
Proceedings of the 31st International Conference on Computational Linguistics, pages 10390–10397
January 19–24, 2025. ©2025 Association for Computational Linguistics

10390

In-Context Reinforcement Learning based Retrieval-Augmented
Generation for Text-to-SQL

Rishit Toteja
Amazon

toteja@amazon.com

Arindam Sarkar
Amazon

arindsar@amazon.com

Prakash Mandayam Comar
Amazon

prakasc@amazon.com

Abstract

Text-to-SQL simplifies database interactions
by enabling non-experts to convert their natural
language (NL) questions to Structured Query
Language (SQL) queries. With advancements
in Large Language Models (LLM), in-context
learning (ICL) has emerged as a popular choice
for building Text-to-SQL systems. Real world,
industry-scale databases, often comprise thou-
sands of tables and hundreds of columns, and
makes passing the entire schema as context to
an LLM infeasibly expensive. This requisites
access to the correct database and the set of
tables. Recently Retrieval Augmented Genera-
tion (RAG) based methods have been proposed
for retrieving relevant subset of databases and
tables for a given query. However, we observe
that the existing methods of synthetic query
generation can generate predominantly simple
queries which might not be sufficiently repre-
sentative of complex, real world queries, thus,
negatively affecting the quality of the generated
SQL. To address this, we propose an innova-
tive in-context reinforcement learning (ICRL)
based framework which refines the question
generation process by enhancing the model’s
ability to produce intricate queries that practi-
tioners may pose during inference. In contrast
to the existing approaches, our framework en-
sures the generation of synthetic SQL queries
which are diverse and complex. We demon-
strate the effectiveness of our approach via
multiple experiments comparing against the
representative state-of-the-art models on pub-
lic benchmark datasets and observe substantial
improvements in performance and scalability.
Our method achieves 15-20% higher recall in
database/table retrieval task compared to the ex-
isting state-of-the-art models for schema identi-
fication and upto 2% higher execution accuracy
for SQL generation.

1 Introduction

The complexity of formulating effective database
queries demands significant manpower and techni-

cal expertise, underscoring the need for innovative
Text-to-SQL solutions to bridge the gap between
natural language and data management. Recently
Large Language Models (LLMs) finetuned for SQL
generation have shown state-of-the-art results on
the representative Text-to-SQL benchmarks 1,2. In
typical real world systems, databases are constantly
evolving, and to accommodate new fields or rela-
tionships, the LLMs need to be continually fine-
tuned to maintain the quality of generation. How-
ever, the most performant LLMs have parameters
in billion-scale (Zhao et al., 2023), and finetun-
ing these models is expensive and require tech-
nical expertise. In-context and few-shot learning
has emerged a popular alternative, and has been
shown to be extremely effective on the Text-to-
SQL tasks by works like DIN-SQL (Pourreza and
Rafiei, 2023). For syntactically correct SQL gener-
ation, the LLM needs to be schema aware. Industry
scale databases often consisting of thousands of
tables, and hundreds of columns, passing the entire
schema as context to LLM is prohibitively expen-
sive. This requisites a framework which can fetch
relevant schemas for correct SQL generation. In
contrast to using RAG for NLP tasks, where rele-
vant knowledge retrieval can be done via similarity
search in embedding space, as the table schemas
might not be syntactically relevant for a natural
language query. Towards this, schema routing was
proposed in DBCopilot (Wang et al., 2024b) for
effective synthetic data generation. It leverages the
foreign key linkage between tables to perform ran-
dom walks and generating corresponding synthetic
natural language queries to aid in table retrieval for
a query. This approach was shown to have state-of-
the-art performance in database/table retrieval.

However, simply generating synthetic queries
based on table relationships is not guaranteed to

1https://yale-lily.github.io/spider/
2https://bird-bench.github.io/

https://yale-lily.github.io/spider/
https://bird-bench.github.io/

10391

be representative of human generated queries, and
consequently might under-represent the complex
queries involving diverse operators (Figure A.2).
Simple prompting based approach might gener-
ate questions which require trivial SQL operators,
for e.g., "What is the most expensive book based
on purchase price?". Consequently for complex
queries this is susceptible to fetching irrelevant
schemas (examples in Table 5). In this work, we
propose a novel in-context Reinforcement Learning
based framework to iteratively improve the quality
of generated synthetic queries from a base LLM
by employing a Feedback LLM which generates
instructions to modify the base generation to max-
imize a reward function which encourages gen-
eration of complex queries. The proposed ICRL
approach refines the preceding example to addition-
ally generate synthetic NL queries like "What is
the most expensive book based on purchase price
for books written by authors whose last name starts
with ‘S’, and what are the author and title of that
book?" (refer to A.4 for more examples). This
augmentation results in significant gains over the
representative models for schema retrieval task, out-
performing both finetuned and ICL based models.
When the proposed RAG mechanism is utilized for
few-shot SQL generation, it outperforms the state-
of-the-art ICL based models on SQL generation as
well, further concretizing the importance of correct
schema retrieval for correct SQL generation.

2 Background

Early work in Text-to-SQL models the problem as
a sequence-to-sequence task and proposed encoder-
decoder architectures (Yu et al., 2018a). (Qi et al.,
2022) introduce a novel architecture, by modifying
the attention layer of encoder of T5 and including
relation embeddings into the key and value entries.
In contrast to training shallow Seq2Seq models,
recently LLMs like GPT-4 (OpenAI) have demon-
strated to be effective in both zero-shot and few-
shot scenarios as shown in DAIL-SQL (Gao et al.,
2024). Further performance improvement is ob-
served with supervised finetuning, which enhances
LLMs using additional task-specific training data
to make it more suitable for domain-specific SQL
generation by finetuning LLMs like CodeLlama
34B and 7B released by Defog 3 achieve highest
performance. Owing to the cost implication of fine-
tuning LLMs, there is increased interest in prompt-

3https://huggingface.co/defog/

ing based techniques for Text-to-SQL tasks given
the schema and relevant examples in context (Guo
et al., 2023; Wang et al., 2024c). LLMs perfor-
mance depends a lot on the demonstrations chosen
for in-context learning as shown in FUSED (Wang
et al., 2024a).
RAG for Large Databases RAG enhances the
performance of LLMs (Lewis et al., 2020) on
knowledge-intensive NLP tasks like Text-to-SQL
by combining the strengths of pre-trained mod-
els with knowledge contained in specialized data
stores, (e.g., database/table metadata). The hybrid
approach helps to decrease the amount of context
given to LLMs. With the arrival of large context
length LLMs like Gemini 1.5 4 and Claude 5 , it is
possible to feed entire database schemas directly as
context. However, we show that in many cases this
approach fails to identify the correct set of tables
relevant for solving a user question. Thus for mas-
sive databases containing thousands of tables, there
is a need for intelligent retrieval for determining a
high recall subset of the database/tables to enhance
the SQL generation (Kothyari et al., 2023).
LLMs with Iterative Feedback LLMs exhibit
a remarkable capability for improving from feed-
back (Kwon et al., 2023; Wang and Li, 2023).
(Madaan et al., 2023) proposes a method for re-
fining model outputs through an iterative process
of self-feedback. (Du et al., 2024) introduces a
novel method to improve the response generation
of LLMs by incorporating multiple rounds of de-
bate between different agents. Here we propose
an in-context reward guided refinement of the base
LLM, which iteratively improves the model output.

3 Methodology

Given a NL query, we first identify the most rele-
vant schemas from diverse databases. To limit the
schema search space, we reduce the scope from
a large array of databases D to a smaller super-
set S ⊆ D. Our goal is to identify S so it re-
tains high recall of the databases and tables in the
ground truth SQL query. For efficient retrieval, we
construct a graph to represent all databases (Wang
et al., 2024b), with each traversal corresponding
to a subset of schemas, and use the traversals to
generate synthetic data to be stored in a knowledge

4https://blog.google/technology/ai/
google-gemini-next-generation-model-february-2024/

5https://www.anthropic.com/news/
claude-3-family

https://huggingface.co/defog/
https://blog.google/technology/ai/google-gemini-next-generation-model-february-2024/
https://blog.google/technology/ai/google-gemini-next-generation-model-february-2024/
https://www.anthropic.com/news/claude-3-family
https://www.anthropic.com/news/claude-3-family

10392

CodeLlama

LLM

REWARD

Question
How many bikes cost more than $1000?

Feedback
Consider adding conditional logic

and aggregation to the query.

For example, you could include

additional conditions on the bike

material or weight.Database Schema Graph

Graph Construction In-Context RL Framework

SERIALIZATION

Schema: [bike_racing, bike]

FEEDBACK
LLM

SQL
SELECT COUNT(*) 
FROM bikes 
WHERE price > 1000;  

A B

Inference and Retrieval

KNOWLEDGE

BASE

Question
Question

How many bikes cost more than $1500, and

what is the average weight of those bikes?

Question

D

Q.

Count the number of
teachers who have taught
students who have never
won an achievement.

Schema:

['Achievements', 'Classes',
'Teachers']

RL Knowledge Base

Syn Q:

What classes taught by Teacher X have
students who achieved Achievement Type Y?

Traversal Schema:

['Achievements', 'Classes',

'Teachers']

....

....

Non RL Knowledge Base

Syn Q:

For a given student, what are the details of
their loans and achievements?

Traversal Schema:

['Achievements', 'Student_Loans’]

....

....

C Building Knowledge Base

Augmenting LLM Context

Figure 1: Overview of the proposed In-Context RL based RAG architecture for schema retrieval.

base (KB) for the RAG mechanism.
Schema Graph Construction The database/table
schema graph G is constructed by initializing a root
node R, with type-1 edges to each database, type-
2 edges to tables, and type-3 edges representing
foreign key relationships. We generate all possi-
ble traversals on G via fixed length random-walks
where each traversal represents a unique path from
R through G, as detailed in Algorithms A.1, A.2.
Synthetic Question Generation In order to iden-
tify S from the entire Database represented in
Graph G, we begin by selecting a particular traver-
sal from the graph. This step, referred to as se-
rialization, involves mapping out a specific path
through the graph, starting from the root node and
following the edges through various databases and
tables. Once a traversal is serialized, we carefully
prompt a LLM to generate the corresponding natu-
ral language question(s) and SQL solution(s), and
store the triplet in a KB keyed by the NL question.

3.1 In-Context RL Framework

To ascertain that the generated synthetic questions
are relevant as well as sufficiently complex to re-
flect the nature of human queries, we propose an in-
context reinforcement learning (ICRL) framework
to iteratively improve the LLM’s generation of syn-
thetic questions. For each traversal, we formulate
the interactive process as a Markov Decision Pro-
cess (MDP). The state (st) at time t includes the
current context provided to the LLM and its param-

eters (θt), comprising of schema information and
previously generated questions. The action (at) is
the generated synthetic question (qst) by the LLM.
For a pretrained LLM with frozen θt, the policy
determining the action π(at|st, ..) is the probabil-
ity of generating a sequence of tokens given the
context.
Reward Function To encourage the creation of
synthetic questions with the desired complexity,
we use a reward function based on keywords (kj)
from the intermediate SQL query generated by a
LLM when given the synthetic question as input.
Specifically, we define four keyword buckets: B1

(data retrieval and filtering), B2 (data modifica-
tion), B3 (conditional logic), and B4 (aggregation
and sorting). The complexity score of each bucket
is calculated as:

c(Bi) =

∑
kj∈St

(kj ∈ Bi)∑
Bi

∑
kj∈St

(kj ∈ Bi)
(1)

Details of the carefully curated keyword scores
are provided in A.3. These are selected to closely
mimic the SQL operators used by human practi-
tioners for complex NL queries. For instance, a
query with multiple JOIN/GROUP BY statements
is likely to be more complex compared to a query
with only SELECT/AND/OR operators. The re-
sulting reward function R(St) is based on bucket
frequencies and their weights:

R(St) =
∑
i

f(Bi, St) · c(Bi) (2)

10393

Table 1: Table retrieval recall (%) for the Spider and Bird Dev datasets.

Model Spider-Dev Bird-Dev

R@1 R@2 R@5 R@10 R@1 R@2 R@5 R@10

DBCopilot 49.94 81.01 85.34 85.34 34.30 56.73 61.02 61.02
RAG (BM25) 42.71 54.07 66.83 77.31 26.92 35.33 46.61 54.82
RAG (embedding) 64.92 76.52 89.24 93.99 43.54 59.32 79.79 90.61
RAG (emb.) + SXFMR 64.74 79.36 90.35 94.36 43.87 51.10 61.73 70.20
RAG (emb.) + ICRL (iter=1) 71.12 81.50 91.61 95.90 50.19 65.18 82.07 92.24
RAG (emb.) + ICRL (iter=2) 71.44 81.64 91.66 95.94 51.63 66.03 82.40 92.24

Table 2: LLM Aided RAG (Prompting LLM to per-
form aggregation on top-k retrieved schemas).

Top-K
(To be merged)

Spider-Dev (R@1) Bird-Dev (R@1)

RAG RAG + ICRL RAG RAG + ICRL
5 86.21 89.10 73.01 75.22
10 88.91 91.10 79.07 80.89
15 89.98 91.80 80.70 82.98
20 90.59 92.50 80.96 82.26
All DBs provided
in-context (Claude) 61.62 80.76

Table 3: EX (Execution Accuracy) and I/P (input) tokens
on the Spider-Dev dataset.

Approach Approach I/P Tokens EX (%)

DB schemas present

DIN-SQL 9916.56 74.2
DBCopilot 199.24 74.4

FUSED 778.25 74.9
DAIL-SQL 922.21 75.5

Ours (0-shot) 249.24 75.9
Ours (1-shot) 387.26 76.6

DB schemas inferred
DBCopilot 93.62 64.12

Ours (0-shot) 196.39 65.2
Ours (1-shot) 318.93 69.6

where f(Bi, St) is the frequency of bucket Bi

within the SQL query St.
As shown in (Figure 1), initially, the base LLM
generates a synthetic question qs0 relevant to the
schema, with a corresponding SQL query S0. The
reward R(S0) is calculated based on its complex-
ity and keyword distribution. Subsequently, the
Feedback-LLM receives in-context examples, the
synthetic question qst , and the reward signal R(St).
This Feedback-LLM generates textual feedback to
guide the base LLM in modifying qst . Once in-
corporated in the context, this feedback effectively
modifies the generation policy, and as we show in
our experiments, improves the base LLM’s gen-
eration for the next iteration. At each iteration t,
the state st+1 updates with the initial context and
additional feedback. The framework iteratively re-
fines the synthetic question qs based on the reward
signal to get the final qsfinal , which is indexed in the
knowledge base.
LLM Aided Schema Pooling We further im-
prove the recall of schema retrieval by leveraging
the reasoning capabilities of LLM, wherein given
the user query, first the top-k schemas are fetched
from the KB, and then given this context, a LLM is
prompted to select the most relevant schemas from
the candidates.

3.2 SQL Generation

Once schema is selected, we prompt a LLM to
generate the SQL query. The LLM is provided
with examples from KB in form (q, D, S) where
q is user question, D is database schema, and S is

retrieved SQL query. These along with the chosen
schema, are used to produce the final SQL query.

4 Experiments and Results

We use Claude (Sonnet) for synthetic question
generation and schema retrieval. Cohere-Embed-
English-v3 6 is used for generating embeddings
for indexing in knowledge-base. Additionally, we
compare the embedding based retrieval with BM25,
a standard ranking function in search engines for
document relevance, and SXFMR (Reimers and
Gurevych, 2019) which applies contrastive learn-
ing to Transformer-based models for generic em-
bedding retrieval on related text pairs. For SQL
generation, we use GPT-3.5 Turbo model via the
official API (OpenAI).
Evaluation Metrics We employ standard evalua-
tion metrics used for text-to-SQL task. For schema
retrieval, we compute table recall, measuring the
percentage of top-k schemas retrieved that match
the gold schema. We consider Execution Accu-
racy (EX) for evaluation of generated SQL query.
All experiments were performed on Spider-Dev
(Yu et al., 2018b) and Bird-Dev (Li et al., 2023)
datasets (details in A.1).
Schema Retrieval Recall The feedback-based
model variants achieve superior recall compared to
the representative baselines, including DB-Copilot
which is a finetuned model. Specifically, on Spider-
Dev, R@1 improved by 21.5%, and on Bird-Dev,
R@1 increased by 17.3%, demonstrating the ef-
fectiveness of ICRL approach. It can be observed

6https://cohere.com/blog/introducing-embed-v3

https://cohere.com/blog/introducing-embed-v3

10394

from Table 2, directly providing all databases as
context to the LLM does not always yield optimal
performance, and might be attributed to distraction
in presence of irrelevant tokens (Shi et al., 2023).
Execution Accuracy (EX): When the gold
database schema is provided as context, our ap-
proach achieves high execution accuracy (EX), as
shown in Table 3. Both zero-shot and 1-shot vari-
ants of our model achieve around ∼2% higher
EX, surpassing all the baselines. Compared to our
model, DIN-SQL and DAIL-SQL, current state-
of-the-art models in this setting, use significantly
more tokens. In contrast, we achieve substantial
cost reductions, requiring 25.6x and 2.38x fewer
tokens than DIN-SQL and DAIL-SQL, respec-
tively. When the gold schema context is absent,
our schema retrieval method outperforms DBCopi-
lot, achieving 69.6% EX in the 1-shot scenario.

5 Conclusion

While LLMs are trained on vast amounts of pub-
lic data, they are unable to readily handle domain
specific/confidential industry scale databases. The
impracticality and cost of finetuning LLMs with
dynamic databases underscores the importance of
efficient schema retrieval methods as an important
step in Text-to-SQL applications. In this work, we
propose a novel in-context reinforcement learning
based RAG framework for efficient schema and
in-context example retrieval for Text-to-SQL tasks.
Our approach requires no specialized finetuning,
and is based on composable prompting based mod-
ules, and outperforms representative state-of-the-
art baselines for both schema retrieval and SQL
generation tasks. While we benchmark the pre-
sented approach on the Text-to-SQL, the approach
is generalizable to other problems requiring itera-
tive refinement on top of LLMs as well.

6 Limitations

Since we are not using fine-tuned LLMs for SQL
generation, they may still lack information or un-
derstanding about the specific databases in con-
text. Apart from this, while powerful, the proposed
model may not inherently understand or provide
meaningful interpretations of the database schemas
they are working with, especially if those schemas
do not have natural language descriptions.

References
BM25. Okapi bm25 — Wikipedia, the free encyclope-

dia.

Yilun Du, Shuang Li, Antonio Torralba, Joshua B.
Tenenbaum, and Igor Mordatch. 2024. Improving
factuality and reasoning in language models through
multiagent debate.

Dawei Gao, Haibin Wang, Yaliang Li, Xiuyu Sun,
Yichen Qian, Bolin Ding, and Jingren Zhou. 2024.
Text-to-sql empowered by large language models:
A benchmark evaluation. Proc. VLDB Endow.,
17(5):1132–1145.

Chunxi Guo, Zhiliang Tian, Jintao Tang, Pancheng
Wang, Zhihua Wen, Kang Yang, and Ting Wang.
2023. Prompting gpt-3.5 for text-to-sql with de-
semanticization and skeleton retrieval. In PRICAI
2023: Trends in Artificial Intelligence: 20th Pacific
Rim International Conference on Artificial Intelli-
gence, PRICAI 2023, Jakarta, Indonesia, November
15–19, 2023, Proceedings, Part II, page 262–274,
Berlin, Heidelberg. Springer-Verlag.

Mayank Kothyari, Dhruva Dhingra, Sunita Sarawagi,
and Soumen Chakrabarti. 2023. CRUSH4SQL:
Collective retrieval using schema hallucination for
Text2SQL. In Proceedings of the 2023 Conference
on Empirical Methods in Natural Language Process-
ing, pages 14054–14066, Singapore. Association for
Computational Linguistics.

Minae Kwon, Sang Michael Xie, Kalesha Bullard, and
Dorsa Sadigh. 2023. Reward design with language
models. In The Eleventh International Conference
on Learning Representations.

Patrick Lewis, Ethan Perez, Aleksandra Piktus, Fabio
Petroni, Vladimir Karpukhin, Naman Goyal, Hein-
rich Küttler, Mike Lewis, Wen-tau Yih, Tim Rock-
täschel, Sebastian Riedel, and Douwe Kiela. 2020.
Retrieval-augmented generation for knowledge-
intensive nlp tasks. In Advances in Neural Infor-
mation Processing Systems, volume 33, pages 9459–
9474. Curran Associates, Inc.

Jinyang Li, Binyuan Hui, GE QU, Jiaxi Yang, Binhua
Li, Bowen Li, Bailin Wang, Bowen Qin, Ruiying
Geng, Nan Huo, Xuanhe Zhou, Chenhao Ma, Guo-
liang Li, Kevin Chang, Fei Huang, Reynold Cheng,
and Yongbin Li. 2023. Can LLM already serve as
a database interface? a BIg bench for large-scale
database grounded text-to-SQLs. In Thirty-seventh
Conference on Neural Information Processing Sys-
tems Datasets and Benchmarks Track.

Aman Madaan, Niket Tandon, Prakhar Gupta, Skyler
Hallinan, Luyu Gao, Sarah Wiegreffe, Uri Alon,
Nouha Dziri, Shrimai Prabhumoye, Yiming Yang,
Shashank Gupta, Bodhisattwa Prasad Majumder,
Katherine Hermann, Sean Welleck, Amir Yazdan-
bakhsh, and Peter Clark. 2023. Self-refine: Itera-
tive refinement with self-feedback. In Advances in
Neural Information Processing Systems, volume 36,
pages 46534–46594. Curran Associates, Inc.

https://en.wikipedia.org/w/index.php?title=Okapi_BM25&oldid=1194828429
https://en.wikipedia.org/w/index.php?title=Okapi_BM25&oldid=1194828429
https://openreview.net/forum?id=QAwaaLJNCk
https://openreview.net/forum?id=QAwaaLJNCk
https://openreview.net/forum?id=QAwaaLJNCk
https://doi.org/10.14778/3641204.3641221
https://doi.org/10.14778/3641204.3641221
https://doi.org/10.1007/978-981-99-7022-3_23
https://doi.org/10.1007/978-981-99-7022-3_23
https://doi.org/10.18653/v1/2023.emnlp-main.868
https://doi.org/10.18653/v1/2023.emnlp-main.868
https://doi.org/10.18653/v1/2023.emnlp-main.868
https://openreview.net/forum?id=10uNUgI5Kl
https://openreview.net/forum?id=10uNUgI5Kl
https://proceedings.neurips.cc/paper_files/paper/2020/file/6b493230205f780e1bc26945df7481e5-Paper.pdf
https://proceedings.neurips.cc/paper_files/paper/2020/file/6b493230205f780e1bc26945df7481e5-Paper.pdf
https://openreview.net/forum?id=dI4wzAE6uV
https://openreview.net/forum?id=dI4wzAE6uV
https://openreview.net/forum?id=dI4wzAE6uV
https://proceedings.neurips.cc/paper_files/paper/2023/file/91edff07232fb1b55a505a9e9f6c0ff3-Paper-Conference.pdf
https://proceedings.neurips.cc/paper_files/paper/2023/file/91edff07232fb1b55a505a9e9f6c0ff3-Paper-Conference.pdf

10395

OpenAI. Models overview - openai. https://
platform.openai.com/docs/models/overview/.

Mohammadreza Pourreza and Davood Rafiei. 2023.
Din-sql: Decomposed in-context learning of text-
to-sql with self-correction. In Advances in Neural
Information Processing Systems, volume 36, pages
36339–36348. Curran Associates, Inc.

Jiexing Qi, Jingyao Tang, Ziwei He, Xiangpeng Wan,
Yu Cheng, Chenghu Zhou, Xinbing Wang, Quanshi
Zhang, and Zhouhan Lin. 2022. RASAT: Integrating
relational structures into pretrained Seq2Seq model
for text-to-SQL. In Proceedings of the 2022 Con-
ference on Empirical Methods in Natural Language
Processing, pages 3215–3229, Abu Dhabi, United
Arab Emirates. Association for Computational Lin-
guistics.

Nils Reimers and Iryna Gurevych. 2019. Sentence-
BERT: Sentence embeddings using Siamese BERT-
networks. In Proceedings of the 2019 Conference on
Empirical Methods in Natural Language Processing
and the 9th International Joint Conference on Natu-
ral Language Processing (EMNLP-IJCNLP), pages
3982–3992, Hong Kong, China. Association for Com-
putational Linguistics.

Freda Shi, Xinyun Chen, Kanishka Misra, Nathan
Scales, David Dohan, Ed H Chi, Nathanael Schärli,
and Denny Zhou. 2023. Large language models can
be easily distracted by irrelevant context. In Inter-
national Conference on Machine Learning, pages
31210–31227. PMLR.

Danqing Wang and Lei Li. 2023. Learning from mis-
takes via cooperative study assistant for large lan-
guage models. In Proceedings of the 2023 Confer-
ence on Empirical Methods in Natural Language Pro-
cessing, pages 10667–10685, Singapore. Association
for Computational Linguistics.

Dingzirui Wang, Longxu Dou, Xuanliang Zhang,
Qingfu Zhu, and Wanxiang Che. 2024a. Improv-
ing demonstration diversity by human-free fusing for
text-to-SQL. In Findings of the Association for Com-
putational Linguistics: EMNLP 2024, pages 1193–
1207, Miami, Florida, USA. Association for Compu-
tational Linguistics.

Tianshu Wang, Hongyu Lin, Xianpei Han, Le Sun, Xi-
aoyang Chen, Hao Wang, and Zhenyu Zeng. 2024b.
Dbcopilot: Scaling natural language querying to mas-
sive databases. Preprint, arXiv:2312.03463.

Zilong Wang, Hao Zhang, Chun-Liang Li, Julian Martin
Eisenschlos, Vincent Perot, Zifeng Wang, Lesly Mi-
culicich, Yasuhisa Fujii, Jingbo Shang, Chen-Yu Lee,
and Tomas Pfister. 2024c. Chain-of-table: Evolving
tables in the reasoning chain for table understanding.
In The Twelfth International Conference on Learning
Representations.

Tao Yu, Zifan Li, Zilin Zhang, Rui Zhang, and Dragomir
Radev. 2018a. TypeSQL: Knowledge-based type-
aware neural text-to-SQL generation. In Proceedings

of the 2018 Conference of the North American Chap-
ter of the Association for Computational Linguistics:
Human Language Technologies, Volume 2 (Short Pa-
pers), pages 588–594, New Orleans, Louisiana. As-
sociation for Computational Linguistics.

Tao Yu, Rui Zhang, Kai Yang, Michihiro Yasunaga,
Dongxu Wang, Zifan Li, James Ma, Irene Li, Qingn-
ing Yao, Shanelle Roman, Zilin Zhang, and Dragomir
Radev. 2018b. Spider: A large-scale human-labeled
dataset for complex and cross-domain semantic pars-
ing and text-to-SQL task. In Proceedings of the 2018
Conference on Empirical Methods in Natural Lan-
guage Processing, pages 3911–3921, Brussels, Bel-
gium. Association for Computational Linguistics.

Wayne Xin Zhao, Kun Zhou, Junyi Li, Tianyi Tang,
Xiaolei Wang, Yupeng Hou, Yingqian Min, Be-
ichen Zhang, Junjie Zhang, Zican Dong, Yifan Du,
Chen Yang, Yushuo Chen, Zhipeng Chen, Jinhao
Jiang, Ruiyang Ren, Yifan Li, Xinyu Tang, Zikang
Liu, Peiyu Liu, Jian-Yun Nie, and Ji-Rong Wen.
2023. A survey of large language models. Preprint,
arXiv:2303.18223.

A Appendix

A.1 Dataset Description

We used two development sets for our experiments,
Spider and Bird. Spider and Bird are cross-domain
datasets in English widely used for benchmarking.
Bird tries bridges the gap between text-to-SQL re-
search and real-world applications by dealing with
large and messy database values. The statistics be-
low include the total size and the distribution of
queries by difficulty levels.

Table 4: Statistics of Spider-Dev and Bird-Dev

Dataset Easy
(Simple)

Medium
(Moderate)

Hard
(Challenging) Extra

Spider (2147) 470 857 463 357
Bird (1534) 925 465 144 -

A.2 Construction of the Database Graph

The database graph G starts with a root node R.
An edge of type-1 connects R to each database Di.
From each database Di, edges of type-2 connect
to its constituent tables Tij . Additionally, edges
of type-3 represent relationships between tables
within the same database, specifically foreign key
constraints. If a table Tij in database Di references
another table Tik, a type-3 edge connects Tij to
Tik. (Algorithm A.1). Once the database graph is
constructed, we proceed to generate traversals on
this graph following Algorithm A.2.

https://platform.openai.com/docs/models/overview/
https://platform.openai.com/docs/models/overview/
https://proceedings.neurips.cc/paper_files/paper/2023/file/72223cc66f63ca1aa59edaec1b3670e6-Paper-Conference.pdf
https://proceedings.neurips.cc/paper_files/paper/2023/file/72223cc66f63ca1aa59edaec1b3670e6-Paper-Conference.pdf
https://doi.org/10.18653/v1/2022.emnlp-main.211
https://doi.org/10.18653/v1/2022.emnlp-main.211
https://doi.org/10.18653/v1/2022.emnlp-main.211
https://doi.org/10.18653/v1/D19-1410
https://doi.org/10.18653/v1/D19-1410
https://doi.org/10.18653/v1/D19-1410
https://doi.org/10.18653/v1/2023.emnlp-main.659
https://doi.org/10.18653/v1/2023.emnlp-main.659
https://doi.org/10.18653/v1/2023.emnlp-main.659
https://doi.org/10.18653/v1/2024.findings-emnlp.65
https://doi.org/10.18653/v1/2024.findings-emnlp.65
https://doi.org/10.18653/v1/2024.findings-emnlp.65
https://arxiv.org/abs/2312.03463
https://arxiv.org/abs/2312.03463
https://openreview.net/forum?id=4L0xnS4GQM
https://openreview.net/forum?id=4L0xnS4GQM
https://doi.org/10.18653/v1/N18-2093
https://doi.org/10.18653/v1/N18-2093
https://doi.org/10.18653/v1/D18-1425
https://doi.org/10.18653/v1/D18-1425
https://doi.org/10.18653/v1/D18-1425
https://arxiv.org/abs/2303.18223

10396

Ground Truth Simple Retrieval ICRL Augmented Retrieval

Question Gold Schema Synthetic Question Schema (R@1) Synthetic Question Schema (R@1)

What is the title of the
book written by George
Orwell that has the low-
est sale price?

[‘Book’, ‘Author_book’,
‘Author’]

Which books have the
highest sale price? [‘Author_Book’, ‘Book’]

What are the titles of books
written by authors whose
books have a sale price
between $10 and $20, or-
dered by the highest sale
price?

[‘Book’, ‘Author_book’,
‘Author’]

What are the distinct ids
of customers who bought
lemon flavored cake?

[‘items’, ‘receipts’,
‘goods’]

What are the details of
customers with a specific
customer ID?

[‘Customers’]

Which items of a specific
flavor and food type were
ordered by customers with
IDs between 100 and 200
on a given date range?

[‘items’, ‘receipts’,
‘goods’]

What is the least com-
mon detention type?
Show the code and the
description.

[‘Detention’,
‘Ref_Detention_Type’]

What is the description
for a given detention type
code?

[‘Ref_Detention_Type’]

What is the most common
type of detention given,
and for those detentions, re-
trieve the detention sum-
mary and other details
where the summary con-
tains the word ‘behavior’?

[‘Detention’,
‘Ref_Detention_Type’]

What are the prices and
sizes of all products
whose price is above the
mean?

[‘Products’]
Which food items have
a price above a certain
amount?

[‘goods’]

What is the most expensive
product of a certain color
and size range, and how
does its price compare to
the average price of prod-
ucts in that category?

[‘Products’]

Which make has more
than one team? [‘team’] What is the number of

drivers per team? [‘team_driver’]

Which car owners also
sponsor at least two teams,
and retrieve the team
names and car makes for
those teams?

[‘team’]

Table 5: Comparison of retrieved queries and schemas across the different retrieval methods.

A.3 Complexity Scores

To encourage the LLM to generate diverse and com-
posite questions, we meticulously designed a re-
ward function based on keyword categories. These
scores can be further adjusted to suit specific use
cases. Notably, these settings yielded the best re-
sults in our experiments.
Data retrieval and filtering SELECT (1), FROM
(1), JOIN (2), INNER JOIN (3), LEFT JOIN (3),
RIGHT JOIN (3), 4 (score to be confirmed), ON (2),
WHERE (2), GROUP BY (3), HAVING (3), ORDER BY
(2), DISTINCT (2), LIMIT (1).
Data modification INSERT (2), UPDATE (3),
DELETE (4)
Conditional logic AND (1), OR (1), NOT (1), IN (2),
BETWEEN (2), LIKE (2), CASE (3), WHEN (2), THEN
(2), ELSE (2), END (1)
Aggregation and sorting AVG (3), SUM (3),
COUNT (3), MIN (3), MAX (3), ASC (1), DESC (1).

A.4 Solving Complex User Questions using
ICRL

We analyze the retrieval methods by their error
rates across query complexity levels, proxied by
the number of tables in the ground truth query
schema. We compare three retrieval settings on
Spider and Bird Dev sets: top 2, top 5, and LLM-
aided RAG (top 1), i.e., the number of retrieved
schemas from the knowledge base. Figure A.2 un-

1 2 3 40.0

0.1

0.2

0.3

0.4

0.5

0.6
Spider (k=2)

1 2 3 40.00

0.05

0.10

0.15

0.20

0.25
Spider (k=5)

1 2 3 40.00

0.05

0.10

0.15

0.20

0.25

Spider (LLM Aided RAG) (k=1)

1 2 3 40.0
0.1
0.2
0.3
0.4
0.5
0.6
0.7
0.8

Bird (k=2)

1 2 3 40.0

0.1

0.2

0.3

0.4

0.5

0.6

Bird (k=5)

1 2 3 40.0

0.1

0.2

0.3

0.4

0.5

0.6
Bird (LLM Aided RAG) (k=1)

#No.of Tables in Schema

%
In

co
rre

ct
 P

re
di

ct
io

ns

Non RL Retrieval RL Retrieval

Figure 2: Comparison of Incorrect Distributions (RL
and Non-RL Retrieval) on Spider and Bird Dev sets on
top- k @2, @5

derscores the effectiveness of RL-based retrieval
methods in achieving lower error rates for complex
queries, which are common across industries, with-
out compromising accuracy on simpler queries.
Table A.5 highlights the effectiveness of ICRL aug-
mented retrieval over simple retrieval in generating
synthetic questions and retrieving relevant schemas.
The ICRL approach retrieved schemas are more
aligned with the ground truth and the formulated
synthetic questions better capture the complexity
of the original queries. This demonstrates that rein-
forcement learning feedback significantly helps in
enhancing schema identification recall.

10397

Algorithm 1 Construction of Database Schema Graph
Input: Metadata: List of databases and schemas
Output: Graph G representing the schema
1: Initialize root node R and graph G
2: G.add_node(R)
3: for each database D in databases do
4: G.add_node(D)
5: G.add_edge(R,D, 1) ▷ Type-1 edge
6: for each table T in D.tables do
7: G.add_node(T)
8: G.add_edge(D,T, 2) ▷ Type-2 edge
9: for each foreign key FK in T.foreign_keys do

10: G.add_edge(T, FK.related_table, 3) ▷ Type-3 edge
11: end for
12: end for
13: end for
14: return G

Algorithm 2 Serialization of Graph with Cutoff
Input: Graph G, starting node R, cutoff length k
Output: List of all traversals from R with cutoff length k

1: function GET_ALL_TRAVERSALS(G, R, k)
2: traversals← []
3: function SERIALIZE(node, path, depth, visited)
4: path← path+ [node]
5: traversals← traversals+ [path]
6: visited[node]← True
7: if depth < k then
8: if G.has_children(node) = True then
9: children← G.get_children(node)

10: if length(children) > 1 and edge_type = 3 then
11: subsets_children← power_set(children)
12: for each child c in children do
13: for each subset s in subsets_children do
14: if ∀n ∈ s, visited[n] = False then
15: SERIALIZE(c, path+ s, depth+ length(s) + 1, visited)
16: end if
17: end for
18: end for
19: else
20: for each child c in children do
21: if visited[c] = False then
22: SERIALIZE(c, path, depth+ 1, visited)
23: end if
24: end for
25: end if
26: end if
27: end if
28: visited[node]← False
29: path← path− [node]
30: end function
31: SERIALIZE(R, [], 0, {False} for all nodes in G)
32: return traversals
33: end function
34: k ← specified cutoff length
35: samples← GET_ALL_TRAVERSALS(G, R, k)

	Introduction
	Background
	Methodology
	In-Context RL Framework
	SQL Generation

	Experiments and Results
	Conclusion
	Limitations
	Appendix
	Dataset Description
	Construction of the Database Graph
	Complexity Scores
	Solving Complex User Questions using ICRL

