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Abstract
Vision-Language Models (VLMs) have re-
cently experienced significant advancements.
However, challenges persist in the accurate
recognition of fine details within high reso-
lution images, which limits performance in
multiple tasks. This work introduces Pheye,
a novel architecture that efficiently processes
high-resolution images while training fewer
parameters than similarly sized VLMs. No-
tably, Pheye achieves a high efficiency while
maintaining strong performance, particularly
in tasks that demand fine-grained image under-
standing and/or the handling of scene-text.

1 Introduction

The integration of visual capabilities as extensions
to Large Language Models (LLMs) has led to
the emergence of large Vision-Language Models
(VLMs), currently excelling in tasks like image
captioning and visual question answering. Notable
examples include Flamingo (Alayrac et al., 2022)
or Monkey (Li et al., 2023d), in this last case bring-
ing improvements to tasks that involve scene-text
by processing higher-resolution images. LLaVA-
NeXT (Liu et al., 2024) followed Monkey’s lead
with similar enhancements, but at the cost of a
quadratic increase in the computational complexity
of the language model, as it skipped a resampler
module that compresses large sequence lengths,
from the encoder, into a fixed size of query vectors.

Recent focus has shifted towards smaller VLMs
that can run on hardware-constrained devices. Mod-
els like MoE-LLaVA (Lin et al., 2024) or moon-
dream2 (Vikhyat, 2024) achieve impressive perfor-
mance with a fraction of the parameters of their
predecessors. This work further advances small
VLMs with Pheye, i.e. a family of compact models
that can process high-resolution images with fewer
parameters and computational demands, expand-
ing VLM applications to resource-limited environ-
ments where understanding fine details is crucial.

Figure 1: Overview on the proposed architecture, where
input images are split into regular non-overlapping
patches that match the input resolution of a pre-trained
ViT. Two sets of LoRA adapters are respectively used to
adjust the ViT to both global and local sub-images, and
a frozen LLM is conditioned on the concatenated vision
representations through dense cross-attention layers.

Specifically, Pheye employs a frozen instruction-
tuned language model (Li et al., 2023c) in conjunc-
tion with a frozen pre-trained CLIP (Radford et al.,
2021) vision model, which are linked by dense
cross-attention layers inserted before the language
model’s layers. To process high-resolution images,
we use two sets of LoRA (Hu et al., 2021) adapters
in the vision encoder, one for the global image and
another for local high-resolution patches.

Notably, Pheye is competitive with similarly
sized models, particularly in tasks involving scene-
text, such as TextVQA (Singh et al., 2019). Pheye
requires only a fraction of the training parameters,
being more efficient in connecting the vision and
language modalities, and in processing input im-
ages at higher resolutions. The source code asso-
ciated to the experiments reported on this paper,
as well as the trained models, are available from a
public GitHub repository1.

2 An Efficient High-Resolution VLM

This section presents the proposed method for
building high-resolution efficient VLMs, start-
ing with architectural design choices, and then
analysing the model’s computational complexity.

1https://github.com/miguelscarv/pheye

https://github.com/miguelscarv/pheye
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Figure 2: An illustration for dense cross-attention layers.
To condition the language model on visual inputs, we
add new cross-attention layers between existing pre-
trained and frozen language model layers. The keys and
values for these layers are derived from vision features,
while the queries come from language inputs. These
layers are followed by dense feed-forward layers. The
output matrices of both of these modules are initialized
with values close to zero to maintain the integrity of the
language model at initialization.

2.1 The Proposed Architecture

The Pheye architecture is illustrated in Figure 1. It
employs a frozen instruction-tuned language model
and a vision encoder that adapts a pre-trained CLIP
model, linking the two components with dense
cross-attention layers inserted before the language
model’s layers. The use of cross-attention and the
design of the vision encoder were informed by pre-
liminary experiments described in Appendix B.

The vision encoder consists of a ViT with two
sets of LoRA adapters, one for encoding global im-
ages and another for local high-resolution patches,
as outlined in Appendix B.2. To better distinguish
between global and local patch embeddings and
improve convergence, we introduce two Layer-
Norm (Ba et al., 2016) layers after the ViT, and be-
fore adding learned positional embeddings. These
layers are applied separately, respectively process-
ing the global and local patch embeddings.

Given the computational efficiency, strong task
performance, and reduced number of trainable pa-
rameters, we use cross-attention to combine modal-
ities while keeping the language model frozen.
Inspired by the Flamingo architecture (Alayrac
et al., 2022), we replace vanilla cross-attention
modules with dense cross-attention modules, in-
serting them at regular intervals before the decoder
layers, as shown in Figure 2. This design was mo-
tivated Flamingo’s demonstration that gated cross-
attention outperforms vanilla cross-attention even
when parameter counts are equal. However, we
deviate from Flamingo’s gated cross-attention lay-
ers, as early experiments showed that the gating

mechanism hindered convergence. To preserve the
language model’s initial integrity, we initialize the
output matrices of the dense cross-attention mod-
ules with values sampled from a normal distribu-
tion with a mean of zero and a variance approach-
ing zero. This way, the cross-attention layers have
a minor influence during the initial training epochs.

2.2 Analysis of the Computational Complexity
This section analyzes the computational complex-
ity of the proposed methods, without accounting
for the LoRA adapters in the vision encoder, by cal-
culating the number of multiplications that are in-
volved in all linear layers and attention operations,
separately considering the vision encoder and the
language model with dense cross-attention layers.
The analysis assumes a sequential order of opera-
tions in all linear layers and attention mechanisms,
although implementation optimizations can be lat-
ter used. We compare our method with the most
widely used approach of using a higher-resolution
ViT and a LLaVA-style architecture.

For reference, the cost of a matrix multiplication
C between matrices N ∈ Rn×d and W ∈ Rd×o

would be C = (n × o) × d, where N represents
a matrix of n rows with dimensionality d, and W
represents a weight matrix with an input dimen-
sionality of d and an output dimensionality of o.

Vision Encoder. The computational complexity
of a ViT depends on the number of input tokens N ,
corresponding to the number of image patches plus
one for the [CLS] token, and the model dimension-
ality D. The number of multiplications for a single
Transformer layer can be expressed as:

TViT = 4ND2 +DN2 + 8ND2. (1)

This complexity breaks down into three compo-
nents, namely (i) the multiplications in the WQ,
WK , WV and WO matrices, (ii) the attention mech-
anism, and (iii) a feed-forward module with two
layers, where the intermediate dimensionality is
four times the model dimensionality.

In the case of our strategy, instead of computing
self-attention across all the high-resolution input to-
kens, the image is broken down into P sub-images
of equal size and lower-resolution, and the number
of multiplications can be expressed by the follow-
ing equation, where N ′ is now reflecting the num-
ber of patches per sub-image, plus one [CLS] token
also per sub-image (i.e., each sub-image involves a
total of N ′ = (N−1)

P−1 + 1 tokens).

TPheye = (4N ′D2 +DN ′2 + 8N ′D2)× P. (2)



10522

We can compare the efficiency of our vision en-
coder against a ViT that operates at a resolution
of 672×672 pixels with a patch size of 14 pixels,
resulting in N = 2305 input tokens. Our method
would process 10 images, where 1 is global and 9
are local sub-images, at a resolution of 224×224
pixels with a patch size of 14, yielding N ′ = 2570
tokens. With D = 1280, our method is approxi-
mately 1.02 as efficient as the alternative. While
this corresponds to little to no improvement, our
method does offer a significant advantage: it elim-
inates the need to fine-tune the underlying ViT,
allowing us to focus solely on training the LoRA
parameters to increase the input resolution.

Language Model. For the language model, we
analyze the computational complexity of a LLaVA-
style architecture, against that of our method. The
complexity of the LLaVA style architecture per
layer is given by Equation 3 and our method has an
average complexity per layer given by Equation 4,
where the fractional term refers to the average com-
plexity introduced by dense cross-attention layers.
Specifically, the aforementioned term has 4 com-
ponents in the numerator: (i) the multiplications in
the WK and WV matrices, (ii) the multiplications
in WQ and WO, (iii) the attention mechanism, and
(iv) the feed-forward module. In both formulas,
NT represents the number of text tokens, NI rep-
resents the number of image tokens, D and DV iT

correspond to the dimensionality of the language
model and the ViT, respectively, and I denotes the
interval at which dense cross-attention layers are
inserted in the language model.

TLLaVA =4(NT +NI)D
2 +D(NT +NI)

2+

8(NT +NI)D
2.

(3)

TPheye = 4NTD
2 +DN2

T + 8NTD
2+

2NIDV iTD + 2NTD
2 +DNTNI + 8NTD

2

I
.

(4)

For assessing the efficiency gain of our language
model against a LLaVA-style architecture, assume
NT = 65, which is the typical prompt length for
captioning, NI = 2305, corresponding to the num-
ber of vision tokens output by a ViT with an input
resolution of 672x672 pixels, I = 2, D = 2048
and DV iT = 1280. Our method is, in this case,
approximately 12.1 times more efficient than its
LLaVA-style counterpart. Furthermore, if we in-
crease the interval to I = 4, our method becomes
approximately 18.5 times more efficient than the
corresponding LLaVA-style architecture.

3 Main Experimental Evaluation

This section begins by outlining the Pheye training
setup. It then presents the results achieved by our
models on academic task-oriented datasets.

3.1 Experimental Setup
Our experiments aimed to assess the effects of in-
creasing the input image resolution, and to examine
the impact of augmenting the frequency of dense
cross-attention layers in the language model. To do
this, we compare four model settings, varying the
image input resolution between 448×448 pixels
and 672×672 pixels, and adjusting the dense cross-
attention interval to every 4 or 2 decoder layers.

In all four settings, we used a Phi 1.5 lan-
guage model (Li et al., 2023c), finetunned on the
SlimOrca (Lian et al., 2023) instruction dataset.
The ViT is initialized from a CLIP-ViT-H-14 model
finetunned on DFN-5B (Fang et al., 2023).

The models were trained in separate stages, sim-
ilarly to MoE-LLaVA (Lin et al., 2024), using a
cross-entropy loss over the output tokens. The dif-
ferent stages are described next, while Appendix A
summarizes the datasets used in Stage III.
• Stage I. We initially aimed for a model that can
effectively describe images, including their finer
details. We used ShareGPT4V-PT (Chen et al.,
2023a), featuring 1,246K images with detailed de-
scriptions, of which 570K are high resolution im-
ages from SAM (Kirillov et al., 2023). To reduce
overfitting to a particular prompt, ten different cap-
tioning instructions were manually generated. One
of these instructions was then randomly selected to
be associated with each image-description pair.
• Stage II. The second stage empowers Pheye
to go beyond captioning, using a mixture of com-
plex multi-modal instruction following examples:
MIMIC-IT (Li et al., 2023a), LRV (Liu et al., 2023),
SViT (Zhao et al., 2023) and LVIS (Wang et al.,
2023). This comes to a total of 964K samples.
For each sample with multiple instruction-response
turns, a single turn was randomly selected.
• Stage III. Previous stages used synthetic GPT-
4 (Achiam et al., 2023) and GPT-4V (OpenAI,
2023) data for finetunning, which is naturally prone
to noise and hallucinations. To alleviate this,
we further finetunned our models on a mixture
of academic task-oriented VQA and captioning
datasets, as well as some synthetic multimodal in-
struction following examples, based on LLaVA 1.5-
mix-665K. We specifically considered ST-VQA
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Model Size Evaluation Results

Model Res. Trained Data VQAv2 NoCaps TextVQA TextCaps DOCCI

BLIP-2 224 187M 129M 63.0 104.5 43.1∗ - -
InstructBLIP-2 224 187M 130M - 119.9 46.6∗ 82.4† 5.7†

MobileVLM 1.7B 336 1.4B 3.9M - - 41.5 - -
MobileVLM V2 1.7B 336 1.4B 6.3M - 90.0† 52.1∗ 48.5† 4.5†

MoE-LLaVA-1.8B×4 336 2.8B 6.6M 76.2 - 48.0∗ - -
MoE-LLaVA-2.7B×4 336 5.0B 6.6M 77.6 - 51.4∗ - -
moondream1 384 1.86B 3.9M 74.7 - 35.6 - -
moondream2 384 1.86B - 77.7 92.5† 49.7 120.2† 0.2†

Pheye-x4 448 295M 2.9M 75.2 110.3 45.9 106.4 5.7
Pheye-x4 672 295M 2.9M 75.5 110.8 49.2 111.9 5.4
Pheye-x2 448 578M 2.9M 76.0 111.8 47.3 108.9 5.6
Pheye-x2 672 578M 2.9M 76.4 110.5 50.5 115.9 5.9

Pheye-x2 (upscaled low-res inputs) 672 578M 2.9M 76.3 112.0 44.3 105.7 5.7

Table 1: Results on different academic task-oriented datasets. "Res.", "Trained" and "Data" represent the input image
resolution, the number of trainable parameters, and the number of training instruction-response pairs, respectively.
Both BLIP-2 (Li et al., 2023b) and InstructBLIP-2 (Dai et al., 2024) refer to the FlanT5XL (Chung et al., 2024)
variants, while moondream2 refers to the 2024-04-02 model version. The symbol * denotes evaluations made with
OCR tokens in the instruction, while † refers to our own evaluation of the models, using the prompt "Provide a
one-sentence caption for the provided image", or instead the prompt "Generate a highly detailed
description for the provided image using multiple sentences" for the case of DOCCI (Onoe et al.,
2024), without OCR tokens in the instruction. Pheye-xN denotes a Pheye model with dense cross-attention layers
inserted every N layers of the Phi 1.5 model. VQAv2 refers to the test-dev split, NoCaps (Agrawal et al., 2019)
and TextVQA refer to the validation splits, and TextCaps and DOCCI refer to the test splits of the corresponding
datasets. VQAv2 and TextVQA report VQA accuracy, while NoCaps, TextCaps, and DOCCI report CIDEr.

(Biten et al., 2019), TextVQA, and the LLaVAR
finetunning dataset for better scene-text perfor-
mance, removed the RefCOCO (Kazemzadeh et al.,
2014) and VisualGenome (Krishna et al., 2017)
datasets, and sampled 2 random turns from the
VQAv2 (Antol et al., 2015) and GQA (Hudson
and Manning, 2019) examples for each image. As
a result, the model is only trained on 22.4% of
the VQAv2 and GQA examples in the original
LLaVA 1.5 mix. We also sampled single turns
from LLaVA, LLaVAR, OCR-VQA (Mishra et al.,
2019) and OKVQA (Marino et al., 2019). From
A-OKVQA (Schwenk et al., 2022), we randomly
sampled unique image-question pairs.

We trained the dense cross-attention layers,
LoRA, positional embeddings, and LayerNorm lay-
ers, at every stage, using mixed precision Bfloat16.
The frozen parameters, which correspond to the
ViT and the language model, were loaded in
Bfloat16. Resolutions were also kept constant
across stages for the same model. The first stage
uses a learning rate of 2e-4, the second stage uses
1e-4, and the third stage uses 5e-5. All stages use
a cosine decay learning rate scheduler. We used
gradient accumulation with an effective batch size
of 128 across stages as well.

Since gradient accumulation for varying se-

quence lengths implicitly gives more weight to to-
kens in smaller sequences, we used sum reduction
for the loss, instead of the typical mean reduction,
tracking the number of tokens used to calculate the
loss for a full batch. Before each optimization step,
we divide the gradients by the number of output
tokens, thereby mimicking a batch size of 128.

3.2 Experimental Results

Table 1 summarizes our experimental results. With
less training data and less trainable parameters,
Pheye surpasses other generalist models of sim-
ilar size in scence-text tasks, without using pre-
extracted OCR tokens in the textual instructions.
Note, for instance, that MobileVLM V2 (Chu et al.,
2024) exhibits subpar performance on TextCaps,
which suggests that the model relies heavily on the
presence of OCR tokens in the instruction.

The performance on scene-text tasks also in-
creases more with a higher image resolution, com-
pared to an increase in parameter count. The oppo-
site happens for more general image understanding
tasks, like VQAv2 and NoCaps. Increasing the res-
olution allows the model to capture finer details in
images, while increasing the parameter count al-
lows the model to learn more visual concepts, like
objects and relationships between objects.
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VQAv2 TextVQA

Model Resolution Bottom Middle Top Bottom Middle Top

Pheye-x4 448 73.55 75.19 76.09 40.67 44.23 52.74
Pheye-x4 672 74.26 75.17 75.99 46.83 48.43 52.48

%∆ +0.96 -0.03 -0.13 +15.15 +9.50 -0.49

Pheye-x2 448 74.50 75.47 76.67 42.19 45.59 54.18
Pheye-x2 672 74.73 76.25 76.71 47.31 50.67 53.34

%∆ +0.31 +1.03 +0.05 +12.14 +11.14 -1.55

Table 2: Relative change in VQA accuracy for VQAv2 and TextVQA instances, according to data tertiles that reflect
the relative dimensions of relevant image areas.

The last row of Table 1 presents a test in which
the inputs to our best model are first down-scaled
to 224x224, this way resulting in images without
fine details. A higher performance drop is again
seen on tasks such as TextVQA, confirming the
importance of the high image resolution.

3.3 Assessing the Use of Fine Image Details

In order to further evaluate the impact that increas-
ing the input image resolution has on tasks that
involve the comprehension of fine-grained details,
we followed a strategy similar to that of Zhang
et al. (2023a) and partitioned the TextVQA valida-
tion set into three groups of approximately equal
size, based on the relative size of the ground-truth
bounding box S = Abb

Atotal
, where Abb denotes the

area of the answer bounding box, and Atotal de-
notes the total area of the image. Specifically, we
divided the data into three tertiles: the bottom ter-
tile (finer details), the middle tertile (medium), and
the top tertile (broader entities). The selection of
the ground-truth bounding box was based on the
average string similarity with all the ground truth
answers, using the longest contiguous matching
subsequence algorithm.

We also applied the same approach to a randomly
sampled subset of the VQAv2 validation split, re-
sulting in 10,000 questions pertaining to 8,453 im-
ages. For this dataset we used the segmentation
area of objects as opposed to bounding boxes, since
this quantity can better represent an object’s area
in the image, and used its category name for the
string similarity algorithm. Since a large portion of
VQAv2 answers correspond to yes/no or a number,
in these cases we applied the same algorithm to the
question, instead of the ground truth answers.

Table 2 presents the results of our analysis. In
both datasets, increasing resolution seems to lead
to a greater improvement in accuracy for the sam-
ples that require understanding finer details within

the image. This is particularly evident in TextVQA,
as tertiles corresponding to smaller image-question-
answer triplets have a greater relative improvement
in performance, in comparison with larger tertiles.
In VQAv2, however, this pattern is not as consis-
tent, likely due to the less frequent appearance of
category names for each object in questions and
answers, compared to OCR tokens in TextVQA.

Appendix C further analyses how the model
makes use of the high-resolution image inputs, pre-
senting results on how the cross-attention module
uses local versus global sub-images.

4 Conclusions

We presented an approach for building efficient
Vision-Language Models (VLMs), processing high-
resolution images while maintaining parameter ef-
ficiency. The approach was used to develop the
Pheye family of VLMs, which achieve a high effec-
tiveness on various academic task-oriented datasets,
surpassing other generalist models of similar size,
and achieving particularly strong results on tasks
that involve understanding scene-text.

Future work directions include investigating the
use of different vision encoders, for instance in-
corporating strategies to process images at close
to native resolutions and aspect ratios, e.g. build-
ing upon the approach proposed by Dehghani et al.
(2024). We can also explore ways to increase the
amount of training data, given that our method
still requires training hundreds of millions of ran-
domly initialized parameters. To address this, we
could generate additional task-specific synthetic
data, particularly for tasks that involve scene-text,
where the amount of available human generated
data is smaller. Building on the work of Zhang
et al. (2023a), we could generate VQA examples
that focus on finer image details, which have been
shown to be crucial for performance.
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Limitations and Ethical Considerations

While our work does not raise new ethical issues
within the domain of vision-language models (e.g.,
we conducted our experiments on public datasets,
carefully designed for academic research and ex-
tensively used in previous studies), there are some
general important concerns.

Vision-Language Models (VLMs) are, for in-
stance, notorious for their internal biases, inherited
from the training data itself or from the use of pre-
trained models such as CLIP. We therefore recom-
mend caution in the use of the approach proposed
in this paper, and anticipate further research into
model biases, before relying on our work beyond
research environments.

Another important limitation in the work re-
ported on this paper concerns the fact that our ex-
periments relied exclusively on English datasets.
Multilingual models have shown potential in lever-
aging diverse datasets and providing more robust
and versatile language understanding capabilities,
which could be beneficial for creating VLMs that
can handle a wider variety of tasks and languages.
Future work can perhaps explore the use of efficient
multilingual models like Qwen (Bai et al., 2023)
to enhance our approach, although additional ef-
forts would be required in the design of an effective
mixture of multilingual data for training.

Acknowledgements

This research was supported by the Portuguese
Recovery and Resilience Plan through project
C645008882-00000055 (i.e., the Center For Re-
sponsible AI), and also by the Fundação para a
Ciência e Tecnologia (FCT), specifically through
the project with reference UIDB/50021/2020 (DOI:
10.54499/UIDB/50021/2020).

References

Josh Achiam, Steven Adler, Sandhini Agarwal, Lama
Ahmad, Ilge Akkaya, Florencia Leoni Aleman,
Diogo Almeida, Janko Altenschmidt, Sam Altman,
Shyamal Anadkat, et al. 2023. GPT-4 technical re-
port. arXiv preprint arXiv:2303.08774.

Harsh Agrawal, Karan Desai, Yufei Wang, Xinlei Chen,
Rishabh Jain, Mark Johnson, Dhruv Batra, Devi
Parikh, Stefan Lee, and Peter Anderson. 2019. No-
Caps: Novel object captioning at scale. In Proceed-
ings of the IEEE International Conference on Com-
puter Vision.

Jean-Baptiste Alayrac, Jeff Donahue, Pauline Luc,
Antoine Miech, Iain Barr, Yana Hasson, Karel
Lenc, Arthur Mensch, Katherine Millican, Malcolm
Reynolds, et al. 2022. Flamingo: a visual language
model for few-shot learning. Advances in Neural
Information Processing Systems.

Stanislaw Antol, Aishwarya Agrawal, Jiasen Lu, Mar-
garet Mitchell, Dhruv Batra, C Lawrence Zitnick, and
Devi Parikh. 2015. VQA: Visual question answering.
In Proceedings of the International Conference on
Computer Vision.

Jimmy Lei Ba, Jamie Ryan Kiros, and Geoffrey E Hin-
ton. 2016. Layer normalization. arXiv preprint
arXiv:1607.06450.

Jinze Bai, Shuai Bai, Yunfei Chu, Zeyu Cui, Kai Dang,
Xiaodong Deng, Yang Fan, Wenbin Ge, Yu Han, Fei
Huang, Binyuan Hui, Luo Ji, Mei Li, Junyang Lin,
Runji Lin, Dayiheng Liu, Gao Liu, Chengqiang Lu,
Keming Lu, Jianxin Ma, Rui Men, Xingzhang Ren,
Xuancheng Ren, Chuanqi Tan, Sinan Tan, Jianhong
Tu, Peng Wang, Shijie Wang, Wei Wang, Sheng-
guang Wu, Benfeng Xu, Jin Xu, An Yang, Hao Yang,
Jian Yang, Shusheng Yang, Yang Yao, Bowen Yu,
Hongyi Yuan, Zheng Yuan, Jianwei Zhang, Xingx-
uan Zhang, Yichang Zhang, Zhenru Zhang, Chang
Zhou, Jingren Zhou, Xiaohuan Zhou, and Tianhang
Zhu. 2023. Qwen technical report. arXiv preprint
arXiv:2309.16609.

Satanjeev Banerjee and Alon Lavie. 2005. METEOR:
An automatic metric for MT evaluation with im-
proved correlation with human judgments. In Pro-
ceedings of the Association for Computational Lin-
guistics.

Ali Furkan Biten, Ruben Tito, Andres Mafla, Lluis
Gomez, Marçal Rusinol, Ernest Valveny, CV Jawa-
har, and Dimosthenis Karatzas. 2019. Scene text
visual question answering. In Proceedings of the
IEEE International Conference on Computer Vision.

Lin Chen, Jisong Li, Xiaoyi Dong, Pan Zhang, Con-
ghui He, Jiaqi Wang, Feng Zhao, and Dahua
Lin. 2023a. ShareGPT4V: Improving large multi-
modal models with better captions. arXiv preprint
arXiv:2311.12793.

Xi Chen, Xiao Wang, Lucas Beyer, Alexander
Kolesnikov, Jialin Wu, Paul Voigtlaender, Basil
Mustafa, Sebastian Goodman, Ibrahim Alabdul-
mohsin, Piotr Padlewski, et al. 2023b. PaLI-3 vision
language models: Smaller, faster, stronger. arXiv
preprint arXiv:2310.09199.

Xiangxiang Chu, Limeng Qiao, Xinyu Zhang, Shuang
Xu, Fei Wei, Yang Yang, Xiaofei Sun, Yiming Hu,
Xinyang Lin, Bo Zhang, et al. 2024. MobileVLM
V2: Faster and stronger baseline for vision language
model. arXiv preprint arXiv:2402.03766.

Hyung Won Chung, Le Hou, Shayne Longpre, Barret
Zoph, Yi Tay, William Fedus, Yunxuan Li, Xuezhi
Wang, Mostafa Dehghani, Siddhartha Brahma, et al.



10526

2024. Scaling instruction-finetuned language models.
Journal of Machine Learning Research.

Wenliang Dai, Junnan Li, Dongxu Li, Anthony
Meng Huat Tiong, Junqi Zhao, Weisheng Wang,
Boyang Li, Pascale N Fung, and Steven Hoi.
2024. InstructBLIP: Towards general-purpose vision-
language models with instruction tuning. Advances
in Neural Information Processing Systems.

Mostafa Dehghani, Basil Mustafa, Josip Djolonga,
Jonathan Heek, Matthias Minderer, Mathilde Caron,
Andreas Steiner, Joan Puigcerver, Robert Geirhos,
Ibrahim M Alabdulmohsin, et al. 2024. Patch n’pack:
NaViT, a vision transformer for any aspect ratio and
resolution. Advances in Neural Information Process-
ing Systems.

Alex Fang, Albin Madappally Jose, Amit Jain, Ludwig
Schmidt, Alexander Toshev, and Vaishaal Shankar.
2023. Data filtering networks. arXiv preprint
arXiv:2309.17425.

Edward J Hu, Yelong Shen, Phillip Wallis, Zeyuan
Allen-Zhu, Yuanzhi Li, Shean Wang, Lu Wang,
and Weizhu Chen. 2021. LoRA: Low-rank adap-
tation of large language models. arXiv preprint
arXiv:2106.09685.

Drew A Hudson and Christopher D Manning. 2019.
GQA: A new dataset for real-world visual reasoning
and compositional question answering. In Proceed-
ings of the IEEE Conference on Computer Vision and
Pattern Recognition.

Sahar Kazemzadeh, Vicente Ordonez, Mark Matten,
and Tamara Berg. 2014. ReferItGame: Referring
to objects in photographs of natural scenes. In Pro-
ceedings of the Conference on Empirical Methods in
Natural Language Processing.

Alexander Kirillov, Eric Mintun, Nikhila Ravi, Hanzi
Mao, Chloe Rolland, Laura Gustafson, Tete Xiao,
Spencer Whitehead, Alexander C Berg, Wan-Yen Lo,
et al. 2023. Segment anything. In Proceedings of the
IEEE International Conference on Computer Vision.

Jing Yu Koh, Ruslan Salakhutdinov, and Daniel Fried.
2023. Grounding language models to images for
multimodal inputs and outputs. In Proceedings of the
International Conference on Machine Learning.

Ranjay Krishna, Yuke Zhu, Oliver Groth, Justin John-
son, Kenji Hata, Joshua Kravitz, Stephanie Chen,
Yannis Kalantidis, Li-Jia Li, David A Shamma, et al.
2017. Visual Genome: Connecting language and
vision using crowdsourced dense image annotations.
International Journal of Computer Vision.

Hugo Laurençon, Léo Tronchon, Matthieu Cord, and
Victor Sanh. 2024. What matters when build-
ing vision-language models? arXiv preprint
arXiv:2405.02246.

Bo Li, Yuanhan Zhang, Liangyu Chen, Jinghao Wang,
Fanyi Pu, Jingkang Yang, Chunyuan Li, and Ziwei
Liu. 2023a. MIMIC-IT: Multi-modal in-context in-
struction tuning. arXiv preprint arXiv:2306.05425.

Junnan Li, Dongxu Li, Silvio Savarese, and Steven Hoi.
2023b. BLIP-2: Bootstrapping language-image pre-
training with frozen image encoders and large lan-
guage models. arXiv preprint arXiv:2301.12597.

Yuanzhi Li, Sébastien Bubeck, Ronen Eldan, Allie
Del Giorno, Suriya Gunasekar, and Yin Tat Lee.
2023c. Textbooks are all you need II: Phi-1.5 techni-
cal report. arXiv preprint arXiv:2309.05463.

Zhang Li, Biao Yang, Qiang Liu, Zhiyin Ma, Shuo
Zhang, Jingxu Yang, Yabo Sun, Yuliang Liu, and
Xiang Bai. 2023d. Monkey: Image resolution and
text label are important things for large multi-modal
models. arXiv preprint arXiv:2311.06607.

Wing Lian, Guan Wang, Bleys Goodson, Eugene Pent-
land, Austin Cook, Chanvichet Vong, and "Teknium".
2023. SlimOrca: An open dataset of GPT-4 aug-
mented FLAN reasoning traces, with verification.

Bin Lin, Zhenyu Tang, Yang Ye, Jiaxi Cui, Bin
Zhu, Peng Jin, Junwu Zhang, Munan Ning, and
Li Yuan. 2024. MoE-LLaVA: Mixture of experts
for large vision-language models. arXiv preprint
arXiv:2401.15947.

Tsung-Yi Lin, Michael Maire, Serge Belongie, James
Hays, Pietro Perona, Deva Ramanan, Piotr Dollár,
and C Lawrence Zitnick. 2014. Microsoft COCO:
Common objects in context. In Proceedings of the
European Conference on Computer Vision.

Fuxiao Liu, Kevin Lin, Linjie Li, Jianfeng Wang, Yaser
Yacoob, and Lijuan Wang. 2023. Aligning large
multi-modal model with robust instruction tuning.
arXiv preprint arXiv:2306.14565.

Haotian Liu, Chunyuan Li, Yuheng Li, Bo Li, Yuan-
han Zhang, Sheng Shen, and Yong Jae Lee. 2024.
LLaVA-NeXT: Improved reasoning, ocr, and world
knowledge.

Kenneth Marino, Mohammad Rastegari, Ali Farhadi,
and Roozbeh Mottaghi. 2019. OK-VQA: A visual
question answering benchmark requiring external
knowledge. In Proceedings of the IEEE Conference
on Computer Vision and Pattern Recognition.

Anand Mishra, Shashank Shekhar, Ajeet K Singh, and
Anirban Chakraborty. 2019. OCR-VQA: Visual ques-
tion answering by reading text in images. In Proceed-
ings of the International Conference on Document
Analysis and Recognition.

Yasumasa Onoe, Sunayana Rane, Zachary Berger,
Yonatan Bitton, Jaemin Cho, Roopal Garg, Alexander
Ku, Zarana Parekh, Jordi Pont-Tuset, Garrett Tanzer,
Su Wang, and Jason Baldridge. 2024. DOCCI:
Descriptions of Connected and Contrasting Images.
arXiv preprint arXiv:2404.19753.

https://https://huggingface.co/Open-Orca/SlimOrca
https://https://huggingface.co/Open-Orca/SlimOrca
https://llava-vl.github.io/blog/2024-01-30-llava-next/
https://llava-vl.github.io/blog/2024-01-30-llava-next/


10527

OpenAI. 2023. GPT-4V(ision) system card.

Kishore Papineni, Salim Roukos, Todd Ward, and Wei-
Jing Zhu. 2002. BLEU: a method for automatic eval-
uation of machine translation. In Proceedings of the
the Association for Computational Linguistics.

Alec Radford, Jong Wook Kim, Chris Hallacy, Aditya
Ramesh, Gabriel Goh, Sandhini Agarwal, Girish Sas-
try, Amanda Askell, Pamela Mishkin, Jack Clark,
et al. 2021. Learning transferable visual models from
natural language supervision. In Proceedings of the
International Conference on Machine Learning.

Alec Radford, Jeff Wu, Rewon Child, David Luan,
Dario Amodei, and Ilya Sutskever. 2019. Language
models are unsupervised multitask learners. Ad-
vances in Neural Information Processing Systems.

Rita Ramos, Bruno Martins, Desmond Elliott, and Yova
Kementchedjhieva. 2023. SmallCap: lightweight im-
age captioning prompted with retrieval augmentation.
In Proceedings of the IEEE Conference on Computer
Vision and Pattern Recognition.

Dustin Schwenk, Apoorv Khandelwal, Christopher
Clark, Kenneth Marino, and Roozbeh Mottaghi. 2022.
A-OKVQA: A benchmark for visual question answer-
ing using world knowledge. In Proceedings of the
European Conference on Computer Vision.

Oleksii Sidorov, Ronghang Hu, Marcus Rohrbach, and
Amanpreet Singh. 2020. TextCaps: a dataset for
image captioning with reading comprehension. In
Proceedings of the European Conference on Com-
puter Vision.

Amanpreet Singh, Vivek Natarjan, Meet Shah, Yu Jiang,
Xinlei Chen, Devi Parikh, and Marcus Rohrbach.
2019. Towards VQA models that can read. In Pro-
ceedings of the IEEE Conference on Computer Vision
and Pattern Recognition.

Ramakrishna Vedantam, C Lawrence Zitnick, and Devi
Parikh. 2015. CIDEr: Consensus-based image de-
scription evaluation. In Proceedings of the IEEE
Conference on Computer Vision and Pattern Recog-
nition.

Vikhyat. 2024. Tiny vision language model.

Junke Wang, Lingchen Meng, Zejia Weng, Bo He, Zux-
uan Wu, and Yu-Gang Jiang. 2023. To see is to be-
lieve: Prompting GPT-4V for better visual instruction
tuning. arXiv preprint arXiv:2311.07574.

Jiarui Zhang, Mahyar Khayatkhoei, Prateek Chhikara,
and Filip Ilievski. 2023a. Visual cropping improves
zero-shot question answering of multimodal large
language models. arXiv preprint arXiv:2310.16033.

Yanzhe Zhang, Ruiyi Zhang, Jiuxiang Gu, Yufan
Zhou, Nedim Lipka, Diyi Yang, and Tong Sun.
2023b. LLaVAR: Enhanced visual instruction tuning
for text-rich image understanding. arXiv preprint
arXiv:2306.17107.

Bo Zhao, Boya Wu, and Tiejun Huang. 2023. SVIT:
Scaling up visual instruction tuning. arXiv preprint
arXiv:2307.04087.

A Data Mixture for Final Training Stage

Table 3 summarizes the datasets considered for
Stage III of the proposed model training procedure,
showing the response formatting prompt associated
to each of the considered datasets.

Data Size Response Formatting Prompts

LLaVA 158K -
LLaVAR 20K

VQAv2 166K Answer the question using a single word or phrase
GQA 144K
OK-VQA 9K
OCR-VQA 80K
TextVQA 35K
ST-VQA 26K

A-OKVQA 17k Answer with the option’s letter from the given choices directly.

TextCaps 22K Generate a one-sentence caption for the provided image, incor-
porating textual elements visible in the image.

Total 676K

Table 3: Data mixture used in Stage III of training.

B Preliminary Experiments Assessing
Architectural Choices

Through a set of preliminary experiments, we com-
pared different approaches to combine the vision
and language modalities, as well as approaches for
encoding high resolution images, using relatively
small Vision Transformers (ViTs) and language
models in order to validate architectural decisions.

The experiments followed the main principles
of Flamingo (Alayrac et al., 2022), where the lan-
guage and vision models were frozen to preserve
their pre-training knowledge.

B.1 Vision-Language Model Architectures

One initial experiment evaluated three different
alternatives for combining the vision and lan-
guage modalities, taking inspiration from the FRO-
MAGe (Koh et al., 2023), LLaVA, and Small-
Cap (Ramos et al., 2023) neural architectures.

Building upon FROMAGe, our first approach
involves transforming an image into a set of visual
embeddings using a pre-trained ViT. The resulting
visual inputs are then summarized through the ex-
traction of the [CLS] token, which is subsequently
mapped to the language model’s dimensionality
via a linear transformation. In contrast, the sec-
ond architecture (i.e., the one inspired by LLaVA)
leverages all the embeddings generated by the ViT
to represent an image, rather than relying solely
on the [CLS] token. In both cases, the language

https://cdn.openai.com/papers/GPTV_System_Card.pdf
https://github.com/vikhyat/moondream
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Train Param. CIDEr B@4 M

FROMAGe ✗ 590K 48.7 14.9 17.8
FROMAGe ✓ 88M 66.5 21.9 20.7

LLaVA ✗ 590K 81.2 24.1 22.1
LLaVA ✓ 88M 92.4 28.3 24.0

SmallCap ✗ 28M 106.8 32.6 26.4
SmallCap ✓ 116M 107.4 33.7 26.8

Table 4: Comparison of different approaches for com-
bining the vision and language modalities. The column
"Train" denotes models in which the ViT was trained,
and the column "Param." denotes the number of train-
able parameters. "B@4" and "M" represent the BLEU-4
(Papineni et al., 2002) and METEOR (Banerjee and
Lavie, 2005) metrics, respectively.

model takes as input the concatenation of the vi-
sion embeddings and the text prompt embeddings,
allowing it to contextualize the image with the ac-
companying text, to generate a relevant response.

The third architecture, inspired by SmallCap,
also makes use of a ViT that extracts features from
an image. However, it differs from the last two
architectures as it makes use of cross-attention
modules inserted between the self-attention and
the feedforward modules in the decoder, similarly
to the original encoder-decoder Transformer, to
bridge the modalities. The inner dimensionality
of the cross-attention modules matches the hidden
dimensionality of the language model.

To compare the effectiveness of the aforemen-
tioned three architectures, we trained and evalu-
ated them on a captioning task using the COCO
dataset (Lin et al., 2014). Specifically, we trained
our models on the training split, using a cross-
entropy loss, and evaluated them on the valida-
tion split. The ViT was initialized with pre-trained
weights from a CLIP-ViT-B-32 model, while the
language model was initialized with pre-trained
weights from the GPT-2 base model (Radford et al.,
2019). During training, the language model was
kept frozen, while the connector module, compris-
ing either a linear mapping in the first two architec-
tures or cross-attention modules in the third, was
trained. Additionally, we experimented with train-
ing the ViT. The models were trained for 5 epochs
using the AdamW optimizer, with a batch size of
64 instances, and a learning rate of 1e-4 for the
cross-attention modules and 1e-5 for the vision en-
coder. The GPT-2 model was trained to generate
captions using the prefix "This image shows ",
and the model was also prompted with this prefix
during the evaluation stage.

The results of this experiment are summarized
in Table 4, and they reveal that training the vi-
sion encoder together with the connector module
yields improved performance across all architec-
tures, when compared to training the connector
module alone. This is expected, given that training
the ViT results in training a larger number of pa-
rameters. Furthermore, our findings suggest that
using the full image embeddings results in better
performance relative to using solely the [CLS] to-
ken. This result is also intuitive, as multiple visual
tokens can capture more nuanced details about the
input image than a single vector. More importantly,
in an experimental setup where the language model
is not trained, the architecture inspired by Small-
Cap clearly demonstrates superior performance. In-
terestingly, using cross-attention modules as the
modality bridge seems to outperform other archi-
tectures, like LLaVA, even when considering more
trainable parameters associated to training the ViT.

Similar findings to those reported in this sec-
tion have also been reported by Laurençon et al.
(2024), although these authors have also showed
that LLaVA-style linear projections can outperform
cross-attention if, besides the ViT, the language
model is also carefully trained.

B.2 Encoding High Resolution Images
Previous attempts at increasing the input resolu-
tion of VLMs mostly chose to finetune the vision
encoder on higher resolution images (Chen et al.,
2023b), which is costly due to the quadratic com-
putational complexity of the attention mechanism,
and which also requires large amounts of image-
text data. To overcome this issue, we experimented
with an approach similar to that of Li et al. (2023d),
in which we scale up the input resolution by split-
ting the image into smaller patches that match the
resolution of the vision encoder, afterwards encod-
ing the smaller sub-images individually. To provide
the model with global context, we also encode the
full image as normal, concatenate all feature maps,
and use the result as our image representation.

Since the smaller image patches can have a dif-
ferent distribution than that of the images in which
the ViT was trained on, we introduce two sets of
LoRA adapters to the vision encoder. One is used
on the global image and the other is used on the
smaller local patches, allowing each resolution to
specialize on different size aspects of the input im-
age. The adapters were inserted at every linear
layer of the ViT with the following hyperparame-
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Figure 3: Architecture for high resolution multi-patch image encoding.

ters: rank of 8, alpha of 16, and dropout probability
of 0.05. We concatenate the resulting visual tokens,
and add to each patch learned positional embed-
dings, as shown in Figure 3.

The proposed method generates image represen-
tations with larger sequence lengths, which can
be computationally demanding. To mitigate this
issue, we explored the use of two resampler archi-
tectures, namely a 6-layer Perceiver Resampler, as
introduced in Flamingo (Alayrac et al., 2022), and
the Monkey Resampler, which can be characterized
as a single layer Perceiver Resampler that does not
include a feed-forward module and residual con-
nections for the query vectors. In our experiments,
both modules used 257 query vectors with the same
dimensionality of the vision encoder. Additionally,
we compare the aforementioned resamplers, which
encode images at 448x448 pixels, with an encoder
that processes images at 224x224 pixels, and also
with a 448x448 pixels encoder that does not com-
press the image features. For a fair comparison, the
smaller 224x224 pixels encoder also includes one
set of LoRA adapters.

Due to the fact that scaling up the resolution
is likely to benefit tasks that involve scene-text
and OCR the most, we pre-train our models on
the LLaVAR (Zhang et al., 2023b) dataset for 1
epoch, finetune on the TextCaps (Sidorov et al.,
2020) train split for 3 epochs, and finally evaluate
on the TextCaps validation split. When finetun-
ing our models, we use the prompt "This image
shows ", similarly to the previous experiment. Our
vision Transformer and language model are initial-
ized from pre-trained CLIP-ViT-L-14 and GPT-2
large models, respectively, and are combined with
cross-attention modules, following SmallCap. The
use of larger a ViT and language model, when
compared to the experiment described in the previ-
ous appendix, relates to the fact that tasks involv-
ing scene-text and OCR are more demanding, and
hence slightly larger models can facilitate the as-

sessment of differences between the architectural
alternatives being compared. We freeze the ViT and
language model, and only train the cross-attention
modules, positional embeddings, LoRA, and resam-
plers, using a cross-entropy loss over non-prompt
tokens. We use the AdamW optimizer, with a learn-
ing rate of 1e-4 for the pre-training stage and 2e-5
for the fine-tuning stage, and with a batch size of
64 in both stages. The results are shown in Table 5.

The experiment revealed that increasing the in-
put resolution from 224x224 to 448x448 pixels
increases captioning performance, independently
from whether we compress the resulting visual to-
kens or not. There does not seem to be a large
performance difference in how we compress the
visual tokens, since the Monkey Resampler and the
Perceiver Resampler have similar CIDEr (Vedan-
tam et al., 2015) scores on the TextCaps validation
split. However, this might not be the case for other
tasks. Finally, the architecture with the best re-
sults is the one that increases the input resolution
from 224x224 pixels to 448x448 pixels without
compressing the vision features.

C Assessing Changes in Cross-Attention
According to Different Path Sizes

This appendix further analyses the use of high-
resolution inputs, assessing the reliance of the
model on the global versus local sub-images.

To investigate how the model uses the different
patches in the cross-attention module, we calcu-
lated the average of the attention scores for the
generated captions across all TextCaps validation
set images. Specifically we compute the average of
the cross-modal attention scores across the global
image tokens and the local patches tokens, at each
step of generating caption tokens and across all
attention heads. Figure 4 shows the global patch
average attention scores for the Pheye-x4 models,
separately for each of the layers in which cross-
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Resolution Resampler Visual Token Length Trainable Parameters CIDEr BLEU-4 METEOR

224 - 257 241M 104.5 27.6 24.6
448 Monkey 257 248M 110.1 28.1 24.9
448 Flamingo 257 317M 110.3 28.2 24.9
448 - 1285 244M 113.2 28.5 25.2

Table 5: Comparison of different strategies for handling high resolution images as input.

Figure 4: Attention scores for global patch tokens across
data tertiles that reflect the relative dimensions of rele-
vant image areas. Both graphs were calculated using the
Pheye-x4 models. The average cross-attention score for
the local patches is given by 1−AG, were AG denotes
the cross-attention scores for the global patch tokens.

attention operations were inserted.

After computing the attention scores, we seg-
mented the results using a similar approach to that
described in Section 3.3, with the only difference
being that we replace the ground-truth answers
with reference captions. This analysis reveals that
images requiring finer detail understanding tend
to favor local patches over global patch tokens, as
they necessitate higher resolution inputs. In con-
trast, images with larger scene-text tend to rely
more on global patch tokens. Moreover, we see

that although the visual token length is different
in both models present in Figure 4, the attention
scores for the global patch are similar across all
dense cross-attention layers.
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