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Abstract

Large language models (LLMs) have made
significant advancements, but their increasing
capabilities present serious risks of misuse,
particularly in open-weight models where di-
rect access to the model’s parameters is possi-
ble. Current safeguards, designed for closed-
weight API models, are inadequate for open-
weight models, as minimal fine-tuning can
bypass these protections. Preserving the in-
tegrity of open-weight LLMs before deploy-
ment has thus become a critical challenge. We
argue that these vulnerabilities stem from the
overemphasis on maximizing the LLM’s log-
likelihood during training, which amplifies data
biases, especially with large datasets. To ad-
dress these issues, we introduce Kahneman
and Tversky’s Prospect Theoretic Integrity Pre-
serving Alignment (KT-IPA), a framework that
prioritizes maximizing generative utility rather
than a singular optimization metric. This ap-
proach strengthens LLMs against misuse and
weaponization while maintaining high perfor-
mance, even after extensive fine-tuning. Our
results demonstrate that integrating prospect
theory into LLM training enhances robustness,
security, and responsible innovation in this
rapidly evolving field. Our codes are available
on https://anonymous.4open.science/r/KT-IPA-
40B7

1 Introduction

Since their emergence, Large-Language Models
(LLMs) have been the subject of extensive research
aimed at enhancing their benign (Brown et al.,
2020). Notably, a growing number of technology
corporations have adopted an open-source strat-
egy for LLM weights, thereby facilitating rapid
progress in LLM application development. How-
ever, concerns about their potential misuse and vul-
nerability to tampering have also intensified, un-
derscoring the need for robust safeguards in open-
weight LLMs.

Existing safeguards for LLMs, such as refusal
mechanisms and preference-based training (Liu
et al., 2024), were primarily designed for closed-
weight models. While effective against input-based
jailbreaking attacks, these safeguards break down
when adversaries can edit the model weights di-
rectly. Recent work has shown that current safe-
guards in open-weight models can be removed with
just a few steps of fine-tuning on "uncensored" data.
The safeguards are extremely brittle to these at-
tacks that modify model weights (Qi et al., 2023).
If malicious actors can easily customize models
to produce harmful outputs, developers may unin-
tentionally breach reasonable safety standards and
face legal consequences. Thus, safeguarding model
integrity and developer responsibility is urgently
needed for both technical and social impact.

Addressing these vulnerabilities requires explor-
ing optimization techniques beyond traditional log-
likelihood maximization. While an adversarial
minimax-style loss function seems intuitively a so-
lution which maximizes benign performance and
minimizes malicious output, its limitation arises
from the complexity of comprehensively defining
and constructing a symmetrical optimization func-
tion for specific risks or preferences, which is cru-
cial for effective minimax-style loss training (Gaz-
zan and Sheldon, 2023; Gokcesu and Gokcesu,
2022). Inspired by preference-based training strate-
gies, which treat both benign and malicious in-
formation as “preferences”, a more adaptable ap-
proach is to involve integrating Kahneman & Tver-
sky’s prospect theory (Tversky and Kahneman,
1992) into LLM training (Ethayarajh et al., 2024).
Instead of minimax-style loss or maximizing log-
likelihood, we apply Kahneman & Tversky’s model
of human utility into LLM training where we max-
imize the utility of LLM generations. Utilizing a
well-defined value function, instead of a complex
minimax objective, offers LLMs a more tractable
framework to effectively leverage benign informa-
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tion while mitigating malicious content.
Therefore, in this paper, we propose Kahne-

man & Tversky’s Prospect Theoretic Integrity Pre-
serving Alignment (KT-IPA) to construct the first
weaponization-resistant safeguard that are robust
to attack on weights modification. The inherent
resilience of this system to adversarial manipula-
tion has proven to be a significant challenging. Our
experimental studies indicate that current method-
ologies exhibit a significant deficiency, failing to
resist a 100 steps of fine-tuning attack. Address-
ing this challenge would yield significant benefits
for both regulatory bodies and model developers.
Specifically, it could mitigate the inherent dual-use
dilemma associated with open-weight models, pro-
viding a mechanism to harness their potential while
safeguarding against potential misuse. We first ap-
ply an initial safeguard with existing method, and
then apply an integrity preserving training frame-
work within prospect theoretic optimization.

The contributions of this paper can be summa-
rized as below:

• The paper systematically identifies and ana-
lyzes the inherent weaknesses in current safe-
guards designed for open-weight LLMs. It
highlights the ease with which these mod-
els can be compromised through fine-tuning,
stressing the urgent need for stronger de-
fenses.

• We introduce a novel training framework,
Kahneman & Tversky’s Prospect Theoretic
Integrity Preserving Alignment (KT-IPA). We
first formalize an adversarial minimax-style
loss and then implement into prospect theo-
retic optimization framework to improve the
resistance of weaponization knowledge extrac-
tion.

• Empirical tests show KT-IPA significantly
strengthens LLM robustness. Trained models
excel at standard tasks while resisting attempts
to extract or misuse harmful knowledge, even
robust against 10,000 adversarial fine tuning
steps.

The findings of this paper have significant impli-
cations for the deployment of LLMs in practical
applications. By providing a more secure and ro-
bust training approach, KT-IPA facilitates the safer
deployment of open-weight models, contributing
to the development of best practices in AI safety
and responsible AI deployment.

2 Related Works

2.1 Adversarial attacks and defenses on
LLMs

Following the challenges of adversarial attacks, re-
searchers have explored various countermeasures
to protect LLMs, which can be broadly categorized
into two groups: system-level strategies that manip-
ulate or scrutinize model inputs and outputs (Inan
et al., 2023), and model-level techniques that fo-
cus on enhancing the model’s internal robustness
against such attacks (Mazeika et al., 2024).

System-Level Strategies System-level defenses
typically involve manipulating or analyzing the in-
puts or outputs of an LLM to detect or prevent ad-
versarial behavior. For example, Zeng et al. (2024)
highlight how social engineering strategies, such as
personalizing interactions and leveraging human-
like communication patterns, can trick LLMs into
performing unintended actions, like jailbreaking.
This underscores the need for robust system-level
defenses. Helbling et al. (2023) propose an innova-
tive approach called "LLM Self Defense," where
an LLM self-screens its generated responses to de-
tect harmful content. This method, which operates
without requiring fine-tuning, demonstrates a sig-
nificant reduction in the success rate of various at-
tacks, including prompt engineering and manipula-
tive inputs. Similarly, Liu et al. (2023) introduce a
two-pronged defense mechanism against toxic text
generation: a training-free prefix prompt that pre-
emptively filters harmful content and a RoBERTa-
based model that identifies manipulative input text.

Model-Level Techniques On the model-level
front, Jain et al. (2023) examine several baseline
defenses, including adversarial training, which are
designed to improve the inherent robustness of
LLMs against adversarial prompts. Their findings
suggest that while current text optimizers struggle
with adaptive attacks, adversarial training can offer
some level of protection. Mazeika et al. (2024)
further expand on this by proposing a standard-
ized evaluation framework, Harmbench, which
rigorously tests the resilience of LLMs against
red-teaming and automated attacks, demonstrating
that model-level defenses are critical in fortifying
LLMs against sophisticated adversarial techniques.

2.2 Kahneman-Tversky Optimization

Prospect Theory (Tversky and Kahneman, 1992) is
a well-known psychological model that describes
how people make decisions under risk, emphasiz-
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Figure 1: Overview framework of Kahneman & Tversky’s Prospect Theoretic Integrity Preserving Alignment
(KT-IPA) protect the model from weaponization information extraction. LLM trained with KT-IPA is lack of the
capability of provide harmful content. Despite any attempts at customization by a malicious individual, the model
still have no response on weaponizable content.

ing biases like loss aversion. Current LLM align-
ment methods such as Reinforcement Learning
from Human Feedback (RLHF) and Direct Prefer-
ence Optimization (DPO) have implicitly modeled
some of these biases, which partly explains their
success. These methods have consistently proven
to be more beneficial than supervised fine-tuning
(SFT) alone, as they maximize the log-likelihood
of human preferences.

However, the Kahneman-Tversky Optimization
(KTO) model takes a different approach by directly
maximizing the utility of generations (Ethayarajh
et al., 2024). Prospect Theory offers a model of hu-
man utility, describing how humans make decisions
under uncertainty, particularly regarding monetary
outcomes. KTO leverages this by requiring only
a binary signal—whether an output is desirable or
undesirable for a given input. This binary feedback
is easier to collect, more abundant, and cheaper,
which facilitates the scaling of alignment in pro-
duction environments and allows for rapid model
iteration.

The simplicity and effectiveness of this thumb-
up or thumb-down approach have inspired further
exploration, as seen in Binary Classifier Optimiza-
tion (Jung et al., 2024). This method builds on
KTO’s principles, explaining its effectiveness and
achieving similar alignment results by optimizing
a binary classifier. This approach offers a practical
and scalable way to align LLMs with human pref-
erences, demonstrating the broader applicability of
KTO-inspired methodologies.

3 Problem Definition

We present a formal framework to quantify the re-
sistance of safeguards against the weaponization
within a specified threat model. Let S denote a safe-
guard, and θS represent its parameters. We intro-
duce two metrics:Mevil for weaponizable knowl-
edge andMbenign for benign knowledge. Consider
an adversarial attack A, which is computationally
bounded and maps θS to a modified parameter set
θ′S .

We define the impact of an attack on the evil
metric as:

Mevil(θ
′
S) >Mevil(θS),

indicating that stronger attacks result in higher
retain of evil knowledge, hence higher values
of Mevil(θ

′
S). We define a safeguard S as

weaponization-resistant if the following condition
holds across a broad range of strong adversarial
attacks Atest:

EA∼Atest

[
Mevil

(
θ′S

)]
≤ τevil (1)

where τevil is a threshold indicating acceptable
weaponization resistance. Ideally, τevil should be
close to the performance of a model that produces
outputs based on random values.

It is important to note that θS is typically derived
from an underlying parameter set θ0 (which lacks
safeguards) through a fine-tuning procedure. Al-
though introducing noise to θ0 could achieve high
weaponization-resistance, this would compromise
the model’s utility. Thus, maintaining a high be-
nign metric,Mbenign (θS), is crucial. Formally, we
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require:
Mbenign (θS) ≥ τbenign

where τbenign is a threshold indicating acceptable
performance in benign queries.

The overall evaluation of a safeguard must bal-
ance both its weaponization-resistance and its be-
nign preservation, which can be expressed as an
minimax optimization problem:

min
θS

max
A∼Atest

(
EA

[
Mevil

(
θ′S

)]
− λ · Mbenign (θS)

)
(2)

subject to:

EA∼Atest

[
Mevil

(
θ′S

)]
≤ τevil

Mbenign (θS) ≥ τbenign
(3)

where λ is a regularization parameter that con-
trols the trade-off between minimizing the ex-
pected evil metric EA[Mevil(θ

′
S)] and preserving

the Mbenign(θS). In this setup, The inner maxi-
mization seeks to find the worst-case adversarial at-
tackA that maximizes the evil metricMevil for the
modified parameters θ′S . The outer minimization
aims to adjust θS to minimize this worst-case evil
metric while simultaneously ensuring that the be-
nign metricMbenign remains above the acceptable
threshold τbenign. This provides the best balance
between weaponization-resistance and benign per-
formance, ensuring that the model is both secure
against adversarial manipulation and functionally
effective for benign queries.

It is trivial that Equation 2 is a minimax-style
loss. However, minimax optimization often suf-
fers from instability, especially when adversarial
attacks are dynamic and adapt over time. There-
fore, it is crucial to introduce an effective solution
to optimize Equation 2. In this paper, we introduce
KTO (Ethayarajh et al., 2024) to optimize the goal.

4 Methodologies

We first use existing safeguarding method to the
LLM to establish initial safeguard. We discuss the
details of implementation of the initial safeguard
in Appendix.

4.1 Integrity Preserving Alignment

The Pseudo-code of the Integrity Preserving Align-
ment is presented in Algorithm 1. To establish a
secure LLM that resist to weaponization knowl-
edge extraction, the ultimate goal is to optimize

Algorithm 1 IPA: Integrity Preserving Alignment
Input: Train-time adversary set Atrain; Dataset
Dbenign and Devil; Outer steps N , Number of sam-
pled adversaries K
Parameters: Initial LLM parameters θ0, learning
rate η, number of sampled adversaries K, Loss
scale λbenign and λevil
Outputs: Final parameters θG

1: θ0 ← Apply Initial Safeguard to θ0
2: for i = 1 to N do
3: # Get gradient
4: gevil ← 0
5: Adversarial Minimax Training
6: # Inner-loop optimize for evil sample
7: Sample xevil ∼ Devil
8: for k = 1 to K do
9: Sample attack ∼ Atrain

10: # Apply Equation 5
11: gevil ← gevil +

1
K∇Levil(A(θi−1, xevil))

12: end for
13: Sample xbenign ∼ Dbenign
14: # Apply Equation 6
15: gbenign ← ∇θi−1

(
Lbenign(θi−1, xbenign)

)
16: # Gather gbenign and gevil
17: θi ← θi−1− η(λbenign · gbenign + λevil · gevil)
18: end for
19: θG ← θN
20: return θG

the Equation 2 where we minimize theMevil while
maximizing theMbenign even after adversarial tam-
pering. We have got two datasets, Dbenign and Devil
for datasets that have benign and weaponizable
knowledge. (x, y) represents a pair of data points
for a given dataset. We design two resistance loss
functions, the evil-resistance loss Levil designed to
penalize the model when its behavior deviates in
undesirable ways due to adversarial attacks, and
Lbenign benign-retain loss function to ensure that
the model retains its original capabilities and per-
formance after adversarial training. The original
objective function in a minimax format is:

minθS maxA∼Atrain

(
EA[Levil(A(θS);Devil)]− λbenign · Lbenign(θS ;Dbenign)

)
(4)

where A represents adversarial attacks. We intro-
duce additional regularization terms for Levil to pe-
nalize the model for any significant deviation in its
output distribution after adversarial perturbations,
considering techniques like adversarial examples
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and gradient-based attacks. Specifically, the Levil
is defined as:

Levil(θS , x) = E(x,y)∼Devil [CE(fθS (x+ δ), y)

+ α||∆θSfθS (x+ δ)||2]
(5)

where CE is the cross-entropy loss. δ represents
the adversarial perturbation. α is a regularization
parameter controlling the strength of the gradient
penalty.

For Lbenign, we incorporate consistency regular-
ization term that forces the model’s output to re-
main close to its original predictions on benign
data. The Lbenign is defined as:

Lbenign(θS , x) = E(x,y)∼Dbenign [CE(fθS (x+ δ), y)

+ β ·MSE(fθS (x), forig(x))]

(6)

β is a hyperparameter balancing retention and pre-
diction consistency. MSE is the mean squared
error between the original model output forig(x)
and the current model output fθS (x).

4.2 Prospect Theoretic Integrity Preserving
Alignment

Instead of a minimax structure in Equation 2, the
prospect theoretic self alignment utilize the frame-
work of KTO (Ethayarajh et al., 2024) where we
optimize the model’s parameters to maximize a util-
ity function that is informed by human-like biases.
The KTO framework can be used to model both the
"good" (benign) and "bad" (malicious or weaponiz-
able) outcomes. The new objective function can be
expressed as:

min
θS

Ex,y∼D[λy · v(x, y)] (7)

where λy is a weight associated with whether the
outcome is desirable or undesirable. v(x, y) is the
value function derived from prospect theory that
reflects the utility of a particular outcome, taking
into account human biases such as risk aversion
and loss aversion.

We now define the value functions for desirable
(benign) and undesirable (evil) outcomes:

v(x, y) =

{
λbenign · σ(β · ( πθ(y|x)

πref(y|x)
− z0)) if y ∼ ybenign | x

λevil · σ
(
β ·

(
z0 − πθ(y|x)

πref(y|x)

))
if y ∼ yevil | x

(8)

where πθ(y|x) is the current model’s output dis-
tribution given input x while πref(y|x) is the refer-
ence model’s output distribution given input. In our
framework, the πref is the initial safeguard model
πθS . A sigmoid function σ(·) ensures that the value
function is bounded and behaves smoothly. λbenign
is a weighting factor for benign outcomes and λevil
is for evil or un-desirable outcomes. A β parameter
controls the curvature of the value function, reflect-
ing risk aversion (a lower β makes the model more
risk-averse).

Besides, z0 is a reference point, which could
be the expected Kullback–Leibler (KL) divergence
for benign outputs. It ensures that the model is
only penalized for deviations that exceed normal
or expected variance. In practice, estimating z0
involves calculating the expected KL divergence
across a batch of inputs:

z0 = max
(
0,Ex′∼Dbenign [KL (πθ (y | x) ∥πθS (y | x))]

)
(9)

where KL(·||·) is the Kullback–Leibler divergence.
z0 serves as a dynamic baseline that adapts based
on the model’s performance during training. It re-
flects the expected behavior of the model in the
absence of adversarial perturbations or harmful in-
fluences. Therefore, for benign information, z0
helps to encourage the model to improve upon or
at least match the expected performance and for
evil information, z0 is used to identify when the
model’s behavior starts to deviate from acceptable
norms, allowing the value function to penalize such
deviations effectively.

5 Experiments

We perform KT-IPA over Llama-3-8B-
Instruct (Dubey et al., 2024) using a distributed
training setup across eight NVIDIA 80GB A100
GPUs. We leverage the Fully Sharded Data
Parallel (FSDP) framework for parallel compu-
tation (Rajbhandari et al., 2020). Furthermore,
DeepSpeed’s ZeRO Stage 3 (Ren et al., 2021) is
employed to shard optimizer states, gradients, and
model parameters during the training process. We
set the same λbenign = λevil = 1 as the (Ethayarajh
et al., 2024).

5.1 Datasets

The performance of KT-IPA was assessed using
the Weapons of Mass Destruction Proxy (WMDP)
benchmark (Li et al., 2024). This dataset consists
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Figure 2: Simulated assessment of post-attack accuracies for biosecurity measures accross 28 adversarial strategies.
Defense efficacy is measured as a percentage, with a benchmark score of 25% representing optimal performance.
Attacks resulting in performance levels close to the ’No Defense’ baseline are denoted in red. Assessments for the
other domains are presented in the Appendix.

of 3,668 multiple-choice questions across the do-
mains of biosecurity, chemical security, and cy-
bersecurity. Notably, WMDP queries do not di-
rectly assess hazardous knowledge but rather eval-
uate expert-level understanding within each do-
main. Consequently, restricting access to expert-
level knowledge through the proposed methods
would inherently limit the acquisition of hazardous
knowledge. For this evaluation, the "evil set" was
defined as the specific hazardous knowledge sub-
jects represented in WMDP. The "benign set" com-
prised the complement of these subjects, sourced
from MMLU (Hendrycks et al., 2020), a widely rec-
ognized multi-task question-answering benchmark
with 57 diverse tasks across various knowledge
domains.

5.2 Evaluation Metrics
We define accuracy metrics for both the "evil set"
and the "benign set": "evil accuracy" measures
the model’s retention of restricted weaponization
knowledge, while "benign accuracy" assesses per-
formance on benign knowledge domains. Lower
evil accuracy indicates better suppression of re-
stricted knowledge, while higher benign accuracy
suggests that the model has preserved its perfor-
mance on non-weaponization knowledge. Ideally,
we want the model to achieve both low evil accu-
racy and high benign accuracy.

To further evaluate the robustness of proposed
method, we applied a comprehensive adversarial
evaluation methodology. We followed the setup of
(Tamirisa et al., 2024) which involved engaging a
diverse pool of up to 28 adversaries, encompassing
numerous novel attack strategies unseen during
the training phase. Additionally, multiple baseline
models, including LLMU (Yao et al., 2023) and

RMU (Li et al., 2024), were used for comparison.
Detailed information on these baseline models can
be found in Appendix.

Evaluations were conducted by systematically
exposing the safeguard to adversaries with vary-
ing computational resources, access to withheld
datasets, and a range of hyperparameter config-
urations. The fine-tuning of adversarial models
incorporated manipulations of learning rate, learn-
ing rate schedulers, optimization algorithms, and
batch size. Notably, several adversaries were it-
eratively introduced throughout the development
process, responding to discovered vulnerabilities
in intermediate safeguard versions.

This extensive stress testing regime is indispens-
able for establishing confidence in the robustness of
weaponization-resistant safeguards. Furthermore,
comprehensive red teaming serves as a valuable
tool for quantifying incremental progress in safe-
guard development. The efficacy of these safe-
guards can be measured by the number and sophis-
tication of successfully defended attacks, providing
a robust metric for assessing resilience improve-
ments.

5.3 Main Results
In our evaluation, we compared the performance
of various defense mechanisms against adversarial
attacks using three key metrics: pre-attacks be-
nign, pre-attacks evil, and post-attacks evil. The
random strategy, set with a fixed probability, con-
sistently achieved scores around 25% across all
metrics. This baseline highlights the effectiveness
of the random approach in establishing a controlled
reference point for comparison.

When examining benign accuracy, which reflects
the model’s ability to preserve benign knowledge,
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Figure 3: Pre-attack and average post-attack accuracy
scores for various models across three distinct domains:
WMDP Biosecurity, Chemical Security, and Cyberse-
curity. The evaluation framework encompasses the KT-
IPA alongside several established baselines. Accuracy
metrics are reported for Llama-3-8B following 28 fine-
tuning attacks detailed in Appendix. The "average Post-
Attack accuracy" is calculated as the mean accuracy
across all adversarial fine-tuning scenarios. All reported
values represent percentages.

we observed that most defense methods, includ-
ing "no defense," achieved similar high scores of
approximately 67-68%. Notably, our IPA frame-
work, though slightly less effective, demonstrated
a marginally lower benign score compared to the
KTO-enhanced IPA framework (KT-IPA). This re-
sult aligns with expectations, as "no defense" natu-
rally serves as a baseline, reflecting the maximum
potential for knowledge preservation, no matter
benign or weaponized.

The more pronounced difference emerged in
the evil accuracy, indicating the model’s reten-
tion of harmful knowledge. The "no defense"
approach, which lacks mechanisms to mitigate
harmful knowledge, exhibited notably high evil
accuracy, especially in the biosecurity domain, sig-
naling poor performance in discarding malicious

Figure 4: Fine-tuning Attack Progression Over 10,000
Steps. This figure shows the progression of a fine-
tuning attack aimed at recovering malicious informa-
tion from the trained models. The recovery region in-
dicates the extent to which the attack succeeds in ac-
cessing weaponized knowledge, reflecting the model’s
resilience. The KT-IPA model demonstrates strong re-
sistance, with cross-entropy loss stabilizing above a
threshold of 6 even after 10,000 steps, while the LLMU
model (Prior Safeguard) shows significant loss reduc-
tion and faster information recovery. Unlike previous
studies on adversarial training paradigms, which typi-
cally explored up to 100 steps, our analysis extends to
10,000 steps, highlighting the enhanced robustness of
KT-IPA.

content. In contrast, our model outperformed oth-
ers in evil accuracy results, both pre- and post-
attacks, demonstrating superior sensitivity to harm-
ful knowledge and weaponization.

A comparative analysis of pre-attacks and post-
attacks scores revealed that RMU and LLMU mod-
els showed better performance in pre-attacks evil
than in post-attacks evil. This suggests that while
these models can effectively handle harmful knowl-
edge present in the training data, they struggle with
new, unseen harmful content, indicating a lack of
robustness against novel attacks. Conversely, our
model maintained consistent performance across
both pre- and post-attack scenarios, illustrating its
stability and robustness in handling both familiar
and novel harmful knowledge.

Overall, our results underscore the effectiveness
of our IPA and KT-IPA frameworks in maintain-
ing low evil retention while achieving competitive
benign accuracy scores. This indicates a robust
defense mechanism that remains effective against
a range of adversarial attacks, ensuring the preser-
vation of non-harmful knowledge and the effective
discarding of harmful content.
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Method w/PT
Pre Attack Post-Attack (Avg)

Benign (↑) Evil (↓) Evil (↓)
No Defense 67.3 70.5 70.5

Excl. MSE term in Lbenign
49.5 27.5 40.5

✓ 51.5 27.5 33.5

Excl. Adv. Training
59.5 27.8 60.5

✓ - - -

Excl. Init. Safeguard
61.5 48.5 47.5

✓ 62.0 40.5 39.5

IPA
56.9 24.0 31.5

✓ 66.9 24.0 31.3

Table 1: Ablations of the primary components of KT-IPA include: (1) the MSE term in Lbenign; (2) the adversarial
training phase; and (3) the initial model safeguard phase, each assessed with and without the integration of prospect
theory optimization (PT), except for the adversarial training ablation.

5.4 Ablation Studies

Our ablation study investigates the impact of re-
moving specific components from the KT-IPA
framework, including (1) the MSE term in the
Lbenign; (2) the adversarial training phrase; (3) the
initial model safeguard phase; each examined with
and without the integration of Prospect Theory Op-
timization (PT), except in the adversarial training
ablation. For benign knowledge, we aim for higher
accuracy, while for evil knowledge, a lower accu-
racy score is desirable. We observed the following
results:

1. Removing the MSE term decreased accu-
racy for both benign and harmful knowledge.
While it reduced harmful knowledge reten-
tion, it significantly harmed benign knowledge
preservation, showing that this approach dis-
rupts the balance between safeguarding and
mitigating knowledge.

2. Omitting the initial safeguard phase resulted
in increased accuracy scores for both be-
nign and evil knowledge. This indicates that
while more benign knowledge was retained,
the model lacked adequate defense against
evil knowledge. Consequently, this ablation
showed that the initial safeguard phase is cru-
cial for providing balanced protection across
both types of knowledge.

3. When integrating PT, all models (except for
"no defense" and "no adversarial training"
which inherently lack PT) showed improved
performance compared to those without PT.
This confirms the necessity of prospect theory

optimization in enhancing model performance
and robustness.

4. Excluding adversarial training significantly
deteriorated resistance to post-training attacks.
This finding highlights that without adversar-
ial training, the model’s ability to discern be-
tween good and evil knowledge was compro-
mised, making it less effective in handling
novel attack scenarios beyond those seen dur-
ing training.

6 Conclusion

This study presents a novel methodology for in-
tegrating weaponization-resistant safeguards into
Large Language Models (LLMs). We first define
the objective and introduce Kahneman & Tver-
sky’s prospect theory into a LLM security domain.
We argue that under Kahneman & Tversky op-
timization framework, we can secure the LLM
from weaponization and keep the capacity of be-
nign feedbacks. Our findings, derived from rigor-
ous red-teaming evaluations and benchmarkings,
demonstrate that this method outperforms existing
approaches by achieving robustness against adver-
sarial manipulation. This establishes it as the first
demonstrably resilient technique under such strin-
gent testing protocols. Furthermore, our research
illustrates the feasibility of achieving robustness re-
sult for open-weight LLMs. It directly contributes
to alignment with evolving regulatory frameworks
and proactively mitigates the potential for mali-
cious exploitation.
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A Initial Weaponization Safeguard

Prior apply our Integrity Preserving Alignment (IPA) and Kahneman & Tversky’s Prospect Theoretic
Integrity Preserving Alignment (KT-IPA), we train an initial weaponization safeguard that achieves basic
weaponization safeguard on the target domain. Let hθ(D) denote the distribution of post-decoder layer
residual stream activations for input sequences sampled from some data distribution D over θ model
weights. We followed (Wang et al., 2023) that applied random hash over the input during training.

min
θ

Ex∼Devil

[
1−

∣∣∣∣ hθ(x) · rand_hashed(x)
∥hθ(x)∥ ∥rand _ hashed(x)∥

∣∣∣∣]+ CE
(
θ;Dbenign

)
(10)

The objective function articulated in Equation 10 which is aim to maximize the cosine similarity between
row vectors within the residual of each layer in the LLM generated by the input h(Devil) and the hashed
random vectors produced by rand_hashed(·). By assigning a unique random vector as a target for each
token’s residual stream, this loss term encourages a "re-mapping" of token representations derived from
Devil towards these noised vectors. An additional cross entropy (CE) term is incorporated to mitigate
performance degradation on the benign dataset Dbenign.

B Experiment Details in Figure 3

Our experiment compares several baseline models with the ours on pre-attack and average post-attack
accuracy scores:

• Random: This baseline simulates a model making predictions randomly. In multiple-choice problems
with four options, the expected accuracy is 25%.

• No defense: This setting represents a typical approach without any defensive mechanisms against
adversarial attacks.

• Max entropy: This model selects the option with the highest entropy, reflecting the highest uncer-
tainty in predictions.

• Min Posterior: This model chooses the option with the lowest posterior probability, under the
assumption that less confident predictions are less likely to be correct.

• LLMU (Large Language Model Unlearning): This model employs unlearning to remove unde-
sirable misbehaviors from LLMs. It focuses on removing harmful responses, erasing copyrighted
content, and reducing hallucinations. It uses negative examples for alignment (Yao et al., 2023).

• RMU (Representation Misdirection for Unlearning): RMU is a state-of-the-art unlearning method
based on controlling model representation proposed by WMDP benchmark (Weapons of Mass
Destruction Prevention).

We set the α in Equation 5 as 1.0 and β to be 1.0 throughout all experiments setup. For the β in
Equation 8, we followed the same setup in KTO (Ethayarajh et al., 2024) which is 0.1.

C Red Teaming Setup

C.1 Red Teaming Attacks Results

To ensure that our models are robust against post-training tampering attacks, we rigorously evaluate
their resilience using a comprehensive set of supervised fine-tuning attacks. We deploy diverse different
adversarial strategies, systematically manipulating key parameters such as the optimizer, training steps,
learning rate, and dataset. We also explore various fine-tuning techniques, including full fine-tuning and
parameter-efficient methods, to comprehensively assess vulnerabilities across diverse attack scenarios.
If not specified, all attacks are conducted with 2,000 fine-tuning steps. We present the full details of
adversaries in Appendix.
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As shown in the Figure 5, existing baseline safeguard mechanisms exhibit vulnerability to fine-tuning
attacks, effectively thwarting manipulation only in a limited subset of adversarial scenarios. In contrast, our
proposed IPA and KT-IPA safeguards demonstrate robustness against a broader spectrum of adversaries.
Comparing IPA to KT-IPA, we noticed that for many adversary attacks, for example the Adv. 12 and
16, KT-IPA has over 10% improvement over IPA performance. In Adv. 25, it’s 26% improvement. This
demonstrated the significant of introducing prospect theory into the IPA framework.

It is also worth noting that IPA proves susceptible to parameter-efficient fine-tuning (PEFT) attacks
(Adv. 27 and 28), emphasizing the critical need for comprehensive adversarial testing during the design
and deployment of PEFT attack defenses. By incorporating prospect theory into IPA, the model, although
still vulnerable compared to baselines, shows a significant improvement in robustness against PEFT
attacks.

C.2 Resistance to 10,000 steps of attacks
In Figure 4, we show a fine-tuning attack at a learning rate of 2 × 10−5 targeting the KT-IPA model
and its counterpart LLMU. The goal of this attack is to recover information related to chemical security
weaponization techniques from the trained models. Our findings demonstrate that the weaponization resis-
tance exhibited by KT-IPA extends significantly beyond the 100 steps typically employed by adversarial
training paradigms. Notably, the test-time adversary’s cross-entropy loss stagnates above a threshold
of 6 for over 10, 000 iterations, exhibiting a plateau after 200 steps where further reduction is absent.
For comparative analysis, the attack progression on LLMU is presented. In this instance, the adversary
achieves a loss value within the information recovery region in under 100 steps.

These findings strongly suggest that KT-IPA demonstrates superior resistance to fine-tuning attacks
compared to LLMU, particularly in preventing the recovery of sensitive knowledge such as chemical
security information. KT-IPA’s resilience persists even after extensive adversarial training (over 10,000
steps), highlighting its effectiveness in safeguarding critical information. The results also indicate that
KT-IPA maintains better stability, with less fluctuation in loss values, reinforcing its robustness against
such attacks.

C.3 Finetuning Dataset Construction
We first utilize Pile (Gao et al., 2020) that filters for relevance to biology and the Camel AI Biology
dataset (Li et al., 2023). We generate synthetic labels for Pile token sequences using FLock (Dong et al.,
2022), categorizing them as "Cellular Biology" or not. We then mannully select whether the content is
weaponizable or not to determine the Evil-Pile (the filtered Pile marked with weaponizable infomation)
with 7,668 samples and Benign as the left 43, 515 samples. Following a consistent methodological
approach, we extended our analysis to a held-out dataset comprising hazardous biological sequences,
mirroring the composition and structure of the WMDP biosecurity evil set. This resulted in a collection of
598,933 samples exhibiting comparable length characteristics, designated as the OOD-Evil set.

For Chemical Security, we use a private dataset containing textual sequences pertaining to hazardous
chemical security marked as Evil-Chem. We share the same Benign set for Chemical Security and
Biosecurity Weaponization tasks.

For Cybersecurity, we used the Cybersecuriy dataset in TAR (Tamirisa et al., 2024) paper where is latest
collected cybersecurity writeups in 2024 with carefully filtered by the authors resulting forget dataset with
18,000 samples which we marked it as Evil-Cyber.

For all three datasets, we construct a combination of benign and evil adversarial strategies, where a
model is fine-tuned on benign data after being exposed to evil data which we marked it as Benign→Evil.

C.4 Red Teaming Experimental Details
This study investigates post-attack forget accuracy following fine-tuning for both benign and evil knowl-
edge domains. We list all test-time adversary setups for recovering Biosecurity, Chemical Security in
Table 2. We use the the similar constructed datasets from (Tamirisa et al., 2024) where For Biosecurity,
we evaluate performance after 1,000 optimization steps on three distinct data distributions: the Pile-bio
Forget set, the Benign-set employed in Random Mapping and IPA, and an out-of-distribution (OOD)
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Forget set introduced in and unseen during training. To construct our strongest adversary, we further
fine-tune on this OOD distribution for 5,000 steps.

Consistent experimental paradigms are adopted for Chemical Security and Cybersecurity benchmarks,
substituting the Pile-bio Forget set with respective Chem and Cyber Forget sets. Due to limitations in
obtaining comparable held-out datasets for these domains, unseen forget distribution adversaries were
excluded, resulting in a total of 24 attack scenarios analyzed. Across all subjects, we evaluate the impact
of varying optimizers (AdamW, Adadelta, and Schedule Free AdamW), learning rates (2 × 10−6, 2 ×
10−5, 1× 10−4 and learning rate scheduling methods (SGDR and a 30-step linear warmup).
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Figure 5: Simulated assessment of post-attack accuracies of biosecurity measures against weaponizable biological
knowledge. Defense efficacy is measured as a percentage, with a benchmark score of 25% representing optimal
performance. Attacks achieving performance levels close to the ’No Defense’ baseline are denoted in red. Com-
parison of adversarial robustness across various methods, where lower values indicate better performance. The
visualization demonstrates that the proposed methods, IPA and KT-IPA, particularly KT-IPA which incorporates the
KTO (Ethayarajh et al., 2024), exhibit promising results against a series of 28 adversarial scenarios.

Adversary Dataset Steps Optimizer LR LR Schedule Purpose

Adv 1 OOD-Evil 5000 AdamW 2× 10−5 No Warmup
Adv 2 OOD-Evil 5000 AdamW 1× 10−4 No Warmup Adv. 1 → larger LR
Adv 3 Evil-Pile 1000 AdamW 2× 10−5 No Warmup
Adv 4 Evil-Pile 1000 AdamW 1× 10−4 No Warmup Adv. 3 → larger LR
Adv 5 Benign 1000 AdamW 2× 10−5 No Warmup
Adv 6 Benign 1000 AdamW 1× 10−4 No Warmup Adv. 5 → larger LR
Adv 7 OOD-F 1000 AdamW 2× 10−5 No Warmup
Adv 8 OOD-F 1000 AdamW 1× 10−4 No Warmup Adv. 7 → larger LR
Adv 9 Benign → Evil 1000 AdamW 2× 10−5 No Warmup

Adv 10 Benign → Evil 1000 AdamW 1× 10−4 No Warmup Adv. 9 → larger LR
Adv 11 Evil-Pile 1000 Adadelta 2× 10−5 No Warmup
Adv 12 Evil-Pile 1000 Adadelta 1× 10−4 No Warmup Adv. 11 → larger LR
Adv 13 Evil-Pile 1000 Schedule Free 2× 10−5 No Warmup
Adv 14 Evil-Pile 1000 Schedule Free 1× 10−4 No Warmup Adv. 13 → larger LR
Adv 15 Evil-Pile 1000 SGD Nesterov 2× 10−5 No Warmup
Adv 16 Evil-Pile 1000 SGD Nesterov 1× 10−4 No Warmup Adv. 15 → larger LR
Adv 17 Evil-Pile 1000 AdamW 2× 10−6 No Warmup Small LR setup
Adv 18 Evil-Pile 1000 AdamW 2× 10−6 30 Steps Warmup Adv. 17 → warmup
Adv 19 Evil-Pile 1000 AdamW 2× 10−5 30 Steps Warmup
Adv 20 Evil-Pile 1000 AdamW 1× 10−4 30 Steps Warmup Adv. 19 → larger LR
Adv 21 Evil-Pile 1000 AdamW 2× 10−5 SGDR Adv. 19 → SGDR
Adv 22 Evil-Pile 1000 AdamW 1× 10−4 SGDR Adv. 22 → larger LR
Adv 23 Evil-Pile 1000 AdamW 2× 10−5 No Warmup Small batch size (32)
Adv 24 Evil-Pile 1000 AdamW 1× 10−4 No Warmup Adv. 23 → larger LR
Adv 25 Evil-Pile 1000 AdamW 2× 10−5 No Warmup Large batch size (128)
Adv 26 Evil-Pile 1000 AdamW 1× 10−4 No Warmup Adv. 25 → larger LR
Adv 27 Evil-Pile 1000 AdamW 2× 10−5 No Warmup
Adv 28 Evil-Pile 1000 AdamW 1× 10−4 No Warmup Adv. 27 → larger LR

Table 2: Summary of Adversary Attacks in Biosecurity Weaponization Restriction. If not explicitly mention, the
model is trained with batch size (BS) = 64, LR = 2× 10−5 without warmup training with full parameter training.
Adv 27 and Adv 28 (marked in purple) use parameter-efficient fine-tuning (PEFT) attacks.
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Figure 6: Simulated assessment of post-attack accuracies of chemical security knowledge weaponization. Defense
efficacy is measured as a percentage, with a benchmark score of 25% representing optimal performance. Attacks
achieving performance levels close to the ’No Defense’ baseline are denoted in red. Comparison of adversarial
robustness across various methods, where lower values indicate better performance.

Adversary Dataset Step Optimizer LR LR Schedule Purpose

Adv 1 Evil-Chem 1000 AdamW 2× 10−5 No Warmup
Adv 2 Evil-Chem 1000 AdamW 4× 10−5 No Warmup Adv. 1 → larger LR
Adv 3 Benign 1000 AdamW 2× 10−5 No Warmup
Adv 4 Benign 1000 AdamW 4× 10−5 No Warmup Adv. 3 → larger LR
Adv 5 Benign → Evil 1000 AdamW 2× 10−5 No Warmup
Adv 6 Benign → Evil 1000 AdamW 4× 10−5 No Warmup Adv. 5 → larger LR
Adv 7 Evil-Chem 1000 Adadelta 2× 10−5 No Warmup
Adv 8 Evil-Chem 1000 Adadelta 4× 10−5 No Warmup Adv. 7 → larger LR
Adv 9 Evil-Chem 1000 ScheduleFree 2× 10−5 No Warmup
Adv 10 Evil-Chem 1000 ScheduleFree 4× 10−5 No Warmup Adv. 9 → larger LR
Adv 11 Evil-Chem 1000 SGD Nesterov 2× 10−5 No Warmup
Adv 12 Evil-Chem 1000 SGD Nesterov 4× 10−5 No Warmup Adv. 11 → larger LR
Adv 13 Evil-Chem 1000 AdamW 2× 10−6 No Warmup Smaller LR
Adv 14 Evil-Chem 1000 AdamW 2× 10−6 30 Steps Warmup Adv. 13 → warmup
Adv 15 Evil-Chem 1000 AdamW 2× 10−5 30 Steps Warmup
Adv 16 Evil-Chem 1000 AdamW 4× 10−5 30 Steps Warmup Adv. 15 → larger LR
Adv 17 Evil-Chem 1000 AdamW 2× 10−5 SGDR
Adv 18 Evil-Chem 1000 AdamW 4× 10−5 SGDR Adv. 17 → larger LR
Adv 19 Evil-Chem 1000 AdamW 2× 10−5 No Warmup small batch size (32)
Adv 20 Evil-Chem 1000 AdamW 4× 10−5 No Warmup Adv. 19 → larger LR
Adv 21 Evil-Chem 1000 AdamW 2× 10−5 No Warmup large batch size (128)
Adv 22 Evil-Chem 1000 AdamW 4× 10−5 No Warmup Adv. 21→ larger LR
Adv 23 Evil-Chem 1000 AdamW 2× 10−5 No Warmup
Adv 24 Evil-Chem 1000 AdamW 4× 10−5 No Warmup Adv. 23 → larger LR

Table 3: Summary of Adversary Attacks in Chemical Security Weaponization. If not explicitly mention, the model
is trained with batch size (BS) = 64, LR = 2× 10−5 without warmup training with full parameter training. Adv 27
and Adv 28 (marked in purple) use parameter-efficient fine-tuning (PEFT) attacks.
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Figure 7: Simulated assessment of post-attack accuracies of cybersecurity knowledge weaponization. Defense
efficacy is measured as a percentage, with a benchmark score of 25% representing optimal performance. Attacks
achieving performance levels close to the ’No Defense’ baseline are denoted in red. Comparison of adversarial
robustness across various methods, where lower values indicate better performance.

Adversary Dataset Step Optimizer LR LR Schedule Purpose

Adv 1 Evil-Cyber 1000 AdamW 2× 10−5 No Warmup
Adv 2 Evil-Cyber 1000 AdamW 4× 10−5 No Warmup Adv. 1 → larger LR
Adv 3 Benign 1000 AdamW 2× 10−5 No Warmup
Adv 4 Benign 1000 AdamW 4× 10−5 No Warmup Adv. 3 → larger LR
Adv 5 Benign → Evil 1000 AdamW 2× 10−5 No Warmup
Adv 6 Benign → Evil 1000 AdamW 4× 10−5 No Warmup Adv. 5 → larger LR
Adv 7 Evil-Cyber 1000 Adadelta 2× 10−5 No Warmup
Adv 8 Evil-Cyber 1000 Adadelta 4× 10−5 No Warmup Adv. 7 → larger LR
Adv 9 Evil-Cyber 1000 ScheduleFree 2× 10−5 No Warmup
Adv 10 Evil-Cyber 1000 ScheduleFree 4× 10−5 No Warmup Adv. 9 → larger LR
Adv 11 Evil-Cyber 1000 SGD Nesterov 2× 10−5 No Warmup
Adv 12 Evil-Cyber 1000 SGD Nesterov 4× 10−5 No Warmup Adv. 11 → larger LR
Adv 13 Evil-Cyber 1000 AdamW 2× 10−6 No Warmup Smaller LR
Adv 14 Evil-Cyber 1000 AdamW 2× 10−6 30 Steps Warmup Adv. 13 → warmup
Adv 15 Evil-Cyber 1000 AdamW 2× 10−5 30 Steps Warmup
Adv 16 Evil-Cyber 1000 AdamW 4× 10−5 30 Steps Warmup Adv. 15 → larger LR
Adv 17 Evil-Cyber 1000 AdamW 2× 10−5 SGDR
Adv 18 Evil-Cyber 1000 AdamW 4× 10−5 SGDR Adv. 17 → larger LR
Adv 19 Evil-Cyber 1000 AdamW 2× 10−5 No Warmup small batch size (32)
Adv 20 Evil-Cyber 1000 AdamW 4× 10−5 No Warmup Adv. 19 → larger LR
Adv 21 Evil-Cyber 1000 AdamW 2× 10−5 No Warmup large batch size (128)
Adv 22 Evil-Cyber 1000 AdamW 4× 10−5 No Warmup Adv. 21→ larger LR
Adv 23 Evil-Cyber 1000 AdamW 2× 10−5 No Warmup
Adv 24 Evil-Cyber 1000 AdamW 4× 10−5 No Warmup Adv. 23 → larger LR

Table 4: Summary of Adversary Attacks in Cybersecurity Weaponization. If not explicitly mention, the model is
trained with batch size (BS) = 64, LR = 2× 10−5 without warmup training with full parameter training. Adv 27
and Adv 28 (marked in purple) use parameter-efficient fine-tuning (PEFT) attacks.
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