) models. RSA models con-
ceptualize communication as a recursive process in
which speakers anticipate listeners’ interpretations
and listeners infer speakers’ intentions (Frank and
Goodman, 2012). This recursive reasoning mir-
rors the structure of higher-order ToM tasks, where
agents must model others’ beliefs about beliefs.
Furthermore, RSA models address challenges in
scalar implicature by recursively balancing infor-
mativeness and cost—an approach analogous to
how ToM reasoning involves balancing observed
actions and inferred mental states. By grounding
ToM reasoning in recursive simulation, we can en-
hance the ability of LLMs to reason about com-
plex mental states, paving the way for better perfor-
mance on higher-order tasks and naturalistic inter-
actions.

In this paper, we propose an LLM-powered in-
ference time algorithm - Decompose-ToM - that
takes inspiration from the above concepts to decom-
pose the ToM reasoning problem into two simpler
problems - recursively simulating an agent’s per-
spectives, and using granular knowledge-access
problems to simulate these perspectives. Given a
question and a story, at each step, the algorithm
simplifies the story to a set of statements known
only to the agent being simulated, until the ques-
tion no longer requires ToM-based inference and
simply asks for a factual answer. We demonstrate
that our method significantly outperforms baselines
while requiring no further training and maintaining
generality across datasets.

2 Related Work

Towards a Machine Theory of Mind
The pursuit of a machine Theory of Mind (ToM)

has been a significant focus within the research
community for many years. Early investigations
utilizing neural language models revealed that these
models often faced challenges in accurately infer-
ring mental states (Nematzadeh et al., 2018). As
large language models (LLMs) have advanced, re-
searchers have increasingly turned their attention

to assessing these models’ ToM capabilities. For
example, Sap et al. (2022) employed versions of
the Sally-Anne false-belief test (Baron-Cohen et al.,
1985) using the ToMi (Le et al., 2019) dataset to
illustrate the limited performance of LLMs like
GPT-3 on tasks that require belief inference.

In contrast, more recent and sophisticated mod-
els such as GPT-4 (OpenAI, 2023) have demon-
strated performance that approaches or even sur-
passes human-level accuracy on benchmarks like
ToMi (Kosinski, 2023) and BigToM (Gandhi et al.,
2023). Despite these promising developments, con-
cerns persist regarding the robustness of LLMs’
ToM capabilities. Notably, the effectiveness of
these models tends to diminish significantly when
subjected to adversarial perturbations (Ullman,
2023; Shapira et al., 2023), raising questions about
the consistency and reliability of their mental state
inferences.

Strategies for ToM Performance in LLMs.
Traditional methods that have worked to improve
LLM performance on reasoning tasks such as
Chain of Thought prompting (Wei et al., 2022),
have seen limited success in improving LLMs’
ToM performance (Moghaddam and Honey, 2023).
There have been recent works such as Symbolic-
ToM (Sclar et al., 2023), and SimToM (Wilf et al.,
2024) attempting to improve the performance of
LLMs on false-belief ToM tasks. Symbolic-ToM
utilizes LLMs to form a belief-state graph repre-
sentation, before attempting to answer a question.
This method provides an elegant solution for even
higher-order ToM tasks, but it increases the algo-
rithm’s complexity exponentially. Additionally, the
method of adapting it to more naturalistic settings
remains unclear. SimToM proposes a simple 2-
step method involving perspective-taking, taking
inspiration from Simulation Theory (Shanton and
Goldman, 2010). While drawing from similar in-
spiration in its design philosophy, SimToM doesn’t
consider more complex ToM scenarios such as
higher-order reasoning.

Evaluation of ToM in LLMs . Given the sat-
uration of benchmarks such as ToMi due to the
improved performance of newer models, recent re-
search has moved towards testing more complex
variations of the classical false-belief tasks, such
as tests for performance on higher-order ToM tasks
(Wu et al., 2023), and in naturalistic dialogue set-
tings (Kim et al., 2023). There have also been re-
cent datasets to test LLM performance on a broad
array of ToM tasks such as treating LLMs as agents
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Figure 1: Workflow of Decompose-ToM. The perspectives of A and B are simulated sequentially. Then, a factual
question is answered based on a simplified story.

embedded in environments, and other psychology-
based ToM tests such as faux-pas tests (Ma et al.,
2023; Xu et al., 2024).

3 Methodology

Drawing inspiration from the concepts of pretend-
play (Kavanaugh, 2006; Lillard, 1993; Qu et al.,
2015) and knowledge-access (Wellman and Liu,
2004), in a similar vein to SimToM (Wilf et al.,
2024), our approach “Decompose-ToM” decom-
poses the ToM task into a recursive perspective
simulation task, and a granular statement awareness
task. Concretely, this means that for each statement
describing a theory of mind testing scenario, we
prompt the LLM to output whether an interested
agent is aware of it. Additionally, to assist the LLM
in this task, we keep track of a symbolic world state
representation that is both generated and updated
by the LLM. We recursively chain agent simula-
tions, simplifying the question to be answered at
each stage until we get a question that is answered
by a fact, and not an agent’s belief. This process is
demonstrated in Appendix B as Algorithm 1, Algo-
rithm 2, and Figure 1. Our approach can thus be
divided into three components: (1) Initialization,
(2) Simulation Processing & World-state Updating,
and (3) Question-Answering1.

1The reader is referred to Appendix G for a detailed de-
scription of the prompts used in this work.

Initialization. This step extracts the character
whose perspective will be simulated and then sim-
plifies the question to frame it as if it were asked
to the character. We accomplish both these tasks
by few-shot prompting the LLM with hand-crafted
demonstrations. For example, if the question states:
“Where does A think B thinks the object O is?” We
detect the person to be simulated as A, and the
simplified question would thus be: “Where does B
think the object O is?”. At this step we also set up
the text-based world state by prompting the LLM to
detect the locations mentioned in a story, and output
these arranged into a simple world state representa-
tion such as: “Living Room:[], Bedroom:[]”.

Simulation Processing & Updating World State.
This step creates a new story consisting of only
statements known by the identified character from
the overall story. For each statement, we prompt the
LLM to answer whether the given character knows
the statement by inferring from prior statements in
the story and the given world-state representation.
After the LLM makes a decision, we update the
world state with another LLM call if it needs to
be updated after the given statement. If the LLM
decides that the given statement is known by the
agent, we add the statement to the sub-story. Af-
ter iterating through all the statements in the story,
we obtain a newly created story that represents the
story from the perspective of the identified charac-
ter.
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Question-Answering. The initialization and pro-
cessing steps above are followed recursively un-
til the character-identification step recognizes the
question to have decomposed into a factual ques-
tion. Thus, it no longer requires the theory-of-mind
process to be answered and can be answered di-
rectly. Then, we prompt the LLM to answer the
question using the simplified story in a chain-of-
thought manner, asking it to form a reasoning and
then having it select from the multiple-choice op-
tions.

4 Experiments and Results

4.1 Datasets

Hi-ToM (Wu et al., 2023). Hi-ToM is designed
to evaluate the higher-order theory of mind abil-
ities of language models, going up to the fourth-
order theory of mind reasoning tasks. It is based
on the Sally-Anne test (Baron-Cohen et al., 1985)
with characters entering, leaving, and moving items
in rooms. The provided task is a multiple-choice
question-answering task with 15 choices per ques-
tion. The dataset consists of 600 questions span-
ning two categories: “Tell” and “no-Tell”. The
”Tell” category adds an element of deception, by
asking LLMs to reason whether an agent is lying
by inferring when they left the room. We present
our results averaged over both categories.

FANToM (Kim et al., 2023). FANToM is a
dataset consisting of dialogue-based interactions
between characters. Characters may leave or en-
ter the conversation at any time, and questions are
based on correctly navigating this information in-
completeness. This provides a naturalistic setting
to test our model on. While the dataset provides a
large suite of tasks, we use the binary-choice belief
task for our evaluations due to its structural similar-
ity to the Hi-ToM dataset. The dataset consists of
1,540 questions, containing first and second-order
ToM questions. We show averaged results over
these categories due to generally similar accuracy
gains for models across evaluation methods. Ad-
ditionally, the dataset consists of stories in short
and long-length variants, which we show results for
separately to evaluate our method’s performance
over longer context lengths.

We provide example stories from both datasets,
alongside details of any pre-processing conducted,
in Appendix C.

4.2 Evaluation

We experiment with four base LLMs, and evaluate
each of them via:
- Zero-shot prompting (Baseline): Model directly
returns the multiple choice option of the answer
- Zero-shot chain of thought prompting: Model
"thinks step-by-step" before outputting the answer
- SimToM prompting (Wilf et al., 2024): Two-
step prompting, first involving perspective-taking,
then finding the answer2

- Our approach (Decompose-ToM): Decomposes
tasks into recursive simulations and knowledge ac-
cess subtasks.

Each method is applied consistently to compare
performance across models and datasets. We eval-
uate the open-source models Llama-3-8B and 70B
(Dubey et al., 2024), alongside the closed source
models Gemini-1.5-Flash (Reid et al., 2024) and
GPT4-o3. We share the model version details in Ap-
pendix D. We use similar prompts for both datasets
with minor changes in the instructions to better fit
and describe each task and to resolve additional
ambiguities specific to each dataset.

4.3 Results and Discussion

Results for Hi-ToM. We observe improvements in
performance for all models except for the Gemini
Flash model. The largest increase is seen for the
GPT-4o model with an average accuracy gain of
28.13% over the SimToM method, which slightly
outperformed the chain-of-thought method. Simi-
larly, the Llama-3-70B model saw the next largest
increase of 22.5% over the SimToM method, which
slightly outperformed the baseline method. The
Llama-3-8B model and the Gemini-Flash model
both show slight increases over the baseline and
SimToM method respectively.

Using Decompose-ToM, we observe that the per-
formance of all models is preserved better than
other methods for higher-order tasks. GPT-4o and
Llama-3-70B models even see improvements of
6.6% and 13.3% respectively from orders 1 to 4.
The Llama-3-8B and the Gemini-Flash-1.5 mod-
els show a dip in accuracy over the range. We
hypothesize that larger models such as GPT-4o
and Llama-3-70B can consistently perform well in
the statement awareness task, whereas less capable
models may fail. Conversely, the observed increase
in accuracy for larger models may be attributed to

2For details on SimToM refer to Appendix F
3https://openai.com/index/hello-gpt-4o

https://openai.com/index/hello-gpt-4o
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Dataset Hi-ToM FANToM
Model Order 1 Order 2 Order 3 Order 4 Short Long

MC Prompt Baseline
Llama3 8b 67.5 56.67 35.83 38.33 32.4 27.5
Llama3 70b 58.33 45 40.83 37.5 61.9 50.6
Gemini Flash 60 49.17 30 26.67 44.9 41.8
GPT 4o 60 40.83 22.5 21.67 55 44

CoT
Llama3 8b 58.33 50 36.67 37.50 57.1 45.6
Llama3 70b 68.33 54.17 44.17 39.17 68.4 61.4
Gemini Flash 55.83 52.5 45.83 34.17 39.2 36.1
GPT 4o 74.17 53.33 45 42.5 74 64.7

SimToM
Llama3 8b 57.5 46.67 39.17 31.67 60.09 60.33
Llama3 70b 67.5 52.5 55 43.33 89.25 83.37
Gemini Flash 68.33 51.67 45 46.67 70.91 66.87
GPT 4o 75 55 48.33 43.33 90.43 84.7

Decompose-ToM (Our Method)
Llama3 8b 69.2 (+1.7) 50.8 (-5.8) 51.7 (+12.5) 55.0 (+16.7) 62.5 (+2.4) 62.0 (+1.7)
Llama3 70b 74.2 (+5.8) 76.7 (+22.5) 84.2 (+29.2) 87.5 (+44.2) 86.8 (-2.4) 86.1 (+2.7)
Gemini Flash 65.6 (-2.8) 51.7 (-0.8) 47.8 (+2.0) 51.3 (+4.6) 75.63 (+4.7) 75.43 (+8.6)
GPT 4o 76.7 (+1.7) 86.7 (+31.7) 87.5 (+39.2) 83.3 (+40.0) 88.4 (-2.0) 86.2 (+1.5)

Table 1: Performance of Various Models on Hi-ToM and FANToM in terms of accuracy (%), with gains over the
best performing method amongst MC Prompt Baseline, CoT, and SimToM.

the tendency of LLMs to become distracted (Shi
et al., 2023). This distraction is likely exacerbated
during lower-order reasoning due to the presence
of a longer story, which introduces a greater num-
ber of potentially distracting statements. Refer to
AppendixE for a detailed discussion.

Results for FANToM. We observe improvements
for all models over baseline methods. However,
we get nearly equal performance as the Sim-
ToM method across all models but Gemini-Flash.
The Decompose-ToM method when used on the
Gemini-1.5-Flash model outperforms the SimToM
method by 6.65%.

The models show poorer performance on longer
stories compared to short stories for both presented
baselines with an average accuracy difference of
7.57% for vanilla MC prompting, and 7.73% for
CoT prompting. The SimToM method also has
an average difference of 4% between the long
and short context stories. Our method reduces
the average performance gap on long and short
FANToM stories to 0.9%. These results suggest
that Decompose-ToM helps language models main-
tain theory-of-mind-related reasoning across longer
contexts while simultaneously improving perfor-
mance.

Algorithm Generalizability: For a more detailed
discussion around the generalizability of the algo-
rithm, refer to Appendix A.

5 Conclusion

In this work, we introduce a novel LLM-powered
inference algorithm inspired by the concepts of
pretend-play and knowledge-access from cogni-
tive psychology to enhance Theory of Mind (ToM)
capabilities in LLMs. Our method decomposes
complex ToM tasks into simpler sub-tasks: recur-
sive perspective simulation and granular statement
awareness, enabling models to better understand
and attribute mental states in higher-order and nat-
uralistic settings.

We evaluated our approach on the Hi-ToM and
FANToM datasets, demonstrating improvements
over baseline methods across both open-source
and closed-source LLMs. Notably, our method
showed strong performance gains in higher-order
ToM tasks and effectively maintained accuracy
across longer context lengths, addressing key chal-
lenges in current ToM evaluations for LLMs.

These results suggest that leveraging cognitive
developmental strategies can effectively enhance
the social reasoning abilities of LLMs without
requiring additional model training or extensive
prompt engineering. Our approach offers a flexible
and generalizable framework for improving ToM
performance in LLMs, which could have broad im-
plications for the development of socially-aware
AI systems. Additionally, future work can explore
employing these algorithms through LLM agen-
tic frameworks, allowing LLMs to autonomously
conduct the process with a single instruction.
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6 Limitations

A key limitation of our work is that it assumes that
the agent’s memory is never updated backward. For
example, if a story doesn’t strictly follow a chrono-
logical order by claiming midway through that an
agent who hadn’t been mentioned yet was present
earlier (implying that they knew about what hap-
pened earlier), our method does not update this in
the agent simulation. We believe that this prob-
lem of incomplete information can be resolved
by disambiguating the relevant story in the pre-
processing stage on the lines of our procedure for
the FANToM dataset (refer to Appendix C). How-
ever, we haven’t tested this extensively and leave
this for future work.

Additionally, our approach is highly computa-
tionally expensive compared to other approaches
due to the need for per-statement processing, we
hope to come up with more efficient methods in
future work.
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A Generalizability

We’ve designed Decompose-ToM in a manner that
makes it highly generalizable, and easy to use in
a plug-and-play manner. The core Decompose-
ToM function simply requires a question, options,
and a story. Users can optionally pass any instruc-
tions the model should follow when interpreting
the story, and the unit of an information chunk. By
information chunk, we refer to the atomic unit of
information that an agent either knows or doesn’t.
For example, the information chunk in Hi-ToM
was a sentence, and the chunk in FANToM was a
dialogue. By default, the unit is a sentence.

However, although the system is generalizable
the user will likely have to tune the simulation, and
question-answering prompts to get optimal results.
In future work, we hope to have the system be able
to dynamically define information chunks, and un-
derstand the required processing steps automatedly.

B Algorithms

Algorithms 1 and 2 describe the algorithms for the
simulation process and story update proposed in
this work.

Algorithm 1 Simulation Process
1: Agent← GET_AGENT(Question)
2: while Agent is not Narrator do
3: W ← SETUP_WORLD(Story)
4: Agent← GET_AGENT(Question)
5: Qn← REPHRASE_QN(Agent, Question)
6: Story,W ← SIM(Story, W, Agent)
7: end while
8: ANSWER(Story, Agent, Qn, Choices)

Algorithm 2 Story Update Simulation
1: CurrStory ← EMPTY
2: Update← EMPTY
3: for P in STORY given CurrStory do
4: if Agent aware of P then
5: Add P to Update
6: end if
7: Add P to CurrStory
8: W ← UPDATE(W,P )
9: end for

10: return Update,W

C Disambiguating Datasets and Examples

Hi-ToM The Hi-ToM dataset consists of some
unintentional ambiguities, which are also present
in precursor ToM datasets such as ToMi (Le et al.,
2019). These ambiguities do not allow us to ascer-
tain the actual ToM capabilities of language models.

For ToMi, these ambiguities have been identified
and resolved (Sclar et al., 2023), however, this is
not the case for Hi-ToM. For instance, a story might
state, ’Bob is in the living room’ and ’The beans are
in the suitcase,’ but never explicitly mention that
the suitcase is in the living room. Since the stories
are generated through fixed-structure templates, we
can use regular expression parsing to form a dictio-
nary of locations and parent locations. Ultimately,
we disambiguate the locations by adding disam-
biguating lines at the start of the story (e.g. “The
suitcase is in the living room”).

FANToM Unlike Hi-ToM, FANToM doesn’t
have markers of entry into conversation at the be-
ginning of the story and this may lead to problems
for our algorithm since it does a simple forward
pass over the statements. Thus, we preprocess FAN-
ToM stories to initialize the world state with the
agents initially in a conversation to be in an "in-
conversation" location state. We do this by simply
detecting the agents in conversation at the begin-
ning using a single LLM prompt, and setting up
the initial world-state accordingly.
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HiToM Example

Read the following story and answer the
multiple-choice question. Please provide
answer without explanations.
Story:
1. Emma, Hannah, Liam, Nathan and
Carter entered the study.
2. Emma saw a cat.
3. The tomato is in the red_container.
4. Emma made no movements and stayed
in the study for 1 minute.
5. Emma exited the study.
6. Hannah made no movements and stayed
in the study for 1 minute.
7. Hannah exited the study.
8. Carter dislikes the banana.
9. Liam moved the tomato to the
green_drawer.
10. Liam exited the study.
11. Nathan made no movements and stayed
in the study for 1 minute.
12. Nathan exited the study.
13. Carter made no movements and stayed
in the study for 1 minute.
14. Carter exited the study.
15. Emma, Hannah, Liam, Nathan and
Carter entered the waiting_room.
16. Nathan publicly claimed that the tomato
is in the blue_bottle.
17. Carter privately told Emma that the
tomato is in the green_drawer.

Question:
Where does Carter think Hannah thinks
Liam thinks Emma thinks the tomato is?
Choices:
A. blue_bathtub, B. red_drawer, C.
green_bathtub, D. green_envelope, E.
blue_cupboard,
F. green_box, G. blue_drawer, H.
green_pantry, I. green_cupboard, J.
blue_treasure_chest,
K. red_bottle, L. red_container, M.
green_bucket, N. green_drawer, O.
blue_bottle.

FANToM Example

Gianna: Guys, I’ve really enjoyed sharing our
pet stories, but I need to excuse myself. I need
to change clothes for a meeting later. Talk to
you later!
Sara: Sure thing, Gianna. Take care!
Javier: Catch you later, Gianna.
Sara: So Javier, have you ever tried training
Bruno?
Javier: Yes, I did actually. It was a challenge at
times, but rewarding nevertheless. How about
you? Did you try training Snowflake?
Sara: Oh gosh, trying to train a cat is a whole
different ball game. But I did manage to teach
her a few commands and tricks. She was quite
an intelligent little furball.
Gianna: Hey guys, I’m back, couldn’t miss out
on more pet stories. Speaking of teaching and
training pets, it is amazing how that further
strengthens the bond between us and our pets,
right?
Sara: Absolutely, Gianna! The fact that they
trust us enough to learn from us is really spe-
cial.
Javier: I can’t agree more. I believe that’s one
of the ways Bruno conveyed his love and trust
towards me. It also gave me a sense of respon-
sibility towards him.
Gianna: Just like Chirpy. Once she began to
imitate me, we connected in a way I never
imagined. She would repeat words that I was
studying for exams and that somehow made
studying less stressful.
Javier: Pets are indeed lifesavers in so many
ways.
Sara: They bring so much joy and laughter too
into our lives. I mean, imagine a little kitten
stuck in a vase! I couldn’t have asked for a
better stress buster during my college days.
Gianna: Totally, they all are so amazing in
their unique ways. It’s so nice to have these
memories to look back on.

D Model Details

We run Meta’s Llama-3-70B, and Llama-3-8B mod-
els using vLLM (Kwon et al., 2023) on 4 A100
GPUs. We use OpenAI’s gpt-4o-2024-08-06 model
and Gemini-1.5-Flash-001 through the publicly
available APIs.
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E Discussion on Degradation across order
for Smaller Language Models

We observe that LLMs such as Llama-3-8b, and
Gemini-1.5-Flash suffer degradation across orders
when we use our method. On evaluating this phe-
nomenon we identify that this is caused due to
the snowballing effect of errors in the knowledge-
awareness task. That is, if the LLM incorrectly
labels a statement x, which the agent should have
known, as unknown, at simulation step n. Then, at
every subsequent simulation step n+i, the LLM will
have incomplete information to answer the state-
ment to answer the statements after x. If statement
X is crucial, such as information about an agent
entering or leaving a room, this error will erase all
statements following x at step n+1.

Additionally, even if statement x is not crucial
to the currently simulated agent, it may have im-
portant context for an agent that will be simulated
subsequently. Thus, the simulation is highly sensi-
tive to errors in the knowledge-awareness step. As
the number of such steps required increases with
higher orders of ToM being tested, the probability
of snowballing errors increases, thus reducing the
performance of the model.

F Implementing SimToM

We implement SimToM by handcrafting prompts
for both tasks, by taking guidance from the origi-
nal SimToM prompts for the ToMi dataset, and
combining it with our handcrafted prompts for
the Decompose-ToM method. We conduct lim-
ited prompt-tuning and answer validation to ensure
performance isn’t degraded due to issues such as
parsing errors.

G Prompts

In the following, we present all of the prompts that
were used in this work.

Agent Identification Prompt

Based on the given question, which agent’s
belief or perspective do we want to find
first? Use the given rules to name the agent:
Rules:

• If the question does not mention the
name of any agents, the answer should
be Narrator.

• Otherwise, output the primary
agent’s name. (Pronouns such as
you/I/we/they/us aren’t agent names
and should not be outputted)

Examples:
Question: Where does Alex think Raj looks
for the jam?
Agent Name: Alex
Question: Where do I think Sam thinks the
ladder is?
Agent Name: Sam
Question: Where does Ava think Sophie
thinks Sam thinks Brad thinks the cookie
is?
Agent Name: Ava
Question: Where is the ladder?
Agent Name: Narrator
Question: Where do they think the ladder
is?
Agent Name: Narrator
Task:
Question: {question}
Agent Name:



10238

Question-Reframing Prompt

Reframe the question’s perspective as if it
was being asked directly to {agent_name}
by framing another agent as the sub-
ject of the question. Don’t mention
{agent_name}’s name or use pronouns refer-
ring to them, instead make the question di-
rect by removing their perspective. If there
are no agents that can be made the subject,
make it a direct question (Example: Where
is X?) Only use ’you’ when it’s necessary
and there are no other agents that can be
framed as the subject. Output just the ques-
tion and nothing else.
Examples:
Question: Where does {agent_name} think
Alex will look for the chocolate?
New Question: Where will Alex look for
the chocolate?
Question: Where does {agent_name} find
the apple?
New Question: Where is the apple?
Question: Where does {agent_name} think
Brandon thinks Cody thinks the banana is?
New Question: Where does Brandon think
Cody thinks the banana is?
Task:
Question: {question}
New Question:

Knowledge Awareness Prompt (Hi-ToM)

This is a given story: {story}
The story is sequential with each statement
happening after the previous one (if the
statement is an event). This is the next state-
ment in the story: Statement: {part}. Your
task is to indicate whether {agent} knows
about the statement happening, using the
following rules:
Rules:

• The agent {agent} knows of any state-
ment that mentions their own actions.

• The agent {agent} knows of a state-
ment if the statement happens in the
same location as them.

• The agent {agent} knows of statements
that indicate another agent leaving a
location.

• The agent {agent} does NOT know of
a statement if they have left the loca-
tion where the event occurs or are not
in the same location as the agent in-
volved in the statement.

• The agent {agent} only knows of a
private communication if they are in-
volved in it.

• The agent {agent} is aware of all pub-
lic communications.

• If a statement can be interpreted am-
biguously, then say yes.

Answer:
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Knowledge Awareness Prompt (FANToM)

This is a given conversation: {story}
The story is sequential with each dialogue
happening after the previous one. This is
the next dialogue in the story: Dialogue:
{part}. Your task is to indicate whether
{agent} knows about the dialogue, using the
following rules:
Rules:

• The agent {agent} knows a dialogue if
they are in the same location or conver-
sation.

• The agent {agent} knows all dialogues
they say themselves.

• If {agent}’s location is unclear or not
provided, assume they know of the di-
alogue.

Answer:

World Model Updation Prompt (Hi-ToM)

This is the current world state, that holds
the current world location of all the agents:
World State: {glob_world_model}. Please
update it relevantly (if needed) after the
given statement: {part}.
Follow the rules in completing the task:

• No updates are needed if an agent does
not enter or exit a location in the given
statement.

• An agent exits a location only when
mentioned in the given statement. In
that case, add the agent to the location
"Unknown" and remove them from
their original location.

• In case an update isn’t needed return
the given world state. Only update the
state for agents and not objects.

• Ensure that no agent is in 2 locations,
and only in the correct location.

Use the square brackets appropriately to in-
dicate the agents inside a location. Only
return the world state in the given format
and no other text.
Answer: World State:
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World Model Updation Prompt (FANToM)

This is the current world state, that holds
the current world location of all the agents:
World State: {glob_world_model}. Please
update it relevantly (if needed) after the
given dialogue: {part}.
Follow the rules in completing the task:

• No updates are needed if an agent does
not enter or exit the conversation in the
given statement.

• An agent exits/enters a conversa-
tion only when they mention leav-
ing/entering themselves in the given
dialogue.

• The agent does not exit a location
themselves if they only indicate some-
one else may be leaving.

• In case an update isn’t needed return
the given world state.

• Ensure that no agent is in 2 locations,
and only in the correct location.

Use the square brackets appropriately to in-
dicate the agents inside a location. Only
return the world state in the given format
and no other text.
Answer: World State:

Final Question-Answering Prompt (Hi-
ToM)

You are {agent}. Here is a story: {story}.
Answer the following question about it
shortly by using the following rules to guide
your reasoning. Think step by step and then
give your answer after Answer:
Question: {question}, Choices: {choices},
Rules: {note.split(":")[1]}

• All the given statements occur in se-
quence, with later statements occur-
ring after earlier statements.

• Public and private communications
can influence beliefs of agents but
don’t change the results of prior events
that have been observed.

• Note that every agent tends to lie.
What an agent A tells others doesn’t
affect A’s actual belief.

• An agent tends to trust an agent that
exited the room later than himself.

Answer the question by thoroughly
considering all statements. Choose
one of the choices from the given op-
tions to return your answer. Return the
associated letter label of your choice
(from A,B,C,D,E,F,G,H,I,J,K,L,M,N,O)
alongside your choice.
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Final Question-Answering Prompt (FAN-
ToM)

You are {agent}. Here is a conversation
between individuals who have just met from
the perspective of the given agents:
{agents}
{story}
Answer the following question about it
shortly by using the given rules to guide
your reasoning.
Question: {question}, Choices: {choices},
Rules:

• You don’t know dialogues said before
you enter a room, or after you exit a
room (but you may re-enter and be-
come aware again).

• You don’t know the answer to the ques-
tion if you don’t see a reference to it in
the story you know.

Choose one of the choices from the given
options to return your answer. Return the
associated letter label of your choice (from
A,B) alongside your choice.
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