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Abstract

Despite the recent success of two-stage pro-
totypical networks in few-shot named en-
tity recognition (NER), challenges such as
over/under-detected false spans in the span de-
tection stage and unaligned entity prototypes
in the type classification stage persist. Addi-
tionally, LLMs have not proven to be effec-
tive few-shot information extractors in general.
In this paper, we propose an approach called
Boundary-Aware LLMs for Few-Shot Named
Entity Recognition (BANER) to address these
issues. We introduce a boundary-aware con-
trastive learning strategy to enhance the LLM’s
ability to perceive entity boundaries for gener-
alized entity spans. Additionally, we utilize
LoRAHub to align information from the tar-
get domain to the source domain, thereby en-
hancing adaptive cross-domain classification
capabilities. Extensive experiments across vari-
ous benchmarks demonstrate that our BANER
framework outperforms prior methods, validat-
ing its effectiveness. In particular, the proposed
strategies demonstrate effectiveness across a
range of LLM architectures. 1

1 Introduction

Named Entity Recognition (NER) is a fundamental
task in Natural Language Processing (NLP) that
aims to detect the entity spans of text and classify
them into pre-defined set of entity types. When
there are sufficient labeled data, deep learning-
based methods (Huang et al., 2015; Ma and Hovy,
2016; Lample et al., 2016; Chiu and Nichols, 2016)
have achieved impressive performance. However,
in practical applications, it is desirable to recog-
nize new entity types that have not been seen in
the source domain. It is time-consuming and labor-
expensive to collect extra labeled data for these new
types. Consequently, few-shot NER (Fritzler et al.,

∗Corresponding Author
1The code and data are released on https://github.com/

UESTC-GQJ/BANER.
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Figure 1: (a) shows under/over-detected false spans, (b)
shows correct spans obtained by adopting our boundary-
aware LLM, (c) shows unaligned entity type prototypes,
(d) shows aligned prototypes obtained by our domain
adaption strategy.

2019; Yang and Katiyar, 2020), which involves
identifying unseen entity types based on only a few
labeled samples for each class (also known as sup-
port samples) in the target domain, has attracted a
lot of attention in recent years.

Previously end-to-end metric learning based
methods (Yang and Katiyar, 2020; Das et al., 2022)
dominate the field of few-shot NER. These ap-
proaches are designed to learn the intricate struc-
ture that includes both entity boundaries and entity
types. However, their performance may degrade
significantly when encountering a substantial do-
main gap. This degradation is primarily due to
the challenge of understanding such complex struc-
tural information with only a few support exam-
ples for domain adaptation. Consequently, these
methods often suffer from inadequate perception
of boundary information, resulting in frequent mis-
classification of entity spans. Though LLMs have
made remarkable success in various tasks, they
have not proven to be effective few-shot informa-
tion extractors in general (Ma et al., 2023; Zhang
et al., 2024b).

https://github.com/UESTC-GQJ/BANER
https://github.com/UESTC-GQJ/BANER
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Recent works demonstrate that adopting two-
stage prototypical networks (Wang et al., 2022;
Ma et al., 2022b; Li et al., 2023) can be effective to
address aforementioned issue, which decompose
NER task into two distinct stages: entity span detec-
tion and entity type classification tasks, executing
each task sequentially. Since decomposed methods
only need to locate the spans of named entities and
are class-agnostic in the first stage, they can iden-
tify more accurate entity boundaries and achieve
better performance than end-to-end approaches.

While these two-stage prototypical methods
have shown promising progress, they also present
two additional challenges. Firstly, at the entity
span detection stage, these decomposed approaches
merely detect possible spans, often overlooking the
boundary-related semantic information of named
entities. For instance, following entity span de-
tection, the sentence in Figure 1(a) illustrates that
the span for “Barack Obama” is inadequately de-
tected, resulting in “Obama” being identified while
“Barack” is overlooked. Conversely, the span for
“1961” is excessively detected as “in 1961”. These
inaccuracies propagate errors into the subsequent
entity type classification stage.

Secondly, in decomposed methods, prototypical
networks aim to learn a type-related metric similar-
ity function from test samples to classify entities
based on their distance to prototypes. However,
since the obtained prototypes are independently
trained relative to the first stage, they may over-
look entity type knowledge from the prior source
domain. This can lead to difficulties in aligning the
distribution of the same class across different do-
mains. For example, in Figure 1(c), the entity types
in the target domain exist independently of those
in the source domain, leading to misaligned proto-
types for the same entity type. This misalignment
can severely impact the cross-domain performance
of few-shot NER during the entity type classifica-
tion stage.

To this end, we propose an approach called
Boundary-Aware LLMs for Few-Shot Named
Entity Recognition (BANER). Our approach
adopts the two-stage framework of the decomposed
method but advances two steps further to effec-
tively address the aforementioned challenges. For
entity span detection, we design a boundary-aware
contrastive learning strategy to reduce the gap be-
tween span embeddings of entities and their corre-
sponding types using LLM. This strategy enhances

the boundary perception capabilities of LLM, par-
ticularly for generalized entity spans. For entity
type classification, we draw upon domain adapta-
tion principles to construct refined prototypes that
retain and align entity type knowledge from the
source domain. This approach involves joint pre-
training in the source domain and adaptive align-
ment across diverse target domains within the same
LLM framework, facilitated by LoRAHub (Huang
et al., 2023).

In summary, our contributions are as follows:
(1) We introduce a novel Few-Shot NER ap-

proach, BANER, which employs boundary-aware
contrastive learning to enhance an LLM’s ability
to perceive entity boundaries. To our knowledge,
this is the first integration of LLM with contrastive
learning for few-shot NER tasks.

(2) Leveraging an LLM pretrained on the source
domain, we utilize LoRAHub to align informa-
tion from target domains to enhance adaptive cross-
domain classification capabilities.

(3) Experimental results on multiple few-shot
NER datasets demonstrate that BANER achieves
superior performance compared to previous state-
of-the-art two-stage decomposed methods. Fur-
thermore, we validate the generalizability of our
strategies across various LLM architectures.

2 Related Work

Few-Shot NER Recently, few-shot named entity
recognition (NER) has garnered considerable atten-
tion. Previous methods can be broadly categorized
into two types: prompt-based and metric-based ap-
proaches. Prompt-based methods focus on leverag-
ing the knowledge of pre-trained language models
(LLMs) for NER through prompt learning tech-
niques (Cui et al., 2021; Ma et al., 2022a; Huang
et al., 2022; Lee et al., 2022). These methods uti-
lize templates, prompts, or exemplary instances
to effectively harness the pre-existing knowledge
within LLMs.

With the rapid advancements in LLMs, there has
been a surge in studies exploring direct prompt-
ing of LLMs for few-shot NER tasks (Wang et al.,
2023; Xie et al., 2023). Additionally, there is
emerging interest in straightforward instruction-
tuning strategies (Zhou et al., 2024), or annotating
raw data with LLMs to train task-specific foun-
dational models for NER (Zhang et al., 2024b).
However, their performance often diminishes when
tasked with generating text that adheres to specific
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Figure 2: Overall structure of the proposed BANER. (a) Entity span detection with pre-training in the source domain.
(b) Entity type classification with fine-tuning in the support samples of target domain. (c) Inference on the query set
of target domain.

structured formats and domains, which is crucial
in few-shot NER scenarios.

Metric-based methods, on the other hand, aim
to learn a feature space with robust generalizabil-
ity and classify test samples using nearest class
prototypes (Snell et al., 2017; Fritzler et al., 2019;
Ji et al., 2022; Ma et al., 2022b) or neighboring
samples (Yang and Katiyar, 2020; Das et al., 2022).
Nevertheless, the prototypical networks widely em-
ployed in these methods may fail to fully utilize
entity type knowledge from the source domain dur-
ing the type classification stage.

Moreover, recent research has focused on the
two-stage architecture for few-shot named entity
recognition (NER) (Shen et al., 2021; Wang et al.,
2021; Zhang et al., 2022; Wang et al., 2022; Ma
et al., 2022b; Li et al., 2023), where the task is
decomposed into entity span detection and entity
typing subtasks. These methods excel in learn-
ing entity boundary information under data-limited
conditions and often achieve superior performance.
However, they may encounter challenges such as
over/under-detection of false entity spans during
the span detection stage.

Contrastive Learning and Domain Adaptation
Due to the robust generalization capabilities of con-
trastive learning, recent methods (Das et al., 2022;
Huang et al., 2022) have adopted this approach
for few-shot NER, employing contrastive losses be-
tween tokens or between tokens and prompts. How-

ever, these methods are end-to-end approaches and
therefore inherently lack the ability to effectively
learn entity boundary information. In contrast, our
approach is decomposed, and our boundary-aware
contrastive loss is designed between the span em-
beddings of entities and their corresponding types
within the LLM framework. This method enables
the learning of a span-aware feature space in LLMs,
facilitating accurate boundary detection.

Domain adaptation tackles the challenge of
dataset shift between source and target domains,
particularly when only a few samples are available
in the target domain. When labels in the target
domain are scarce, the problem transitions into a
semi-supervised scenario. Traditional approaches
combine source and target data to enhance model
training (Zhang et al., 2021; Zhang and Kang,
2024). In the context of type classification adap-
tation using LLMs, fine-tuning remains the pre-
dominant method (Grangier and Iter, 2022; Guo
et al., 2021; Buonocore et al., 2023). Alternatively,
strategies involve expanding the LLM’s vocabulary
with domain-specific tokens (Sachidananda et al.,
2021; Zhu et al., 2024) or employing adversarial
adaptation techniques such as knowledge distilla-
tion (Rietzler et al., 2020) or supervised fine-tuning
(Ryu et al., 2022; Zhang et al., 2024a). In contrast,
our approach leverages LoRAHub to dynamically
align information from the target domain with that
of the source domain.



10378

3 Methodology

Figure 2 depicts the overall framework of our
BANER. Like other two-stage methods, it com-
prises entity span detection and entity type clas-
sification. Notably, our approach incorporates
boundary-aware contrastive learning and adaptive
domain alignment strategies at these respective
stages.

Task Formulation Given a sequence X =
{xi}Li=1 with L tokens, NER aims to assign each to-
ken xi to its corresponding label yi ∈ Y ∪O, where
Y is the pre-defined entity type set and O denotes
non-entities. For few-shot NER, the NER model is
first pretrained on data-sufficient source domain(s)
Ds = {(Ss, Qs, Ys)} and then fine-tuned in target
domain(s) Dt = {(St, Qt, Yt)} with only a few la-
beled samples. We adhere to the standard N -way
K-shot setting as outlined in (Ding et al., 2021),
where Ss/t = {(xi, yi)}N×K

i=1 denotes the support
set, Qs/t = {(xj , yj)}N

′×K′

j=1 denotes the query set,
|Ys| = N and |Yt| = N ′. Our task is to recognize
entities in the query set Qt from the target domain
after adapting the model using its support set St.
It is noteworthy that Ys and Yt exhibit little to no
overlap.

3.1 Entity Span Detection

3.1.1 Prompt Representation
Formally, we denote the LLM as fLLM and input
instruction as I . The output (generated) token se-
quence is denoted as Y = fLLM(X) = {yi}Li=1.
For the classic auto-regressive generative model,
the sampling probability of the model generating
Y is formalized as follows:

P(Y | I,X) =

L∏
t=1

P(yt | I,X, y<t), (1)

where yt is the t-th token of the y, y<t repre-
sents the tokens before yt. Utilizing generative
language models for information extraction typi-
cally involves providing a prompt as input and gen-
erating results according to a specified format. In
BANER, we adopt the default template for LoRA
fine-tuning2. The prompt is fed into the LLM to
perform entity span detection. An example of such
a prompt is illustrated in Figure 5 in Appendix A.1.

According to the LLM’s token generation rule,
the objective loss for auto-regressively generating

2https://github.com/tatsu-lab/stanford_alpaca

Y is as follows:

Lg = −
∑

(X,y)∈Ds

L∑
t=1

log Pθ+θL(yt | I,X, y<t), (2)

where θ is the original parameters of LLM, θL is
the LoRA parameters. Note that we only update
LoRA parameters during the training process.

3.1.2 Boundary-Aware Contrastive Learning
We enumerate all m spans S = {s1, s2, ..., sm} for
sequence X . For example, for sentence “Barack
Obama was born in 1961”, span indices (begin,
end) of two entities are {(0, 2), (5, 6)}. We use
bi and ei to denote the begin- and end- index rep-
resentation of the span si in constructed prompt,
respectively.

To enhance the LLM’s ability to perceive entity
boundaries, we employ the concept of contrastive
learning (Khosla et al., 2020). We utilize two types
of boundary-aware index representations, as illus-
trated in Figure 2(a), to construct positive and neg-
ative samples for each entity mention and its cor-
responding entity type. Specifically, the positive
sample posi of entity span is calculated by concate-
nating hbi and hei−1 as posi = [hbi , hei−1], where
h(·) = embedding(·) is the pre-trained tokenizer
of LlaMA-2-7B. The negative sample negi of en-
tity boundary is negi = [hbi−1, hbi−2, hei , hei+1].
The original entity type representation o is the (be-
gin, end) indices of entity type from constructed
prompt in the same way.

To learn better boundary-aware feature space,
we extract entity type embedding eo, entity to-
ken embedding eposi and enegi , from outputs H ∈
RB×L×D of 25th hidden states layer in LlaMA-
2, where B is the batch size and D is the hidden
dimension. The calculation formula are:

eoi = gather(H, oi) ∈ RB×1×D, (3)

eposi = gather(H, posi) ∈ RB×2×D, (4)

enegi = gather(H, negi) ∈ RB×4×D, (5)

where gather() is a tensor operation commonly
used in deep learning frameworks (e.g., PyTorch),
which allows for the selection and extraction of spe-
cific elements from a higher-dimensional tensor H
based on specified indices. Then, we can calculate
the boundary-aware contrastive loss by:

Lcl = − 1

B

B∑
i=1

log (σ(sim(o, posi)− sim(o, negi))) ,

(6)

https://github.com/tatsu-lab/stanford_alpaca
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sim(o, posi) =

m∑
i=1

(
eo

∥eo∥2
·

eposi
∥eposi∥2

) ∈ RB , (7)

sim(o, negi) =

m∑
i=1

(
eo

∥eo∥2
·

enegi
∥enegi∥2

) ∈ RB , (8)

where σ() is the sigmoid function.

3.1.3 LLM Fine-Tuning
We introduce instruction tuning to effectively and
efficiently align the LLM with the span detection
task. Following the standard supervised fine-tuning
method, we minimize the auto-regressive loss cal-
culated between the ground truth and the LLM out-
put. In our approach, we mask the loss positions
corresponding to the prompt part. Specific prompt
formats, task-specific instructions, and ground truth
details are provided in the Appendix A.1. How-
ever, directly fine-tuning the entire model can be
computationally intensive and time-consuming. To
address this, we propose a lightweight fine-tuning
strategy using LoRA. This method involves freez-
ing the pre-trained model parameters and intro-
ducing trainable rank decomposition matrices into
each layer of the Transformer architecture. This
approach facilitates lightweight fine-tuning while
reducing GPU memory consumption. The final
learning objective is computed as follows:

Lspan = min
θL1

(Lg + λLcl), (9)

where θL1 is the LoRA parameters at the span de-
tection stage and λ is set to 0.001.

3.2 Entity Type Classification

Subsequently, we assign a specific entity class to
each span identified during the entity span detection
stage.

3.2.1 Prompt and Prototype Representation
As previously mentioned, a predefined (candidate)
list of entity types must be input as the schema into
the LLM to trigger type generation. Figure 6 in
Appendix A.1 illustrates an example of the prompt
used for this stage. Using this prompt, the model
constructs a prototype for each given entity type,
which is then used to assign the correct type to each
detected entity span.

To achieve this, we construct prototypical net-
works (ProtoNet) as the backbone, utilizing LoRA
tuning across different domains. To leverage the
knowledge from support examples in the target
domain and align it with the source domain, we

propose enhancing ProtoNet on the LLM with do-
main adaptation. This approach aims to create a
more representative embedding space where text
spans from different entity classes are more distin-
guishable.

Let Sk = {z1, z2, . . . , zn} denote the set of en-
tity type spans in the constructed prompt, which is
contained in a given support set St belonging to the
entity class yk ∈ Y . We compute the prototype pk
for each yk by averaging the span representations
of all zi ∈ Sk:

pk(St) =
1

|Sk|

|Sk|∑
i=1

zi. (10)

3.2.2 LoRA Tuning across Different Domains
Given a training episode Dt, we first utilize the
support set St to compute prototypes for all entity
classes in Yt using Eq. 10. Subsequently, for each
span si in the query set Qt, we calculate the prob-
ability that si belongs to an entity class yk based
on the distance between its span representation and
the prototype of yk:

P (yk; zi) =
exp {−d (pk (St) , si)}∑

yi∈Y exp {−d (pi (St) , si)}
, (11)

To compute the distance function d (·, ·), we define
it as follows:

d
(
pk/i (St) , si

)
=

pk/i (St)

∥pk/i (St) ∥2
· si
∥si∥2

. (12)

Our goal is to minimize the cross-entropy loss for
each LoRA module in its corresponding target do-
main:

Lti = min
θL2

−
∑

zi∈Qt

log Pθ+θL2
(yk; zi)

 , (13)

where θL2 is the LoRA parameters at the type clas-
sification stage.

3.2.3 Composition of LoRA Modules
As depicted in Figure 2(b), we initially fine-tuned
LoRA modules across various target domains.
Specifically, for M distinct domains, we fine-tune
M separate LoRA modules, each denoted as mi

for the domain Dti ∈ Dt. Each mi can be de-
fined as the product AiBi, where Ai ∈ Rd×r and
Bi ∈ Rr×k are trainable low-rank matrices, with
the rank r being significantly smaller than the di-
mensions d and k. The combined LoRA module
m̂ can be obtained by:

m̂ = (w1A1 · · ·+ wNAN )(w1B1 + · · ·+ wNBN ). (14)
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To find the optimal w, the optimization process is
guided by the cross-entropy loss to identify the best
set w1, w2, · · · , wN that minimizes the loss Lti on
the target domain. Additionally, we incorporate
L1 regularization to penalize the sum of the abso-
lute values of w, helping to prevent extreme values.
Consequently, the final objective of LoRAHub is
to minimize Lti + α ·

∑N
i=1 |wi|, where α serves

as a hyperparameter.

3.3 Target Domain Inference
As illustrated in Figure 2(c), during target domain
inference, we first extract candidate spans from
query sentences and then classify these spans into
specific entity types to obtain the final results. After
training the LLM with boundary-aware contrastive
learning, we generate candidate entity spans from
a given sentence X as follows:

P (S|X; θ + θL1) =

N∏
i=1

P (yi|y<t, X; θ + θL1). (15)

Next, we obtain the candidate span set Sspan, which
includes all potential spans to be assigned entity
types during the entity type classification stage. For
these candidate spans, the entity types are classified
as follows:

P (C|X,S; θ+θL2) =

N∏
i=1

P (yi|y<t, X, S; θ+θL2). (16)

Finally, we combine the results of span detection
and type classification to determine the predicted
labels for a sentence X as follows:

P (Y |S,C; θ̂) = P (S|X; θ + θL1) · P (C|X,S; θ + θL2).
(17)

Dataset Domain # Sentences # Entities # Classes

Few-NERD Wikipedia 188k 491k 66
OntoNotes General 76k 104k 18

I2B2 Medical 140k 29k 23
CoNLL News 20k 35k 4
WNUT Social 5k 3k 6
GUM Wiki 3k 6k 11

Table 1: Statistics of Datasets

4 Experiments

4.1 Experimental Setups
4.1.1 Datasets
Few-NERD 3 (Ding et al., 2021) It is the largest
few-shot NER dataset containing 66 fine-grained
entity types across 8 coarse-grained categories.

3https://ningding97.github.io/fewnerd/

Two tasks are considered for this dataset: (1) in-
tra, where all entities in the train/dev/test splits
belong to different coarse-grained types, and (2)
inter, where the train/dev/test splits may share
coarse-grained types but have mutually exclusive
fine-grained entity types.

Cross-Dataset To evaluate cross domain adap-
tion, we follow Das et al. (2022) and take
OntoNotes 5.0 (General) (Weischedel et al., 2013)
as our source domain, and evaluate few-shot do-
main adaptation performances on I2B2’14 (Med-
ical) (Stubbs and Uzuner, 2015), CoNLL’03
(News) (Tjong Kim Sang and De Meulder, 2003),
WNUT’17 (Social) (Derczynski et al., 2017), and
GUM (Wiki) (Zeldes, 2017) datasets.

The statistics of datasets are shown in Table 1.

4.1.2 Baselines
We compare our proposed BANER with the one-
stage and two-stage types. The one-stage base-
lines include ProtoBERT (Snell et al., 2017),
NNShot (Wiseman and Stratos, 2019), Struct-
Shot (Yang and Katiyar, 2020), CONTaiNER (Das
et al., 2022) and MANNER (Fang et al., 2023).
The two-stage baselines include: ESD (Wang et al.,
2022), DecomposedMetaNER (Ma et al., 2022b),
TadNER (Li et al., 2023), TSFNER (Ji and Kong,
2024), and BDCP (Xue et al., 2024).

4.1.3 Evaluation Details
Evaluation on Few-NERD Following the
methodology of Ma et al. (2022b), we adopt the
episode-level evaluation approach. Each episode
consists of a support set and a query set, structured
in the N-way K-shot format. During evaluation,
our model trained on the source domain predicts
on the query set using information from the
support set. To ensure fairness in comparisons, we
compute the Micro F1 score based on episode data
processed according to Ding et al. (2021). Results
are reported as the mean F1 score ± standard
deviation across 5 random seeds.

Evaluation on Cross-Dataset Yang and Katiyar
(2020) points out the limitation that sampling test
episodes may not accurately reflect real-world per-
formance due to varying data distributions. They
advocate for sampling support sets and subse-
quently evaluating models on the original test set.
Each support set consists of K examples for each
label. The final Micro F1 scores and standard de-
viations are calculated based on different sampled

https://ningding97.github.io/fewnerd/
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support sets. Following Yang and Katiyar (2020)
and Das et al. (2022), we adopt this evaluation
schema specifically for cross-domain settings. To
ensure fair comparisons, we employ the support
sets sampled according to the methodology pro-
posed by Das et al. (2022)4.

Parameters Value # Comment

temperature 0 control the randomness of generation
top_p 1 determine the cumulative probability for nucleus sampling
top_k 65536 limit the number of highest probability tokens considered

num_beams 4 set the number of beams for beam search
max_new_tokens 128 define the maximum number of tokens to generate

Table 2: Main parameters in inference.

4.1.4 Implementation Details
To construct BANER, we utilize LLaMA-2-7B as
the pre-trained LLM backbone with FP16 precision
and employ LoRA for prompt-tuning and model
inference. During source domain training, we opti-
mize using AdamW (Loshchilov and Hutter, 2019)
with a learning rate of 3× 10−4, a batch size of 1,
and training over five epochs with a micro batch
size of one. The cutoff length is set to 256, and
no validation set is used (i.e., val_set_size = 0).
For LoRA, we set r = 32, α = 16, and a dropout
rate of 0.05. Distributed Data Parallel (DDP) is not
employed for parameter search during training.

For target domain inference, Table 2 outlines the
key parameters used in result generation. To en-
sure the robustness of generative language model
outputs, our method incorporates task-specific in-
structions as inputs for entity span detection and
type classification. Implementation is carried out
using PyTorch 1.9.05 and executed on two Tesla
A800-80G GPUs.

4.2 Main Results

Tables 3 and 4 present the comparative results be-
tween our method and baselines on the Few-NERD
and Cross-Dataset benchmarks, respectively. Sev-
eral key observations emerge:

1) Overall, two-stage methods consistently out-
perform one-stage methods, underscoring the effi-
cacy of task decomposition in few-shot NER tasks.

2) BANER consistently outperforms all base-
lines in all settings, often exceeding the perfor-
mance of the second-best models by a notable mar-
gin. In particular, in the challenging intra task,
BANER achieves an average increase in the F1
score of 5. 2%.

4https://github.com/psunlpgroup/CONTaiNER
5https://pytorch.org/

3) Furthermore, in the 1-shot and 5-shot Cross-
Dataset settings, BANER outperforms baselines
by 2.3% and 5.1%, respectively. These results un-
derscore the robustness of BANER in addressing
cross-domain few-shot NER challenges.

4) TadNER, a competitive model, exhibits
significantly degraded performance under certain
settings, such as GUM. This issue primarily arises
from dense entity sentences where boundary
perception between different entities becomes
challenging. In contrast, BANER effectively mit-
igates this challenge through the boundary-aware
contrastive learning strategy, enabling accurate
detection of entity spans and achieving superior
performance.

4.3 Ablation Study

To validate the effectiveness of the main compo-
nents in BANER, we introduce the following vari-
ant baselines for the ablation study:

BANER w/o Boundary-Aware Span Detection
(BASD): This variant removes the boundary-aware
contrastive learning at the span detection stage and
directly extracts entity spans using LLMs.

BANER w/o Domain-Adaptation LoRAHub
(DAL): This variant removes the composition of
different LoRA modules at the type classification
stage, using a single LoRA module to classify enti-
ties instead.

BANER w/o Span Detection Fine-Tuning (SDF):
This variant skips the fine-tuning on the support set
of the target domain at the span detection stage.

BANER w/o Type Classification Fine-Tuning
(TCF): This variant skips the fine-tuning on the
support set of the target domain at the type classifi-
cation stage.

BANER w/o ALL: This variant performs the
few-shot NER task using the original LLMs (e.g.,
LlaMA-2-7B) without any of the enhancements
provided by BANER.

From Table 5, we observe the following:
1) The removal of the boundary-aware con-

trastive learning strategy results in a performance
decline across most cases, particularly in entity-
sparse datasets like I2B2, where many spans are
falsely detected.

2) Omitting the domain-aware LoRAHub leads
to a significant performance decrease. This indi-
cates that our model effectively aligns a better pro-
totype space for entity types, which is crucial in
cross-domain scenarios.

https://github.com/psunlpgroup/CONTaiNER
https://pytorch.org/
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Paradigms Models
Intra Inter

1∼2-shot 5∼10-shot Avg. 1∼2-shot 5∼10-shot Avg.
5 way 10 way 5 way 10 way 5 way 10 way 5 way 10 way

One-stage

ProtoBERT 20.76±0.84 15.05±0.44 42.54±0.94 35.40±0.13 28.44 38.83±1.49 32.45±0.79 58.79±0.44 52.92±0.37 45.75
NNShot 25.78±0.91 18.27±0.41 36.18±0.79 27.38±0.53 26.90 47.24±1.00 38.87±0.21 55.64±0.63 49.57±2.73 47.83
StructShot 30.21±0.90 21.03±1.13 38.00±1.29 26.42±0.60 28.92 51.88±0.69 43.34±0.10 57.32±0.63 49.57±3.08 50.53
FSLS 30.38±2.85 28.31±4.03 46.85±3.49 40.76±3.18 36.58 44.52±4.59 44.01±3.35 59.74±2.51 56.67±1.75 51.24
CONTaiNER 41.51±0.07 36.62±0.04 57.83±0.01 51.04±0.24 46.75 50.92±0.29 47.02±0.24 63.35±0.07 60.14±0.16 55.36

Two-stage

ESD 36.08±1.60 30.00±0.70 52.14±1.50 42.15±2.60 40.09 59.29±1.25 52.16±0.79 69.06±0.80 64.00±0.43 61.13
DecomposedMetaNER 49.48±0.85 42.84±0.46 62.92±0.57 57.31±0.25 53.14 64.75±0.35 58.65±0.43 71.49±0.47 68.11±0.05 65.75
TadNER 60.78±0.32 55.44±0.08 67.94±0.17 60.87±0.22 61.26 64.83±0.14 64.06±0.19 72.12±0.12 69.94±0.15 67.74
TSFNER 56.35±0.64 50.51±0.36 65.22±0.52 58.35±0.19 57.61 68.20±0.79 64.72±0.23 72.86±0.46 68.62±0.27 68.60
BDCP 53.96±0.92 52.17±0.56 59.25±0.28 56.91±1.12 55.57 69.68±1.50 67.15±0.28 71.12±0.97 68.13±0.55 69.02
BANER 64.95±0.85 61.24±0.82 72.14±0.33 67.53±0.12 66.47 69.26±0.94 67.43±0.35 76.53±0.51 72.24±0.22 71.37

Table 3: F1 scores with standard deviations on Few-NERD. The best results are in bold and the second best ones
are underlined.

Paradigms Models 1-shot 5-shot

I2B2 CoNLL WNUT GUM Avg. I2B2 CoNLL WNUT GUM Avg.

One-stage

ProtoBERT 13.4±3.0 49.9±8.6 17.4±4.9 17.8±3.5 24.6 17.9±1.8 61.3±9.1 22.8±4.5 19.5±3.4 30.4
NNShot 15.3±1.6 61.2±10.4 22.7±7.4 10.5±2.9 27.4 22.0±1.5 74.1±2.3 27.3±5.4 15.9±1.8 34.8
StructShot 21.4±3.8 62.4±10.5 24.2±8.0 7.8±2.1 29.0 30.3±2.1 74.8±2.4 30.4±6.5 13.3±1.3 37.2
FSLS 18.3±3.5 50.9±6.5 14.3±5.5 12.6±2.8 24.0 25.4±2.7 63.9±3.3 24.0±3.2 18.8 ±2.2 33.1
CONTaiNER 21.5±1.7 61.2±10.7 27.5±1.9 18.5±4.9 32.2 36.7±2.1 75.8±2.7 32.5±3.8 25.2±2.7 42.6
MANNER 24.3±2.1 48.8±3.5 27.9±1.8 23.1±2.3 31.0 33.9±2.0 68.7±3.2 34.9± 2.5 40.7±1.2 44.6

Two-stage

DecomposedMetaNER 15.5±3.0 61.2±9.2 27.7±5.3 20.3±4.2 31.2 19.8±2.6 75.2±5.8 29.8±3.9 33.5±2.4 39.6
TadNER 39.3±3.8 70.4±10.6 32.8±4.8 24.2±4.1 41.7 45.2±2.3 80.5±3.6 34.5±4.6 35.1±2.2 48.8
TSFNER 35.0±0.9 62.5±4.1 28.3±2.5 32.3±3.0 39.5 40.6±2.5 72.4±5.6 34.7±2.4 38.9±0.9 46.7
BDCP 33.2±3.1 63.9±8.3 30.3±2.0 31.1±1.5 39.6 37.7±2.2 69.8±8.9 34.0±1.6 34.6±1.5 44.0
BANER 40.2±1.0 72.6±3.1 34.1±2.1 29.3±2.8 44.0 47.1±2.2 81.2±2.9 43.2±1.2 44.0±0.9 53.9

Table 4: F1 scores with standard deviations for Cross-Dataset.

Models 1-shot 5-shot Avg.
I2B2 CoNLL WNUT GUM I2B2 CoNLL WNUT GUM

BANER 40.2 72.6 34.1 29.3 47.1 81.2 43.2 44.0 49.0

w/o BASD 22.7 65.7 30.7 26.1 30.1 73.9 39.0 39.3 40.9
w/o DAL 30.3 64.0 32.5 27.0 34.6 73.8 39.5 40.2 42.2
w/o SDF 37.3 68.8 31.2 28.1 45.0 76.5 40.3 42.2 46.2
w/o TCF 39.2 69.0 32.1 28.0 45.7 78.2 40.9 42.4 46.9
w/o ALL 20.9 41.3 17.0 15.6 24.5 56.1 20.3 18.2 26.7

Table 5: Ablation study results for Cross-Dataset.

3) Eliminating fine-tuning in both the span detec-
tion and type classification stages causes a minor
performance drop. This demonstrates that the pro-
totype in the source domain aligns well with the
target domain, and that LLMs already possess good
boundary perception abilities despite encountering
different entity types in the target domain after
training in the source domain.

4) Although LLMs exhibit superior performance
in few-shot tasks compared to most pretrained mod-
els, they still lag behind our approach. The signifi-
cant disparity compared to the original LlaMA-2-
7B underscores our model’s effective utilization of

provided support samples from the target domain,
thereby enhancing the performance of LLMs in
few-shot scenarios.

4.4 Examination of other LLMs

To evaluate the generalizability of our enhanced
entity boundary perception, we extend BANER
to other mainstream open-source LLMs under the
GUM 5-shot setting, including Mistral-7B (Jiang
et al., 2023) and LlaMA-3-8B. As shown in Figure

Figure 3: F1 Score for different LLMs under the GUM
5-shot setting.
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3, substituting the LLM in BANER with these mod-
els leads to significant improvements in F1 scores
for both 1-shot and 5-shot scenarios compared to
the 0-shot baseline. This demonstrates the broad ap-
plicability and effectiveness of our method across
different LLM architectures.

4.5 Impact of Different Hidden Layers

To determine which hidden layer’s output in
LlaMA-2 captures higher-level abstract informa-
tion for constructing a better boundary-aware fea-
ture space, we compare overall performance by
calculating the contrastive learning loss across dif-
ferent hidden layers under the GUM 5-shot set-
ting. The performance of different hidden layers is
shown in Figure 4. We observe that the highest F1
score is achieved when calculating the contrastive
learning loss on the 25th layer. Notably, unlike
other layers where there is a significant disparity
between recall and precision, the 25th layer ex-
hibits a relatively small difference between these
metrics.

Figure 4: F1 Score, Recall, and Precision for different
hidden layers under the GUM 5-shot setting.

5 Conclusion

In this paper, we propose the BANER framework
for few-shot named entity recognition (NER), ad-
dressing entity span detection and entity type classi-
fication in two stages. For entity span detection, we
introduce a boundary-aware contrastive learning
strategy to minimize the distance between span em-
beddings of entities and their corresponding types
using LLMs. Building on this, we employ domain
adaptation with LoRAHub to construct more ac-
curate prototypes that preserve and align entity
type knowledge from the source domain during
the entity classification stage. Extensive experi-
ments demonstrate that BANER outperforms pre-

vious state-of-the-art methods and is applicable to
various LLMs.

Limitations

Our work has two main limitations: 1) BANER em-
ploys a single, specific prompt template for each
stage, utilizing descriptive task instructions and lim-
ited answer options. However, there exist numer-
ous alternative templates for generative language
models. This limitation suggests the potential for
future research to explore various prompt templates
to enhance entity boundary detection and entity
type understanding. 2) Limited access to high-
performance computing facilities has prevented us
from evaluating our approach on large LLMs, such
as LlaMA-3-70B. This limitation highlights the
potential for future work to investigate different
model architectures for improved few-shot NER
performance.
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A Appendix

A.1 Examples of Prompt

Figures 5 and 6 provide examples of the prompts
used in the two stages of our method. To tailor
these prompts to our task, we design a specific out-
put format for the LLM. Each output starts with
<im_start> and ends with <im_end>. For in-
stances involving multiple entity spans and types,
we encapsulate them together using <<< >>>.

A.2 Baselines

1) one-stage methods:
• ProtoBERT (Snell et al., 2017)is a popular

few-shot method built on prototypical net-
works, utilizing BERT as its backbone;

• NNShot (Wiseman and Stratos, 2019) is a
straightforward approach that utilizes token-
level nearest neighbor classification;

• StructShot (Yang and Katiyar, 2020) adopts
an additional Viterbi decoder on top of
NNShot;

• CONTaiNER (Das et al., 2022) leverages con-
trastive learning to infer the distributional dis-
tance between Gaussian embeddings of enti-
ties;

• MANNER (Fang et al., 2023) uses a memory
module and optimal transport to adapt source
domain information for few-shot tasks in the
target domain.

2) two-stage methods:
• ESD (Wang et al., 2022) enhances prototypi-

cal networks with inter- and cross-span atten-
tion , and introduces multiple prototypes for
the O label;

• DecomposedMetaNER (Ma et al., 2022b)
integrates model-agnostic meta-learning into
prototypical networks to more effectively
leverage the support set;

• TadNER (Li et al., 2023) employs type-aware
contrastive learning and span filtering to con-
struct precise prototypes and eliminate false
spans;

• TSFNER (Ji and Kong, 2024) incorporates a
teacher span recognizer for generating soft la-
bels, a student span recognizer, and a prompt-
based entity classifier;

• BDCP (Xue et al., 2024) introduces an entity
boundary discriminative module for span de-
tection and refines entity-context correlations
to mitigate textual adversarial attacks.

A.3 Detailed Type Names
Following (Li et al., 2023), we substitute the origi-
nal dataset labels with their corresponding natural-
language forms of type names employed in our
prompt. Tables 6 and 7 present the detailed conver-
sions for various datasets.
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Below is an instruction that describes a task, paired with an input that provides further context. 
Write a response that appropriately completes the request.

### Instruction:
Please extract the entity of person in the input sentence given below , the entity of person refers to 
the entity that represents the identity or role of a specific person in the input sentence.

### Input:
Pacific Standard owner , Jonathan M. Stan , displays the Santorum cocktail drink as a finished 
product at the bar . ( 2012 ) .

### Response:
<im_start> I can extract entities for you, the extracted entities are <<< Pacific Standard owner >>> 
<<< Jonathan M. Stan >>> <im_end>

Figure 5: Example of the prompt in entity span detection.

Below is an instruction that describes a task, paired with an input that provides further context. 
Write a response that appropriately completes the request.

### Instruction:
Please choose the correct type for the input entities from the type list. The type list is 
["abstract","animal","event","object","organization","person","place",
"plant","quantity","substance","time"].

### Input:
<<< Pacific Standard owner >>> <<< Jonathan M. Stan >>>

### Response:
<im_start> I can choose the correct entity types for you, the entity types are <<< person >>> 
<<< person >>> <im_end>

Figure 6: Example of the prompt in entity entity classification.
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Dataset Labels Type names

Few-NERD

art-broadcastprogram broadcast program
art-film film

art-music music
art-other other art

art-painting painting
art-writtenart written art
person-actor actor

person-artist/author artist author
person-athlete athlete
person-director director

person-other other person
person-politician politician
person-scholar scholar
person-soldier soldier

product-airplane airplane
product-car car

product-food food
product-game game
product-other other product
product-ship ship

product-software software
product-train train

product-weapon weapon
other-astronomything astronomy thing

other-award award
other-biologything biology thing

other-chemicalthing chemical thing
other-currency currency
other-disease disease

other-educationaldegree educational degree
other-god god

other-language language
other-law law

other-livingthing living thing
other-medical medical

building-airport airport
building-hospital hospital

building-hotel hotel
building-library library
building-other other building

building-restaurant restaurant
building-sportsfacility sports facility

building-theater theater
event-attack/battle

/war/militaryconflict
attack battle
war military conflict

event-disaster disaster
event-election election

event-other other event
event-protest protest

event-sportsevent sports event
location-bodiesofwater bodies of water

location-GPE geographical social
political entity

location-island island
location-mountain mountain

location-other other location
location-park park

location-road/railway
/highway/transit

road railway
highway transit

organization-company company
organization-education education

organization-government
/governmentagency government agency

organization-media/newspaper media newspaper
organization-other other organization

organization-politicalparty political party
organization-religion religion

organization-showorganization show organization
organization-sportsleague sports league
organization-sportsteam sports team

Table 6: Original labels and their corresponding natural-
language-form type names of Few-NERD.

Dataset Labels Type names

I2B2’14

AGE age
BIOID biometric ID
CITY city

COUNTRY country
DATE date

DEVICE device
DOCTOR doctor
EMAIL email

FAX fax
HEALTHPLAN health plan number

HOSPITAL hospital
IDNUM ID number

LOCATION_OTHER location
MEDICALRECORD medical record

ORGANIZATION organization
PATIENT patient
PHONE phone number

PROFESSION profession
STATE state

STREET street
URL url

USERNAME username
ZIP zip code

CoNLL’03

PER person
LOC location
ORG organization
MISC miscellaneous

GUM

abstract abstract
animal animal
event event
object object

organization organization
person person
place place
plant plant

quantity quantity
substance substance

time time

WNUT’17

corporation corporation
creative-work creative work

group group
location location
person person
product product

Ontonotes

CARDINAL cardinal
DATE date

EVENT event
FAC fac

GPE geographical social
political entity

LANGUAGE language
LAW law
LOC location

MONEY money
NORP nationality religion

ORDINAL ordinal
ORG organization

PERCENT percent
PERSON person

PRODUCT product
QUANTITY quantity

TIME time
WORK_OF_ART work of art

Table 7: Original labels and their corresponding natural-
language-form type names of datasets under Cross-
Dataset settings.


