@inproceedings{sun-etal-2025-comet,
title = "Comet: Dialog Context Fusion Mechanism for End-to-End Task-Oriented Dialog with Multi-task Learning",
author = "Sun, Haipeng and
Bao, Junwei and
Wu, Youzheng and
He, Xiaodong",
editor = "Rambow, Owen and
Wanner, Leo and
Apidianaki, Marianna and
Al-Khalifa, Hend and
Eugenio, Barbara Di and
Schockaert, Steven",
booktitle = "Proceedings of the 31st International Conference on Computational Linguistics",
month = jan,
year = "2025",
address = "Abu Dhabi, UAE",
publisher = "Association for Computational Linguistics",
url = "https://aclanthology.org/2025.coling-main.702/",
pages = "10541--10553",
abstract = "Existing end-to-end task-oriented dialog systems often encounter challenges arising from implicit information, coreference, and the presence of noisy and irrelevant data within the dialog context. These issues hinder the system`s ability to fully comprehend critical information and lead to inaccurate responses. To address these concerns, we propose Comet, a dialog context fusion mechanism for end-to-end task-oriented dialog, augmented with three supplementary tasks: dialog summarization, domain prediction, and slot detection. Dialog summarization facilitates a more comprehensive understanding of important dialog context information by Comet. Domain prediction enables Comet to concentrate on domain-specific information, thus reducing interference from irrelevant information. Slot detection empowers Comet to accurately identify and comprehend essential dialog context information. Additionally, we introduce a data refinement strategy to enhance the comprehensiveness and recommendability of the generated responses. Experimental results demonstrate the superior performance of our proposed methods compared to existing end-to-end task-oriented dialog systems, achieving state-of-the-art results on the MultiWOZ and CrossWOZ datasets."
}
<?xml version="1.0" encoding="UTF-8"?>
<modsCollection xmlns="http://www.loc.gov/mods/v3">
<mods ID="sun-etal-2025-comet">
<titleInfo>
<title>Comet: Dialog Context Fusion Mechanism for End-to-End Task-Oriented Dialog with Multi-task Learning</title>
</titleInfo>
<name type="personal">
<namePart type="given">Haipeng</namePart>
<namePart type="family">Sun</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Junwei</namePart>
<namePart type="family">Bao</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Youzheng</namePart>
<namePart type="family">Wu</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Xiaodong</namePart>
<namePart type="family">He</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<originInfo>
<dateIssued>2025-01</dateIssued>
</originInfo>
<typeOfResource>text</typeOfResource>
<relatedItem type="host">
<titleInfo>
<title>Proceedings of the 31st International Conference on Computational Linguistics</title>
</titleInfo>
<name type="personal">
<namePart type="given">Owen</namePart>
<namePart type="family">Rambow</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Leo</namePart>
<namePart type="family">Wanner</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Marianna</namePart>
<namePart type="family">Apidianaki</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Hend</namePart>
<namePart type="family">Al-Khalifa</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Barbara</namePart>
<namePart type="given">Di</namePart>
<namePart type="family">Eugenio</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Steven</namePart>
<namePart type="family">Schockaert</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<originInfo>
<publisher>Association for Computational Linguistics</publisher>
<place>
<placeTerm type="text">Abu Dhabi, UAE</placeTerm>
</place>
</originInfo>
<genre authority="marcgt">conference publication</genre>
</relatedItem>
<abstract>Existing end-to-end task-oriented dialog systems often encounter challenges arising from implicit information, coreference, and the presence of noisy and irrelevant data within the dialog context. These issues hinder the system‘s ability to fully comprehend critical information and lead to inaccurate responses. To address these concerns, we propose Comet, a dialog context fusion mechanism for end-to-end task-oriented dialog, augmented with three supplementary tasks: dialog summarization, domain prediction, and slot detection. Dialog summarization facilitates a more comprehensive understanding of important dialog context information by Comet. Domain prediction enables Comet to concentrate on domain-specific information, thus reducing interference from irrelevant information. Slot detection empowers Comet to accurately identify and comprehend essential dialog context information. Additionally, we introduce a data refinement strategy to enhance the comprehensiveness and recommendability of the generated responses. Experimental results demonstrate the superior performance of our proposed methods compared to existing end-to-end task-oriented dialog systems, achieving state-of-the-art results on the MultiWOZ and CrossWOZ datasets.</abstract>
<identifier type="citekey">sun-etal-2025-comet</identifier>
<location>
<url>https://aclanthology.org/2025.coling-main.702/</url>
</location>
<part>
<date>2025-01</date>
<extent unit="page">
<start>10541</start>
<end>10553</end>
</extent>
</part>
</mods>
</modsCollection>
%0 Conference Proceedings
%T Comet: Dialog Context Fusion Mechanism for End-to-End Task-Oriented Dialog with Multi-task Learning
%A Sun, Haipeng
%A Bao, Junwei
%A Wu, Youzheng
%A He, Xiaodong
%Y Rambow, Owen
%Y Wanner, Leo
%Y Apidianaki, Marianna
%Y Al-Khalifa, Hend
%Y Eugenio, Barbara Di
%Y Schockaert, Steven
%S Proceedings of the 31st International Conference on Computational Linguistics
%D 2025
%8 January
%I Association for Computational Linguistics
%C Abu Dhabi, UAE
%F sun-etal-2025-comet
%X Existing end-to-end task-oriented dialog systems often encounter challenges arising from implicit information, coreference, and the presence of noisy and irrelevant data within the dialog context. These issues hinder the system‘s ability to fully comprehend critical information and lead to inaccurate responses. To address these concerns, we propose Comet, a dialog context fusion mechanism for end-to-end task-oriented dialog, augmented with three supplementary tasks: dialog summarization, domain prediction, and slot detection. Dialog summarization facilitates a more comprehensive understanding of important dialog context information by Comet. Domain prediction enables Comet to concentrate on domain-specific information, thus reducing interference from irrelevant information. Slot detection empowers Comet to accurately identify and comprehend essential dialog context information. Additionally, we introduce a data refinement strategy to enhance the comprehensiveness and recommendability of the generated responses. Experimental results demonstrate the superior performance of our proposed methods compared to existing end-to-end task-oriented dialog systems, achieving state-of-the-art results on the MultiWOZ and CrossWOZ datasets.
%U https://aclanthology.org/2025.coling-main.702/
%P 10541-10553
Markdown (Informal)
[Comet: Dialog Context Fusion Mechanism for End-to-End Task-Oriented Dialog with Multi-task Learning](https://aclanthology.org/2025.coling-main.702/) (Sun et al., COLING 2025)
ACL