
Proceedings of the 31st International Conference on Computational Linguistics, pages 1045–1056
January 19–24, 2025. ©2025 Association for Computational Linguistics

1045

Low-Resource Fast Text Classification Based on Intra-Class and
Inter-Class Distance Calculation

Yanxu Mao1*, Peipei Liu2,3*†, Tiehan Cui1, Congying Liu3, Datao You1†

1School of Software, Henan University, China
2Institute of Information Engineering, Chinese Academy of Sciences, China

3University of Chinese Academy of Sciences, China
Correspondence: peipliu@yeah.net

Abstract

In recent years, text classification methods
based on neural networks and pre-trained mod-
els have gained increasing attention and demon-
strated excellent performance. However, these
methods still have some limitations in practi-
cal applications: (1) They typically focus only
on the matching similarity between sentences.
However, there exists implicit high-value in-
formation both within sentences of the same
class and across different classes, which is very
crucial for classification tasks. (2) Existing
methods such as pre-trained language mod-
els and graph-based approaches often consume
substantial memory for training and text-graph
construction. (3) Although some low-resource
methods can achieve good performance, they
often suffer from excessively long processing
times. To address these challenges, we pro-
pose a low-resource and fast text classification
model called LFTC. Our approach begins by
constructing a compressor list for each class
to fully mine the regularity information within
intra-class data. We then remove redundant in-
formation irrelevant to the target classification
to reduce processing time. Finally, we compute
the similarity distance between text pairs for
classification. We evaluate LFTC on 9 publicly
available benchmark datasets, and the results
demonstrate significant improvements in per-
formance and processing time, especially under
limited computational and data resources, high-
lighting its superior advantages.

1 Introduction

Text classification aims to categorize natural lan-
guage texts into predefined classes (Minaee et al.,
2021), and it is widely used in various fields such
as sentiment analysis, topic classification (Yang
et al., 2016), and news classification. Currently,
deep learning based methods represented by neural
networks dominate in text classification tasks (Lin

*Authors contribute equally
†Corresponding author

et al., 2021; Li et al., 2022). Existing methods can
be divided into two categories (Ding et al., 2020;
Lin et al., 2021; Jiang et al., 2023): transductive
learning, represented by graph neural networks,
and inductive learning, represented by recurrent
neural networks and convolutional neural networks.
However, transductive learning methods require
access to the test dataset during the training phase
(Li et al., 2021), which means that when encoun-
tering new text data, the existing model needs to
be retrained. This limitation reduces the practical
applicability of these methods. Therefore, this pa-
per focuses on inductive learning methods for text
classification.

Existing text classification models (Lin et al.,
2021; Devlin et al., 2019) typically rely on large
amounts of labeled data and high-performance
computing resources to achieve their superior per-
formance. While these models excel at handling
large-scale data, their application in low-resource
settings (e.g., when labeled data is scarce or com-
putational power is limited) is constrained (Zhao
et al., 2022). In cases of few-shot learning, these
neural network-based models exhibit a certain de-
gree of robustness. However, their limited feature
representation often falls short of meeting practi-
cal application needs. Recently, Jiang et al. (2023)
proposed a classification method based on a sin-
gle compressor, which to some extent alleviates
the issues of data scarcity and limited computa-
tional resources. Wen and Fang (2023) employed
graph-based pre-training and prompts to enhance
low-resource text classification. These methods
not only achieve efficient classification results on
limited datasets but also significantly reduce model
complexity and computational costs.

Despite previous research achieving break-
through results, real-world applications may face
significant limitations in terms of speed and re-
source requirements (Liu et al., 2024; Ding et al.,
2020). These methods have the following three

mailto:email@domain

1046

main limitations: (1) Existing deep learning meth-
ods mainly focus on simple pairwise sentence
matching within texts (i.e., inter-sentence relation-
ships). However, in natural language texts, the
interactions between sentence pairs are not merely
binary as a single sentence may have close connec-
tions with many other sentences within the texts.
This necessitates greater attention to intra-class reg-
ularities and inter-class differences to more effec-
tively complete the classification task. (2) Current
methods often have high computational resource
requirements. Approaches based on pre-trained
language models (Lin et al., 2021) and graph-based
methods (Wang et al., 2022) can result in signifi-
cant memory consumption during training and text
word graph construction. (3) Some low-resource
methods (i.e., methods with limited data and com-
putational resources (Ding et al., 2020)) still require
significant time consumption in pursuit of higher
efficiency. The time costs associated with these
methods limit their practicality in real-time appli-
cations. Therefore, although these methods offer
certain solutions in resource-constrained environ-
ments, there is still a need to balance efficiency
with time consumption in practical applications to
enhance their real-world value.

To mitigate the limitations of existing methods,
we propose an efficient and rapid text classification
approach that does not require a pre-training pro-
cess and is parameter-free. This approach achieves
rapid processing in environments with constrained
computational and data resources by optimizing
data handling and classification strategies. Specif-
ically, by employing innovative and efficient data
structures, we significantly reduce time complexity
and computational overhead. Additionally, this ap-
proach is adaptable to various text classification
tasks without relying on large-scale pre-trained
models, thus reducing the complexity of implemen-
tation and maintenance. Experiments on multiple
benchmark datasets demonstrate that this method
enhances classification accuracy while significantly
improving processing speed and resource utiliza-
tion. Our main contributions can be summarized
as follows:

• We propose LFTC (Low-Resource Fast Text
Classification), which utilizes a text compres-
sion method to calculate the compression dis-
tance of global and local text information. The
approach fully leverages multiple inter-class
and intra-class correlations to achieve text

classification tasks.

• LFTC is a lightweight model, especially suit-
able for scenarios with scarce labeled data and
limited computational resources. The model
effectively eliminates redundant data irrele-
vant to predictions, thereby completing text
classification tasks in a relatively short time
and demonstrating high practicality in real-
world applications.

• We conduct extensive experiments on nine
benchmark datasets, and our method achieves
SOTA scores on multiple datasets among non-
pretrained models. The method also signifi-
cantly outperforms others in few-shot experi-
ments, demonstrating the model’s superiority.

2 Related Work

Our research is closely related to text classification
methods based on data compression, low-resource,
and deep learning. Therefore, we have provided a
brief overview of these three methods.

2.1 Text Classification Based on Data
Compression

This is a relatively uncommon approach, where
methods calculate the similarity score between
texts based on the compression distance derived
from a specific compression technique, thereby ac-
complishing text classification tasks (Keogh et al.,
2004). Initially, Benedetto et al. (2002) proposed
a text classification method that combined entropy
estimation and the open Gzip compressor with text
similarity measurement. Subsequently, Coutinho
and Figueiredo (2015) introduced a text classifica-
tion method based on information-theoretic dissim-
ilarity measures, mapping texts into a feature space
defined by these measures to represent dissimilar-
ity. Later, Kasturi and Markov (2022) presented
a language-agnostic technique called Zest, which
further improved the performance of text classifi-
cation tasks by simplifying configuration and en-
hancing text representation, thus avoiding meticu-
lous feature extraction and large models. Recently,
Jiang et al. (2023) proposed a single-compressor
model called gzip, which combines the open Gzip
compressor and a classifier for text classification
tasks without any training parameters. However,
although existing methods can provide excellent
performance, they often require longer processing
times.

1047

2.2 Low Resource Text Classification

Low-resource text classification refers to the task
of classifying text when labeled data (i.e., text sam-
ples with classification labels) is extremely lim-
ited, and it can also be considered as having lim-
ited computational resources. These situations are
quite common in practical applications, as collect-
ing large amounts of labeled data is often time-
consuming and computational resources are ex-
pensive. Ding et al. (2020) proposed a princi-
pled model called Hypergraph Attention Networks,
which can achieve greater expressive power with
less computational cost, used for text representa-
tion learning. In low-resource text classification,
the scarcity of labeled data can lead to poor per-
formance in traditional classification models that
require large amounts of labeled data for training,
and may even result in overfitting issues (Hed-
derich et al., 2021). Chen et al. (2022) introduced
a contrastive learning framework called Contrast-
Net, which addresses the issues of discriminative
representation and overfitting in text classification
by learning to pull together text representations of
the same class and push apart those of different
classes.

2.3 Text Classification Based on Deep
Learning

Zhang et al. (2015); Adhikari et al. (2019) utilized
CNN convolutional layers to extract local features
from text, capturing n-gram features for classifica-
tion. Wang et al. (2016) proposed an attention-
based LSTM that processes text sequence data
and captures long-distance dependencies within
the text, demonstrating competitive performance
in aspect-level text classification. Subsequently,
Devlin et al. (2019) introduced the pre-trained lan-
guage model BERT, which uses the self-attention
mechanism to capture contextual dependencies in
text, achieving high performance in text classifica-
tion. Later, Lin et al. (2021); Sun et al. (2023); Liu
et al. (2024) proposed methods that leverage large-
scale pre-training on massive raw data and jointly
learn representations for both labeled training data
and unlabeled test data through label propagation
using graph convolutional networks (GCNs). How-
ever, these methods typically require substantial
computational and data resources, making them
challenging to apply effectively in low-resource
environments.

Compared to the existing methods mentioned

ZSTD Compressor

...
label:[texts]

label:[texts]

label:[texts]

...

min_score
[texts]

Gzip Compressor

secmin_score
[texts]

Label Classifierpred label

Silver Labels
Silver Texts

Compressor List

Compressor List

Compressor List

...

ZSTD Compressor

ZSTD Compressor

Gold Labels
Gold Texts

Multi Compressor Classification Module

Centralized Reasoning Module
NCD

Figure 1: The overall architecture of LFTC.

above, our method not only improves performance
but also reduces time consumption, achieving dual
optimization.

3 Method

Figure 1 presents the overall framework of our pro-
posed LFTC model, and Algorithm 1 shows the
pseudocode corresponding to the model’s execu-
tion process (Due to space limitations, we have
included it in Appendix A). In this section, we first
describe the construction process of the compres-
sor list, followed by a detailed explanation of the
two execution modules of LFTC: the Multi Com-
pressor Classification Module and the Centralized
Reasoning Module.

3.1 Compressor List Construction

Text compression algorithms reduce the storage
space of text by removing redundant data. The
different compression lengths produced by ap-
plying the same compression algorithm to differ-
ent texts can reflect the varying characteristics
of the text content (Kasturi and Markov, 2022).
Texts within the same class exhibit more regu-
larity compared to those from different classes
(Jiang et al., 2023). Therefore, to better utilize
the intra-class information, we find and concate-
nate the all texts belonging to each class Ci from
the training data with m texts {T1, T2, . . . , Tm} :
TsCi = {T1Ci

, T2Ci
, . . . , TlCi

}, where TsCi repre-
sents all the intra-class texts of Ci class.

We divide the data of each class into NCi seg-
ments based on the given step size S:

NCi =

⌈
len(TsCi)

|S|

⌉
(1)

1048

For each segment, a compressor is constructed:

ZCi,NCi
= Zstd (TsCi [x · S : (x+ 1) · S]) (2)

where x is the segment index. Zstd is a high-speed
lossless data compression algorithm (Chen et al.,
2021).

Suppose the text T = {L1, L2, . . . , Ln}, where
Ln is the n-th substring of the text. A compression
dictionary D is constructed, assigning correspond-
ing labels p to the substrings appearing in the text.
Finally, we integrate these compressors built based
on intra-class regularities of the same text and ob-
tain a set of compressors corresponding to each
class Ci:

ZCi = {ZCi,0, ZCi,1, . . . , ZCi,NCi
−1}. (3)

3.2 Multi Compressor Classification Module

We input the data to be classified, TCi , into the con-
structed compressors. Based on the characteristics
of the input data, we use Zstd’s adaptive algorithm
to adjust the compression level for optimizing both
compression speed and compression ratio. Each
text TCi is processed through all the compressors
corresponding to the each label. The compressors
maintain a sliding window W , which is used to
store and search for recently seen strings. This al-
lows us to compute the longest matching substring
Lmax in the current text TCi :

Lmax = max{L : TCi [j : j +W] = D[k, k +W]} (4)

where W ∈ [1, len(TCi)], len(·) calculates the
length of the text, j ∈ [0, len(TCi) − W], k ∈
[1, j), and L is a substring of the text TCi .

We replace the repeated strings with the cor-
responding labels p from the compression dictio-
nary D based on the maximum matching substring,
thereby reducing the data volume. The replaced
string Ld can be represented as:

Ld = TCi : Re(L max, p) (5)

During the compression process, entropy coding
is used to assign shorter codes to high-probability
symbols and longer codes to low-probability sym-
bols, further reducing the data size. The memory
size obtained by entropy encoding TCi is:

Le = −
n∑

d=1

P(Ld) · log2 P(Ld) (6)

where n is the number of TCi’s substrings Ld, and
P(Ld) is the probability of occurrence of substring
Ld.

Subsequently, we can calculate the final com-
pression length of the input text TCi after dictio-
nary replacement and entropy encoding. The value,
defined as the final score of compressor ZCi,NCi

with class Ci, can be expressed as follows:

Score(ZCi,NCi
) = Le(TCi) +O(D) (7)

where Le(TCi) is the actual space occupied by the
compressed data. And O(D) represents the ad-
ditional memory overhead required for using the
compression dictionary, which includes the storage
overhead of the dictionary itself and other metadata
costs associated with the compression process.

Finally, we sum the compression scores for each
compressor list ZCi to obtain the final score for
the current text under each label. The shorter the
compression length, the lower the score, indicating
that the model is more familiar with the text of
that category (Kasturi and Markov, 2022; Jiang
et al., 2023). We search the Silver data for the
two texts Tp and Tq corresponding to the lowest
scores, with their category labels denoted as p and
q, respectively.

3.3 Centralized Reasoning Module
To achieve more accurate predictions, we extract
the text data with classification labels p and q from
the training data for centralized information infer-
ence. This approach better utilizes the relevant
information between two classes and requires only
localized computations, thereby excluding redun-
dant data and significantly improving the model’s
prediction speed. To search for other text data most
similar to the true class of the current text TCi ,
we remove Tp and Tq while extracting data with
class labels p and q. The remaining data is used as
supporting evidence for focused inference, and we
refer to this text data as Gold data.

First, the Gold data undergoes a simple com-
pression process using the Gzip compressor. Sec-
ond, we use the Normalized Compression Distance
(NCD) (Cohen and Vitanyi, 2015) to measure the
similarity between the prediction text T and the
Gold data. It is computed as follows:

NCD (TCi ,Y) =
C(TCi

Y)−min(C(Y),C(TCi
))

max(C(Y),C(TCi
))

(8)

where C(·) represents the compression size, and
Y = (TsCp : TsCq) is the concatenation of the
two labeled datasets.

1049

Through the above steps, we can obtain the com-
pression distance between the input text and the
Gold data. We use the KNN algorithm to classify a
data point based on its distance from other points.
Given a sample TCi to be classified, the algorithm
identifies the K nearest samples in the Gold data
that are most similar to TCi (i.e., the K nearest
neighbors). The class of the sample is then deter-
mined by voting or weighting based on the labels
of these neighboring samples.

4 Experiments

4.1 Datasets

To validate the effectiveness of LFTC, we con-
ducted experiments on nine benchmark datasets
widely used in text classification tasks. These
datasets cover a range of content from technical re-
ports to medical literature, and provide social news
from different languages and cultural backgrounds.
These characteristics make them ideal for assessing
the effectiveness and generalization capability of
text classification models. A summary of the statis-
tics on categories, sample sizes, and other details
for each dataset is presented in Table 1, with a de-
tailed description provided below. (1) R8 and R52
(Joachims, 1998) are two Reuters datasets used for
news classification. (2) AGnews (Del Corso et al.,
2005) is sourced from the online academic news
search engine comeToMyHead, featuring a moder-
ate amount of data, balanced category distribution,
and text content covering multiple domains. (3)
Ohsumed (Hersh et al., 1994) is a medical dataset
containing 270 types of medical literature. (4) So-
gouNews (Zhang et al., 2015) is a Chinese news
classification dataset provided by Sogou, including
news articles collected from the Sogou News web-
site. (5) 20News (LANG, 1995) is a classic English
text classification dataset containing posts from 20
different newsgroups. (6) SwahiliNews (Martin
et al., 2022) is a dataset for Swahili news classi-
fication, while kirnews and kinnews (Niyongabo
et al., 2020) are datasets for news classification
in Kirundi and Kinyarwanda, respectively. These
datasets were created to support NLP research for
minority languages.

4.2 Baselines

We compare the proposed LFTC with the follow-
ing two categories of models:

Dataset Train Test Class Word
R8 5.5K 2.2K 8 24K
R52 6.5K 2.6K 52 26K
Ohsumed 3.4K 4K 23 55K
20News 11K 7.5K 20 277K
AGnews 120K 7.6K 4 128K
kirnews 3.7K 0.9K 14 63K
kinnews 17K 4.3K 14 240K
SwahiliNews 22.2K 7.3K 6 570K
SogouNews 450K 60K 5 611K

Table 1: Summary statistics of the evaluation datasets.

4.2.1 Non-Pre-training Models.
TF-IDF + LR combines TF-IDF (Term Frequency-
Inverse Document Frequency) feature extraction
with LR (Logistic Regression) classification algo-
rithm. CNNs and LSTM use pre-trained GloVe
word embeddings to initialize the text, which is
then input into the respective deep networks. For
CNNs, we compare various versions, including
very deep CNNs (VDCNN) (Conneau et al., 2017),
character CNNs (charCNN) (Zhang et al., 2015),
recurrent CNNs (RCNN) (Lai et al., 2015), and
textCNN. For LSTM, we compare the Bi-LSTM
with attention (Wang et al., 2016). Addition-
ally, we compare the mainstream frameworks fast-
Text (Joulin et al., 2017), Hierarchical Attention
Networks (HAN) (Yang et al., 2016), and the
lightweight model gzip (Jiang et al., 2023).

4.2.2 Pre-training Models.
BERT (Devlin et al., 2019) is a powerful baseline
model in text classification, consistently demon-
strating excellent performance due to its extensive
resource support. Comparing our lightweight ap-
proach with BERT highlights the advantages of our
proposed method more significantly. We also com-
pare SentBERT (Reimers and Gurevych, 2019),
which fine-tunes the pre-trained BERT model to
generate high-quality sentence representations tai-
lored for specific tasks, and mBERT (Pires et al.,
2019), which handles text data in multiple lan-
guages and has cross-lingual representation capa-
bilities. Word2Vec (W2V) is also considered, as
it is highly useful in text classification tasks for
generating word embeddings that map words into
high-dimensional vector spaces, capturing seman-
tic relationships between words.

4.3 Implementation Details

In our model evaluation, we conducted experiments
using both the full dataset and few-shot dataset. For
the kirnews, kinnews and SwahiliNews datasets,

1050

we set the shot size to 5 for the experiments. For
the AGNews and SogouNews datasets, we experi-
mented with shot sizes of 5, 10, 50 and 100. It is
worth noting that when a tie occurs in KNN (i.e.,
when two or more nearest neighbor labels appear
with the same frequency), we only use the closest
one as the final prediction. This ensures a fairer
comparison of performance differences between
models. This approach avoids the accuracy infla-
tion observed in the method proposed by (Jiang
et al., 2023), where they selected the two closest
distances as the prediction result.

Additionally, the LFTC model does not require
extensive computational resources and can effi-
ciently complete text classification tasks even using
only a CPU. We set the same number of threads to
compare the speed with other lightweight models.

5 Results and Analyses

In this section, we report the results of LFTC
on both in-distribution (ID) datasets and out-of-
distribution (OOD) datasets. ID datasets refer to
those where the data distribution seen during train-
ing is similar to that encountered during testing.
In other words, the patterns and features learned
by the model during training are also present in
the test data. Conversely, OOD datasets refer to
datasets where the data distribution significantly
differs from the training data. Testing LFTC on
OOD datasets helps evaluate the model’s general-
ization ability, that is, its performance when en-
countering new data that differ from the training
data.

5.1 Result on ID Datasets

Table 2 presents the results of LFTC on ID datasets.
It can be observed that our method has surpassed
all non pre-training models on the R8 and AG-
news datasets. We also achieve competitive re-
sults on the R52 and 20News datasets. Overall,
BERT-based models demonstrate strong robust-
ness on ID datasets. However, it is known that
pre-training models often require substantial data
and computational resources. Our model, with-
out any pre-training or additional data augmenta-
tion, still achieves commendable performance on
ID datasets. This advancement promotes the appli-
cation of parameter-free methods in text classifica-
tion and inspires that efficient task processing can
be achieved without relying on traditional complex
model stacking. In Table 4, we present the average

kirnews R52
Ohsumed

kinnews R8
20News

SwahiliNews
AGnews

Dataset

0

10

102

103

104

Sp
en

d
tim

e
(s

)

gzip
LFTC

Figure 2: Time consumption of the two lightweight
models across different datasets. The vertical axis is
displayed in exponential form.

5 10 50 100
shot

4

6

8

10

12

Sp
en

d
tim

e
(s

)

AGnews

gzip
LFTC

5 10 50 100
shot

200

400

600

800

1000

1200

1400

Sp
en

d
tim

e
(s

)

SogouNews

gzip
LFTC

Figure 3: Comparison of time consumption of the two
models in the few-shot experiments.

performance of all baseline models. It is evident
that our method significantly exceeds the average
on all datasets, except for the Ohsumed dataset.

5.2 Result on OOD Datasets

Table 3 presents the performance of LFTC on the
OOD datasets. We observe that LFTC achieves
SOTA results on the KirNews, KinNews, and
SwahiliNews datasets, both in the full dataset and
5-shot experiments. In the full dataset experiments,
LFTC scores 3.5%, 8.7%, and 1.9% higher than
BERT (Devlin et al., 2019), respectively. Although
LFTC performs less well on the SogouNews full
dataset, it still achieves competitive scores. In the
5-shot experiments across the four datasets, LFTC
outperforms the second-place scores by 16.1%,
6.5%, 8.4%, and 5.6%, respectively.

5.3 Result on Few-Shot Experiment

Due to the limited number of samples in some
datasets, which prevents reaching the 100-shot sam-
ple size requirement for certain categories, we se-
lected the larger datasets, SogouNews and AGnews,
for the few-shot experiment. Tables 5 and 6 present
the few-shot experiment results of LFTC on So-
gouNews and AGnews, respectively. It can be seen

1051

Dataset
Category Model R52 Ohsumed 20News AGnews R8

Non Pre-training

TFIDF+LR 0.874 0.549 0.827 0.898 0.949
LSTM 0.855 0.411 0.657 0.861 0.937
Bi-LSTM+Attn 0.886 0.481 0.667 0.917 0.943
HAN 0.914 0.462 0.646 0.896 0.960
charCNN 0.724 0.269 0.401 0.914 0.823
textCNN 0.895 0.570 0.751 0.817 0.951
RCNN 0.773 0.472 0.716 0.912 0.810
fastText 0.571 0.218 0.690 0.911 0.827
VDCNN 0.750 0.237 0.491 0.913 0.858
gzip 0.852 0.365 0.608 0.835 0.913

Pre-training
BERT 0.960 0.741 0.868 0.944 0.982
SentBERT 0.910 0.719 0.778 0.940 0.947
W2V 0.856 0.284 0.460 0.892 0.930

Non Pre-training LFTC(Ours) 0.906 0.435 0.814 0.919 0.965

Table 2: The accuracy of text classification by different models on the ID dataset. We test the model’s performance
using KNN with K=1.

Dataset
Category Model kirnews kinnews SwahiliNews SogouNews

Full 5-shot Full 5-shot Full 5-shot Full 5-shot

Non Pre-training

Bi-LSTM+Attn 0.872 0.254 0.843 0.253 0.863 0.357 0.952 0.534
HAN 0.881 0.190 0.820 0.137 0.887 0.264 0.957 0.425
fastText 0.883 0.245 0.869 0.170 0.874 0.347 0.930 0.545
gzip 0.858 0.416 0.835 0.326 0.850 0.467 0.957 0.507

Pre-training
BERT 0.879 0.386 0.838 0.240 0.897 0.396 0.952 0.221
W2V 0.904 0.288 0.874 0.281 0.892 0.373 0.943 0.141
SentBERT 0.886 0.314 0.788 0.314 0.822 0.436 0.860 0.485
mBERT 0.874 0.324 0.835 0.229 0.906 0.558 0.953 0.282

Non Pre-training LFTC(Ours) 0.914 0.577 0.925 0.391 0.916 0.642 0.935 0.601

Table 3: The accuracy of text classification by different models on the OOD dataset. We test the model’s performance
using KNN with K=1. We conduct ten experiments with 5-shot settings based on 95% confidence and report the
average accuracy, with the best performance highlighted in bold.

Dataset Average LFTC(Ours)
R8 0.910 0.965
R52 0.832 0.906
Ohsumed 0.445 0.435
20News 0.704 0.810
AGnews 0.896 0.919

Table 4: Comparison of LFTC and the average accu-
racy scores of all baseline models.

that on the SogouNews dataset, LFTC achieves
state-of-the-art performance regardless of the shot
settings. On the AGnews dataset, LFTC achieves
competitive scores in the 5-shot and 10-shot ex-
periments, although it does not surpass the Sent-
BERT (Reimers and Gurevych, 2019) pre-trained
language model. However, in the 50-shot and 100-
shot experiments, LFTC performed exceptionally
well, achieving the best performance.

5.4 Comparison of Model Speed

To explore the high availability of LFTC in indus-
trial production, we compared its speed with gzip
(Jiang et al., 2023), another lightweight model, us-
ing the same parameters. Figure 2 shows the time
consumption of the two models across different
datasets. We observe that on the KirNews dataset,
LFTC completes the classification task in approx-
imately 10 seconds, whereas gzip requires about
10 times longer. On other datasets, LFTC’s run-
time is faster than gzip by the following multiples:
6.24 times on R52, 9.74 times on KinNews, 7.29
times on Ohsumed, 4.12 times on R8, 15.80 times
on 20News, 5.54 times on SwahiliNews, and 5.91
times on AGNews. Figure 3 shows the time con-
sumption of the two models in the few-shot ex-
periments. It can be observed that as the sample
size increases, gzip’s time consumption increases
dramatically, whereas LFTC does not exhibit this

1052

Model
SogouNews

5-shot 10-shot 50-shot 100-shot
Bi-LSTM+Attn 0.534± 0.042 0.614± 0.047 0.771± 0.021 0.812± 0.008

HAN 0.425± 0.072 0.542± 0.118 0.671± 0.102 0.808± 0.020

fastText 0.545± 0.053 0.652± 0.051 0.782± 0.034 0.809± 0.012

BERT 0.221± 0.041 0.226± 0.060 0.392± 0.276 0.679± 0.073

W2V 0.141± 0.005 0.124± 0.048 0.133± 0.016 0.395± 0.089

SentBERT 0.485± 0.043 0.501± 0.041 0.565± 0.013 0.572± 0.003

gzip 0.507± 0.042 0.574± 0.064 0.710± 0.010 0.759± 0.007

LFTC(Ours) 0.601± 0.116 0.654± 0.073 0.807± 0.022 0.842± 0.018

Table 5: Few-shot experiment on the SogouNews dataset, reporting the average accuracy of ten trials.

Model
AGNews

5-shot 10-shot 50-shot 100-shot
Bi-LSTM+Attn 0.269± 0.022 0.331± 0.028 0.549± 0.028 0.665± 0.019

HAN 0.274± 0.024 0.289± 0.020 0.340± 0.073 0.548± 0.031

fastText 0.273± 0.021 0.329± 0.036 0.550± 0.008 0.684± 0.010

W2V 0.388± 0.186 0.546± 0.162 0.531± 0.272 0.395± 0.089

SentBERT 0.589± 0.038 0.617± 0.034 0.706± 0.026 0.713± 0.011

gzip 0.362± 0.035 0.405± 0.060 0.517± 0.016 0.566± 0.022

LFTC(Ours) 0.530± 0.094 0.594± 0.102 0.762± 0.059 0.761± 0.043

Table 6: Few-shot experiment on the AGNews dataset, reporting the average accuracy of ten trials.

Dataset
Model kirnews kinnews R8 R52
LFTC 0.914 0.925 0.965 0.906
LFTC-MCC 0.903 0.878 0.933 0.871
LFTC-CR 0.883 0.867 0.938 0.848

Table 7: Ablation results of various experimental set-
tings.

phenomenon.
These results demonstrate that we have suc-

cessfully achieved an optimal balance between
performance and resource consumption. The
LFTC model significantly reduces computation
time while maintaining high performance and low
complexity. This time-saving not only enhances
overall efficiency but also validates the efficiency
of LFTC in handling large-scale text classification
tasks.

5.5 Ablation Study

We consider two ablation experiments on the
LFTC model. We first remove the Multi Compres-
sor Classification (MCC), meaning that we only
use a single Zstd compressor for text compression
instead of constructing multiple compressor lists
for each label. The results in Table 7 show that
the absence of the compressor structure leads to
a noticeable decrease in performance across all

datasets, with the largest drop of 4.7% observed on
the kinnews dataset. This indirectly confirms the
effectiveness of our compressor structure.

The second experiment removes Centralized
Reasoning (CR) from LFTC. In this case, we se-
lect only the result with the smallest compression
length from the compressor list as the final pre-
diction, without considering the second possible
result. We observe that this leads to a significant
decline in model performance, indicating that the
ignored result could potentially be the correct pre-
diction label. Based on this observation, we also
attempted to consider the third similar result but did
not achieve the expected scores, so we discarded
this idea.

6 Conclusion

In this work, we propose a text classification model
LFTC based on the compressor structure which
computes compression distances through intra-
class and inter-class text information. Extensive
experiments show that, compared to other meth-
ods, our method requires less computational and
data resources while achieving more efficient text
classification within a shorter time frame, resulting
in dual optimization in performance and resource
usage. This method provides an insight: rather than
relying on traditional complex pre-training pro-

1053

cesses and large model structures, high-efficiency
text classification can be achieved through innova-
tive compressor structure design and utilization of
valuable information. Such a strategy not only en-
hances the practical applicability of the model but
also offers a new perspective for machine learning
tasks in resource-constrained environments.

Limitations

LFTC emphasizes dual optimization of both speed
and performance for text classification tasks, and
we have not pursued extreme performance opti-
mization at the expense of reduced speed. For
example, when constructing the compressor list,
we considered that having too many compressors
in the list could affect the model’s speed, so we
limited the number of compressors in the list. This
approach limits our performance scores in some
experiments. Another limitation of LFTC is that
we adjusted the compression levels according to
different datasets, but we did not adjust the com-
pression levels for each individual data point within
the datasets. We speculate that more targeted ad-
justments of compression levels for specific data
points could obtain better performance scores.

Ethics Statement

Our proposed LFTC demonstrates outstanding ad-
vantages and is an excellent solution for text clas-
sification tasks. This method is only evaluated on
publicly available datasets to ensure that personal
privacy is not compromised. In addition, we also
provide the source code implementation of LFTC,
enabling researchers to realistically reproduce its
performance and promote academic exchange in
the field of text classification.

References
Ashutosh Adhikari, Achyudh Ram, Raphael Tang, and

Jimmy Lin. 2019. Rethinking complex neural net-
work architectures for document classification. In
Proceedings of the 2019 Conference of the NAACL:
Human Language Technologies, Volume 1 (Long and
Short Papers), pages 4046–4051.

Dario Benedetto, Emanuele Caglioti, and Vittorio
Loreto. 2002. Language trees and zipping. Phys-
ical review letters, 88(4):048702.

Jianyu Chen, Maurice Daverveldt, and Zaid Al-Ars.
2021. Fpga acceleration of zstd compression al-
gorithm. In 2021 IEEE International Parallel
and Distributed Processing Symposium Workshops
(IPDPSW), pages 188–191. IEEE.

Junfan Chen, Richong Zhang, Yongyi Mao, and Jie Xu.
2022. Contrastnet: A contrastive learning framework
for few-shot text classification. In Proceedings of the
AAAI Conference on Artificial Intelligence, 10, pages
10492–10500.

Andrew R Cohen and Paul MB Vitanyi. 2015. Normal-
ized compression distance of multisets with appli-
cations. IEEE transactions on pattern analysis and
machine intelligence, 37(8):1602–1614.

Alexis Conneau, Holger Schwenk, Loïc Barrault, and
Yann Lecun. 2017. Very deep convolutional networks
for text classification. In Proceedings of the 15th
Conference of the European Chapter of the ACL:
Volume 1, Long Papers, pages 1107–1116.

David Pereira Coutinho and Mario AT Figueiredo.
2015. Text classification using compression-based
dissimilarity measures. International Journal
of Pattern Recognition and Artificial Intelligence,
29(05):1553004.

Gianna M Del Corso, Antonio Gulli, and Francesco Ro-
mani. 2005. Ranking a stream of news. In Proceed-
ings of the 14th international conference on World
Wide Web, pages 97–106.

Jacob Devlin, Ming-Wei Chang, Kenton Lee, and
Kristina Toutanova. 2019. Bert: Pre-training of deep
bidirectional transformers for language understand-
ing. In Proceedings of the 2019 Conference of the
NAACL: Human Language Technologies, Volume 1
(Long and Short Papers), pages 4171–4186.

Kaize Ding, Jianling Wang, Jundong Li, Dingcheng Li,
and Huan Liu. 2020. Be more with less: Hypergraph
attention networks for inductive text classification.
In Proceedings of the 2020 Conference on EMNLP,
pages 4927–4936.

Michael A Hedderich, Lukas Lange, Heike Adel, Jannik
Strötgen, and Dietrich Klakow. 2021. A survey on
recent approaches for natural language processing in
low-resource scenarios. In Proceedings of the 2021
Conference of the North American Chapter of the
ACL: Human Language Technologies, pages 2545–
2568.

William Hersh, Chris Buckley, TJ Leone, and David
Hickam. 1994. Ohsumed: An interactive retrieval
evaluation and new large test collection for research.
In SIGIR’94: Proceedings of the Seventeenth Annual
International ACM-SIGIR Conference on Research
and Development in Information Retrieval, organised
by Dublin City University, pages 192–201. Springer.

Zhiying Jiang, Yiqin Dai, Ji Xin, Ming Li, and Jimmy
Lin. 2022. Few-shot non-parametric learning with
deep latent variable model. Advances in NeurIPS,
35:26448–26461.

Zhiying Jiang, Matthew Yang, Mikhail Tsirlin, Raphael
Tang, Yiqin Dai, and Jimmy Lin. 2023. “low-
resource” text classification: A parameter-free classi-
fication method with compressors. In Findings of the
ACL 2023, pages 6810–6828.

https://aclanthology.org/N19-1408/
https://aclanthology.org/N19-1408/
https://journals.aps.org/prl/abstract/10.1103/PhysRevLett.88.048702
https://ieeexplore.ieee.org/abstract/document/9460400
https://ieeexplore.ieee.org/abstract/document/9460400
https://ojs.aaai.org/index.php/AAAI/article/view/21292
https://ojs.aaai.org/index.php/AAAI/article/view/21292
https://ieeexplore.ieee.org/abstract/document/6967789/
https://ieeexplore.ieee.org/abstract/document/6967789/
https://ieeexplore.ieee.org/abstract/document/6967789/
https://arxiv.org/abs/1606.01781
https://arxiv.org/abs/1606.01781
https://www.worldscientific.com/doi/abs/10.1142/S0218001415530043
https://www.worldscientific.com/doi/abs/10.1142/S0218001415530043
https://dl.acm.org/doi/abs/10.1145/1060745.1060764
https://www.waqasrana.me/assets/papers/N19-1423.pdf
https://www.waqasrana.me/assets/papers/N19-1423.pdf
https://www.waqasrana.me/assets/papers/N19-1423.pdf
https://arxiv.org/abs/2011.00387
https://arxiv.org/abs/2011.00387
https://arxiv.org/abs/2010.12309
https://arxiv.org/abs/2010.12309
https://arxiv.org/abs/2010.12309
https://link.springer.com/chapter/10.1007/978-1-4471-2099-5_20
https://link.springer.com/chapter/10.1007/978-1-4471-2099-5_20
https://proceedings.neurips.cc/paper_files/paper/2022/hash/a92519f525c00085095fa41c5c46cdb5-Abstract-Conference.html
https://proceedings.neurips.cc/paper_files/paper/2022/hash/a92519f525c00085095fa41c5c46cdb5-Abstract-Conference.html
https://aclanthology.org/2023.findings-acl.426/?trk=public_post_comment-text
https://aclanthology.org/2023.findings-acl.426/?trk=public_post_comment-text
https://aclanthology.org/2023.findings-acl.426/?trk=public_post_comment-text

1054

Thorsten Joachims. 1998. Text categorization with sup-
port vector machines: Learning with many relevant
features. In European conference on machine learn-
ing, pages 137–142. Springer.

Armand Joulin, Édouard Grave, Piotr Bojanowski, and
Tomáš Mikolov. 2017. Bag of tricks for efficient text
classification. In Proceedings of the 15th Conference
of the European Chapter of the ACL: Volume 2, Short
Papers, pages 427–431.

Nitya Kasturi and Igor L Markov. 2022. Text ranking
and classification using data compression. In I (Still)
Can’t Believe It’s Not Better! Workshop at NeurIPS
2021, pages 48–53. PMLR.

Eamonn Keogh, Stefano Lonardi, and Chotirat Ann
Ratanamahatana. 2004. Towards parameter-free data
mining. In Proceedings of the tenth ACM SIGKDD
international conference on Knowledge discovery
and data mining, pages 206–215.

Kamran Kowsari, Kiana Jafari Meimandi, Mojtaba Hei-
darysafa, Sanjana Mendu, Laura Barnes, and Donald
Brown. 2019. Text classification algorithms: A sur-
vey. Information, 10(4):150.

Siwei Lai, Liheng Xu, Kang Liu, and Jun Zhao. 2015.
Recurrent convolutional neural networks for text clas-
sification. In Proceedings of the AAAI conference on
artificial intelligence, 1.

K LANG. 1995. Newsweeder: Learning to filter net-
news. In Proc. 12th International Conference on
Machine Learning, 1995.

Chen Li, Xutan Peng, Hao Peng, Jianxin Li, and Li-
hong Wang. 2021. Textgtl: Graph-based transduc-
tive learning for semi-supervised text classification
via structure-sensitive interpolation. In IJCAI, pages
2680–2686.

Qian Li, Hao Peng, Jianxin Li, Congying Xia, Renyu
Yang, Lichao Sun, Philip S Yu, and Lifang He. 2022.
A survey on text classification: From traditional to
deep learning. ACM Transactions on Intelligent Sys-
tems and Technology (TIST), 13(2):1–41.

Yuxiao Lin, Yuxian Meng, Xiaofei Sun, Qinghong Han,
Kun Kuang, Jiwei Li, and Fei Wu. 2021. Bertgcn:
Transductive text classification by combining gnn
and bert. In Findings of the Association for Compu-
tational Linguistics: ACL 2021, pages 1456–1462.

Yonghao Liu, Lan Huang, Fausto Giunchiglia, Xiaoyue
Feng, and Renchu Guan. 2024. Improved graph con-
trastive learning for short text classification. In Pro-
ceedings of the AAAI Conference on Artificial Intelli-
gence, 17, pages 18716–18724.

Gati Martin, Medard Edmund Mswahili, Young-Seob
Jeong, and Jiyoung Woo. 2022. Swahbert: Language
model of swahili. In Proceedings of the 2022 Con-
ference of the North American Chapter of the ACL,
pages 303–313.

Shervin Minaee, Nal Kalchbrenner, Erik Cambria, Nar-
jes Nikzad, Meysam Chenaghlu, and Jianfeng Gao.
2021. Deep learning–based text classification: a com-
prehensive review. ACM computing surveys (CSUR),
54(3):1–40.

Rubungo Andre Niyongabo, Qu Hong, Julia Kreutzer,
and Li Huang. 2020. Kinnews and kirnews: Bench-
marking cross-lingual text classification for kin-
yarwanda and kirundi. In Proceedings of the 28th
International Conference on Computational Linguis-
tics, pages 5507–5521.

Telmo Pires, Eva Schlinger, and Dan Garrette. 2019.
How multilingual is multilingual bert? In Proceed-
ings of the 57th Annual Meeting of the ACL, pages
4996–5001.

Nils Reimers and Iryna Gurevych. 2019. Sentence-bert:
Sentence embeddings using siamese bert-networks.
In Proceedings of the 2019 Conference on EMNLP-
IJCNLP, pages 3982–3992.

Xiaofei Sun, Xiaoya Li, Jiwei Li, Fei Wu, Shangwei
Guo, Tianwei Zhang, and Guoyin Wang. 2023. Text
classification via large language models. In Find-
ings of the Association for Computational Linguis-
tics: EMNLP 2023, pages 8990–9005.

Kunze Wang, Soyeon Caren Han, and Josiah Poon. 2022.
Induct-gcn: Inductive graph convolutional networks
for text classification. In 2022 26th International
Conference on Pattern Recognition (ICPR), pages
1243–1249. IEEE Computer Society.

Yequan Wang, Minlie Huang, Xiaoyan Zhu, and
Li Zhao. 2016. Attention-based lstm for aspect-level
sentiment classification. In Proceedings of the 2016
conference on empirical methods in natural language
processing, pages 606–615.

Zhihao Wen and Yuan Fang. 2023. Augmenting low-
resource text classification with graph-grounded pre-
training and prompting. In Proceedings of the 46th
International ACM SIGIR Conference on Research
and Development in Information Retrieval, pages
506–516.

Zichao Yang, Diyi Yang, Chris Dyer, Xiaodong He,
Alex Smola, and Eduard Hovy. 2016. Hierarchical
attention networks for document classification. In
Proceedings of the 2016 conference of the NAACL,
pages 1480–1489.

Xiang Zhang, Junbo Zhao, and Yann LeCun. 2015.
Character-level convolutional networks for text classi-
fication. Advances in neural information processing
systems, 28.

Yingxiu Zhao, Zhiliang Tian, Huaxiu Yao, Yinhe Zheng,
Dongkyu Lee, Yiping Song, Jian Sun, and Nevin
Zhang. 2022. Improving meta-learning for low-
resource text classification and generation via mem-
ory imitation. In Proceedings of the 60th Annual
Meeting of the ACL, pages 583–595.

https://link.springer.com/chapter/10.1007/BFb0026683
https://link.springer.com/chapter/10.1007/BFb0026683
https://link.springer.com/chapter/10.1007/BFb0026683
https://arxiv.org/abs/1607.01759
https://arxiv.org/abs/1607.01759
https://proceedings.mlr.press/v163/kasturi22a
https://proceedings.mlr.press/v163/kasturi22a
https://dl.acm.org/doi/abs/10.1145/1014052.1014077
https://dl.acm.org/doi/abs/10.1145/1014052.1014077
https://www.mdpi.com/2078-2489/10/4/150?source=post_page---------------------------
https://www.mdpi.com/2078-2489/10/4/150?source=post_page---------------------------
https://ojs.aaai.org/index.php/AAAI/article/view/9513
https://ojs.aaai.org/index.php/AAAI/article/view/9513
https://www.sciencedirect.com/science/article/pii/B9781558603776500487
https://www.sciencedirect.com/science/article/pii/B9781558603776500487
https://www.ijcai.org/proceedings/2021/0369.pdf
https://www.ijcai.org/proceedings/2021/0369.pdf
https://www.ijcai.org/proceedings/2021/0369.pdf
https://dl.acm.org/doi/full/10.1145/3495162
https://dl.acm.org/doi/full/10.1145/3495162
https://arxiv.org/abs/2105.05727
https://arxiv.org/abs/2105.05727
https://arxiv.org/abs/2105.05727
https://ojs.aaai.org/index.php/AAAI/article/view/29835
https://ojs.aaai.org/index.php/AAAI/article/view/29835
https://aclanthology.org/2022.naacl-main.23/
https://aclanthology.org/2022.naacl-main.23/
https://dl.acm.org/doi/abs/10.1145/3439726
https://dl.acm.org/doi/abs/10.1145/3439726
https://arxiv.org/abs/2010.12174
https://arxiv.org/abs/2010.12174
https://arxiv.org/abs/2010.12174
https://fq.pkwyx.com/default/https/aclanthology.org/P19-1493.pdf
https://fq.pkwyx.com/default/https/aclanthology.org/D19-1410.pdf
https://fq.pkwyx.com/default/https/aclanthology.org/D19-1410.pdf
https://arxiv.org/abs/2305.08377
https://arxiv.org/abs/2305.08377
https://ieeexplore.ieee.org/abstract/document/9956075/
https://ieeexplore.ieee.org/abstract/document/9956075/
https://aclanthology.org/D16-1058.pdf
https://aclanthology.org/D16-1058.pdf
https://dl.acm.org/doi/abs/10.1145/3539618.3591641
https://dl.acm.org/doi/abs/10.1145/3539618.3591641
https://dl.acm.org/doi/abs/10.1145/3539618.3591641
https://aclanthology.org/N16-1174.pdf
https://aclanthology.org/N16-1174.pdf
https://proceedings.neurips.cc/paper/2015/hash/250cf8b51c773f3f8dc8b4be867a9a02-Abstract.html
https://proceedings.neurips.cc/paper/2015/hash/250cf8b51c773f3f8dc8b4be867a9a02-Abstract.html
https://arxiv.org/abs/2203.11670
https://arxiv.org/abs/2203.11670
https://arxiv.org/abs/2203.11670

1055

A Execution Process

The pseudocode for the LFTC model execution
process is shown in Algorithm 1.

Algorithm 1 The execution process of LFTC
Compressor List Construction

1: Input: Texts from each class Ci, step size S.
2: Output: Compressor set ZCi for each class.
3: for each category Ci do
4: Divide texts TsCi into NCi blocks.
5: For each block:
6: for x← 0 to NCi − 1 do
7: Build compressor:
8: ZCi,NCi

=
Zstd (TsCi [x · S : (x+ 1) · S])

9: end for
10: Save compressors list:
11: ZCi = {ZCi,0, ZCi,1, . . . , ZCi,NCi

−1}.
12: end for
13: Return Compressor set ZCi for each class.
Multi Compressor Classification

1: Input: Prediction text TCi .
2: Output: The two labels with the lowest scores,

p and q.
3: Calculate L max using Eq.4.
4: Compressed substring

Ld = TCi : Re(L max, p).
5: Entropy encoding:
Le = −

∑n
i=1 P(Ld) · log2 P(Ld).

6: Score(ZCi,NCi
) = Le(TCi) +O(D).

7: p, q = min(Score).
8: Return p and q.

Centralized Reasoning
1: Input: Text labeled as p and q, test text TCi .
2: Output: Predicted label for text TCi .
3: Extracts text with labels p and q from training

data.
4: Excludes Tp and Tq, Obtain Gold data.
5: Calculate NCD between TCi and Gold data

using Eq.8.
6: Use KNN to determine the classification of

TCi .
7: Return Predicted label for text TCi .

B Detail Display

Figures 4 and 5 respectively show the performance
scores of different models in the Few shot exper-
iment on two datasets. It can be seen that LFTC
has achieved good results.

Table 8, 9, and 10 provide detailed information
on the time required for the model in different ex-
periments. We conducted ten experiments and took
the average. We can observe that compared to gzip
(Jiang et al., 2023), which is also a lightweight
model, we greatly reduce the time consumption.

5-shot 10-shot 50-shot 100-shot
Shot Type

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

Sc
or

es

Few-shot Experiment Results on SogouNews Dataset
Model

Bi-LSTM+Attn
HAN
fastText
BERT
W2V
SentBERT
gzip
LFTC (Ours)

Figure 4: Comparison of Few-shot experimental perfor-
mance between different methods on SogouNews.

5-shot 10-shot 50-shot 100-shot
Shot Type

0.3

0.4

0.5

0.6

0.7

Sc
or

es

Few-shot Experiment Results on AGNews Dataset
Model

Bi-LSTM+Attn
HAN
fastText
W2V
SentBERT
gzip
LFTC (Ours)

Figure 5: Comparison of Few-shot experimental perfor-
mance between different methods on AGNews.

C Experiment Replication

In this appendix, we provide the process for repro-
ducing the experimental results.

To reproduce the experimental results from
the paper “Low-Resource Fast Text Classifica-
tion Based on Intra-Class and Inter-Class Dis-
tance Calculation", you should first execute the
‘main_text.py’ file located in the root directory of
the code. By default, the experiments will conduct
text classification on the ‘kirnews’ dataset. If you
wish to experiment with other datasets, you can
change the ‘dataset’ parameter in the code to spec-
ify the desired dataset name. For example, if you
want to use the ‘R8’ dataset, simply modify the
‘dataset’ parameter to ‘R8’.

For datasets downloaded in parquet format from

1056

Dataset kirnews R52 Ohsumed kinnews R8 20News SwahiliNews AGNews
gzip_spent 85.74 225.66 252.74 1794.90 143.37 2690.40 5243.49 9085.00
LFTC_spent 16.08 36.17 25.95 246.18 34.78 170.27 946.16 1537.32

Table 8: Comparison of the time spent (in seconds) by gzip (Jiang et al., 2023) and LFTC across various datasets.

AGNews gzip Time LFTC Time
5-shot 2.70 3.01
10-shot 3.85 3.12
50-shot 6.10 3.79
100-shot 11.68 4.65

Table 9: Comparison of time spent by gzip and LFTC
models in AGNews Few-shot experiment.

SogouNews gzip Time LFTC Time
5-shot 80.84 141.61
10-shot 162.40 157.40
50-shot 672.41 246.67
100-shot 1381.72 322.99

Table 10: Comparison of time spent by gzip and LFTC
models in SogouNews Few-shot experiment.

Huggingface, you will need to convert them to
CSV format using the simple preprocessing script
‘parquet_to_csv.py’ in the root directory of the code.
After conversion, you can directly use the converted
CSV dataset for the experiments.

To conduct Few-Shot experiments, set the
‘all_train’ parameter to ‘False’ and the ‘num_train’
parameter to the desired number of Few-Shot sam-
ples. This will allow you to train and evaluate the
model with a limited number of samples.

Make sure to standardize the data before run-
ning the experiments and to thoroughly document
the experimental configuration and process to en-
sure reproducibility and reliability of the results.
By maintaining a modular structure and detailed
documentation, the experiments can be made more
maintainable and scalable for future work.

D Advantages of LFTC

With the continuous development of society, the
amount of information across various fields is expe-
riencing exponential growth. We not only need to
constantly improve the performance of text classifi-
cation models but also must focus on their process-
ing speed and generalization capabilities (Kowsari
et al., 2019).

We have designed a unique compressor struc-
ture for LFTC, which maximizes the utilization
of intra-class regularity information to achieve ef-

ficient classification tasks. Additionally, we have
minimized the inclusion of redundant data irrele-
vant to classification, relying solely on inter-class
information from Gold data to obtain the final pre-
diction. These two modules not only enhance the
performance of the original lightweight classifica-
tion model but also significantly reduce processing
time. It can be said that LFTC provides a dual
optimization solution for text classification tasks.

The LFTC model has demonstrated outstand-
ing performance across multiple text classification
datasets, particularly in minority language classifi-
cation tasks such as kinnews and kirnews, where it
has achieved results surpassing those of large pre-
trained language models like BERT. This further
proves LFTC’s high generalization ability.

E Future Work Discussion

AI tasks typically rely on algorithm optimization
and resource investment. On one hand, it is nec-
essary to continuously improve algorithms and
model architectures to enhance performance. On
the other hand, high-quality data and powerful com-
putational resources are also essential. The LFTC
model, as a parameter-free text classification model,
surpasses the BERT model, which has a large num-
ber of parameters, to a certain extent. This achieve-
ment suggests that, while optimizing algorithms
and model architectures, we can also effectively
mitigate resource constraints, which is particularly
important in the era of large-scale language models
(LLMs).

In the future, we plan to extend the compres-
sor architecture from LFTC to the image classi-
fication domain. Recent research indicates that
existing neural network compressors and combi-
nations based on compressor distance metrics can
outperform traditional models in image classifica-
tion tasks (Jiang et al., 2022). We believe that by
applying the compression technology from LFTC
to image classification, we can further improve
model performance while reducing computational
resource requirements.

	Introduction
	Related Work
	Text Classification Based on Data Compression
	Low Resource Text Classification
	Text Classification Based on Deep Learning

	Method
	Compressor List Construction
	Multi Compressor Classification Module
	Centralized Reasoning Module

	Experiments
	Datasets
	Baselines
	Non-Pre-training Models.
	Pre-training Models.

	Implementation Details

	Results and Analyses
	Result on ID Datasets
	Result on OOD Datasets
	Result on Few-Shot Experiment
	Comparison of Model Speed
	Ablation Study

	Conclusion
	Execution Process
	Detail Display
	Experiment Replication
	Advantages of LFTC
	Future Work Discussion

