@inproceedings{mao-etal-2025-low,
title = "Low-Resource Fast Text Classification Based on Intra-Class and Inter-Class Distance Calculation",
author = "Mao, Yanxu and
Liu, Peipei and
Cui, Tiehan and
Liu, Congying and
You, Datao",
editor = "Rambow, Owen and
Wanner, Leo and
Apidianaki, Marianna and
Al-Khalifa, Hend and
Eugenio, Barbara Di and
Schockaert, Steven",
booktitle = "Proceedings of the 31st International Conference on Computational Linguistics",
month = jan,
year = "2025",
address = "Abu Dhabi, UAE",
publisher = "Association for Computational Linguistics",
url = "https://aclanthology.org/2025.coling-main.70/",
pages = "1045--1056",
abstract = "In recent years, text classification methods based on neural networks and pre-trained models have gained increasing attention and demonstrated excellent performance. However, these methods still have some limitations in practical applications: (1) They typically focus only on the matching similarity between sentences. However, there exists implicit high-value information both within sentences of the same class and across different classes, which is very crucial for classification tasks. (2) Existing methods such as pre-trained language models and graph-based approaches often consume substantial memory for training and text-graph construction. (3) Although some low-resource methods can achieve good performance, they often suffer from excessively long processing times. To address these challenges, we propose a low-resource and fast text classification model called LFTC. Our approach begins by constructing a compressor list for each class to fully mine the regularity information within intra-class data. We then remove redundant information irrelevant to the target classification to reduce processing time. Finally, we compute the similarity distance between text pairs for classification. We evaluate LFTC on 9 publicly available benchmark datasets, and the results demonstrate significant improvements in performance and processing time, especially under limited computational and data resources, highlighting its superior advantages."
}
<?xml version="1.0" encoding="UTF-8"?>
<modsCollection xmlns="http://www.loc.gov/mods/v3">
<mods ID="mao-etal-2025-low">
<titleInfo>
<title>Low-Resource Fast Text Classification Based on Intra-Class and Inter-Class Distance Calculation</title>
</titleInfo>
<name type="personal">
<namePart type="given">Yanxu</namePart>
<namePart type="family">Mao</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Peipei</namePart>
<namePart type="family">Liu</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Tiehan</namePart>
<namePart type="family">Cui</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Congying</namePart>
<namePart type="family">Liu</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Datao</namePart>
<namePart type="family">You</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<originInfo>
<dateIssued>2025-01</dateIssued>
</originInfo>
<typeOfResource>text</typeOfResource>
<relatedItem type="host">
<titleInfo>
<title>Proceedings of the 31st International Conference on Computational Linguistics</title>
</titleInfo>
<name type="personal">
<namePart type="given">Owen</namePart>
<namePart type="family">Rambow</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Leo</namePart>
<namePart type="family">Wanner</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Marianna</namePart>
<namePart type="family">Apidianaki</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Hend</namePart>
<namePart type="family">Al-Khalifa</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Barbara</namePart>
<namePart type="given">Di</namePart>
<namePart type="family">Eugenio</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Steven</namePart>
<namePart type="family">Schockaert</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<originInfo>
<publisher>Association for Computational Linguistics</publisher>
<place>
<placeTerm type="text">Abu Dhabi, UAE</placeTerm>
</place>
</originInfo>
<genre authority="marcgt">conference publication</genre>
</relatedItem>
<abstract>In recent years, text classification methods based on neural networks and pre-trained models have gained increasing attention and demonstrated excellent performance. However, these methods still have some limitations in practical applications: (1) They typically focus only on the matching similarity between sentences. However, there exists implicit high-value information both within sentences of the same class and across different classes, which is very crucial for classification tasks. (2) Existing methods such as pre-trained language models and graph-based approaches often consume substantial memory for training and text-graph construction. (3) Although some low-resource methods can achieve good performance, they often suffer from excessively long processing times. To address these challenges, we propose a low-resource and fast text classification model called LFTC. Our approach begins by constructing a compressor list for each class to fully mine the regularity information within intra-class data. We then remove redundant information irrelevant to the target classification to reduce processing time. Finally, we compute the similarity distance between text pairs for classification. We evaluate LFTC on 9 publicly available benchmark datasets, and the results demonstrate significant improvements in performance and processing time, especially under limited computational and data resources, highlighting its superior advantages.</abstract>
<identifier type="citekey">mao-etal-2025-low</identifier>
<location>
<url>https://aclanthology.org/2025.coling-main.70/</url>
</location>
<part>
<date>2025-01</date>
<extent unit="page">
<start>1045</start>
<end>1056</end>
</extent>
</part>
</mods>
</modsCollection>
%0 Conference Proceedings
%T Low-Resource Fast Text Classification Based on Intra-Class and Inter-Class Distance Calculation
%A Mao, Yanxu
%A Liu, Peipei
%A Cui, Tiehan
%A Liu, Congying
%A You, Datao
%Y Rambow, Owen
%Y Wanner, Leo
%Y Apidianaki, Marianna
%Y Al-Khalifa, Hend
%Y Eugenio, Barbara Di
%Y Schockaert, Steven
%S Proceedings of the 31st International Conference on Computational Linguistics
%D 2025
%8 January
%I Association for Computational Linguistics
%C Abu Dhabi, UAE
%F mao-etal-2025-low
%X In recent years, text classification methods based on neural networks and pre-trained models have gained increasing attention and demonstrated excellent performance. However, these methods still have some limitations in practical applications: (1) They typically focus only on the matching similarity between sentences. However, there exists implicit high-value information both within sentences of the same class and across different classes, which is very crucial for classification tasks. (2) Existing methods such as pre-trained language models and graph-based approaches often consume substantial memory for training and text-graph construction. (3) Although some low-resource methods can achieve good performance, they often suffer from excessively long processing times. To address these challenges, we propose a low-resource and fast text classification model called LFTC. Our approach begins by constructing a compressor list for each class to fully mine the regularity information within intra-class data. We then remove redundant information irrelevant to the target classification to reduce processing time. Finally, we compute the similarity distance between text pairs for classification. We evaluate LFTC on 9 publicly available benchmark datasets, and the results demonstrate significant improvements in performance and processing time, especially under limited computational and data resources, highlighting its superior advantages.
%U https://aclanthology.org/2025.coling-main.70/
%P 1045-1056
Markdown (Informal)
[Low-Resource Fast Text Classification Based on Intra-Class and Inter-Class Distance Calculation](https://aclanthology.org/2025.coling-main.70/) (Mao et al., COLING 2025)
ACL