
Proceedings of the 31st International Conference on Computational Linguistics, pages 10569–10575
January 19–24, 2025. ©2025 Association for Computational Linguistics

10569

Extracting the Essence and Discarding the Dross:
Enhancing Code Generation with Contrastive Execution Feedback

Xuanyu Zhang
Du Xiaoman Financial

Beijing, China
zhangxuanyu@duxiaoman.com

Qing Yang
Du Xiaoman Financial

Beijing, China
yangqing@duxiaoman.com

Abstract
Recent advancements have integrated the exe-
cution process and feedback into the training
of large language models for code generation,
demonstrating enhanced model performance.
However, current methods amalgamate erro-
neous code with feedback and the final correct
code as target sentences, inadvertently increas-
ing the probability of generating both correct
and incorrect code during inference. While
multiple iterations of feedback can eventually
yield the correct answer, this iterative process
is cumbersome and time-consuming for users
who prefer immediate accurate results. To ad-
dress this challenge, we propose ConCoder,
a contrastive learning-based code generation
model with execution feedback. This approach
enables the model to efficiently produce ac-
curate code from the outset while rectifying
and optimizing the incorrect code. Further-
more, our training emphasizes learning from
the causes of errors, allowing the model to
understand and avoid mistakes. Through ex-
tensive experiments, ConCoder demonstrates
significant improvements in generating accu-
rate code and understanding error correction,
paving the way for more reliable code genera-
tion models.

1 Introduction

Code generation has long been a central chal-
lenge in natural language processing, with signif-
icant progress seen over the past decades. The
recent works (Roziere et al., 2023; Li et al., 2023;
Lozhkov et al., 2024; Guo et al., 2024; Bai et al.,
2023) in leveraging large language models (LLMs)
(Achiam et al., 2023) pre-trained on extensive code
corpora have revolutionized this field, showcasing
remarkable advancements in understanding intents
and generating functional code.

Code differs from traditional text in that it can
be executed and its correctness can be judged con-
currently. Leveraging this unique characteristic,
some research efforts have proposed utilizing code

execution and feedback to enhance the capabili-
ties of models. For example, OpenCodeInterpreter
(Zheng et al., 2024) combines code execution and
human feedback, harnessing compiler diagnostics
to swiftly identify and rectify errors, while lever-
aging human insights to fine-tune and refine the
code generation process. This innovative approach
enables the model to deliver solutions that are tech-
nically robust and precisely tailored to user require-
ments, thus significantly enhancing its overall per-
formance.

However, the methodology of integrating execu-
tion feedback into model training presents notable
challenges. Typically, the training process involves
appending erroneous code with feedback and the
eventual correct code, which inadvertently results
in the model learning not only the correct solutions
but also the mistakes encountered along the way.
This phenomenon increases the model’s propen-
sity to generate incorrect code during the inference
phase, despite ultimately arriving at the correct
answer after multiple iterations of feedback and
refinement. This iterative process, while effective,
is cumbersome and time-consuming, which is a sig-
nificant drawback for users who desire immediate
and accurate solutions.

The motivation for our research stems from the
need to enhance the efficiency of code generation
models by ensuring they learn to produce correct
code without being distracted by the erroneous out-
puts encountered during training. Our proposed
model, ConCoder, leverages contrastive learning
principles (Hadsell et al., 2006; Chen et al., 2020)
to address these challenges. The core idea behind
ConCoder is to increase the separation between
erroneous and correct code while simultaneously
decreasing the distance between correct code snip-
pets expressed in different ways. This objective
ensures that the model not only learns to generate
correct code expediently but also internalizes the
reasons behind errors, thereby improving its capa-
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bility to avoid similar mistakes in the future. This
also avoids the problem that the probability of the
model generating correct and incorrect codes simul-
taneously increases during the reasoning process
after the problematic code is concatenated with the
feedback and the final correct code as the target sen-
tence for learning. In our experimental evaluation,
ConCoder demonstrated significant improvements
over previous models in terms of code generation.
The model’s ability to provide correct solutions at
an earlier stage, without the need for iterative feed-
back loops, marks a substantial advancement in the
field of automated code generation. This efficiency
not only saves time for users but also simplifies the
overall process, making automated code generation
more practical and user-friendly.

In general, our paper has the following contribu-
tions:

• We are the first to introduce contrastive learn-
ing methods into code LLMs, improving the
model’s code generation capabilities by in-
creasing the distance between correct and er-
roneous code answers, while reducing the dis-
tance between correct code answers.

• Different from traditional contrastive learning,
by emphasizing the feedback analysis of er-
ror codes, the model can understand both the
results and the reasons behind them.

• Experiments on four code generation datasets,
HumanEval, HumanEval+, MBPP, MBPP+,
shows the effectiveness of our model. Com-
paring with previous SOTA, OpenCodeInter-
preter, ConCoder achieves 3%+ average rela-
tive improvement on these datasets.

2 Methodology

In this section, we detail the methods employed in
ConCoder. Our approach is built upon the princi-
ples of contrastive learning, enabling the model to
differentiate erroneous code from correct code and
enhance its capacity to generate accurate solutions.
Below, we systematically describe the definition,
training objectives, and the specific mechanisms
used in ConCoder.

Consider a dialogue-based interaction where the
model is tasked with generating code snippets. In
such interactions, both erroneous and correct code
snippets are generated, each of which provides valu-
able information to the model for improving its

performance. Let ĥ1 (blue box on the left in Figure
1) represent an erroneous code snippet generated
in the first-turn dialogue interaction, and h1 (pink
box on the left in Figure 1) represent the correct
code snippet from the same dialogue. Similarly, let
ĥ2 (blue box on the right in Figure 1) and h2 (pink
box on the right in Figure 1) denote the erroneous
and correct code snippets from another dialogue
interaction for the same problem.

Our approach leverages contrastive learning prin-
ciples to refine the learning process, effectively dis-
criminating between erroneous and correct code
generations based on execution feedback. The core
objective is to minimize the interference of erro-
neous code during model training, ensuring the
model predominantly learns to generate the correct
code from the outset. To achieve this, we consider
both contrastive learning loss and cross-entropy
loss simultaneously.

The contrastive learning loss, specifically the
InfoNCE loss, focuses on capturing the relation-
ships between correct and incorrect code snippets.
The goal is to bring the correct code snippets (h1
and h2) closer together in the representation space,
while pushing apart the erroneous snippets (ĥ1 and
ĥ2) from the correct ones. These representations
are the results after mean pooling of the last-layer
hidden states corresponding to the code. This pro-
cess is formulated as follows:

LInfoNCE =

− log

(
esim(h1,h2)

esim(h1,h2) + esim(h1,ĥ2) + esim(ĥ1,h2)

) (1)

where sim(a, b) denotes the cosine similarity be-
tween representations a and b. Its expression form
is used in various recommendation and retrieval
tasks (Zhang et al., 2021, 2022a; Zhang and Yang,
2021a) in addition to being applied in contrastive
learning.

To ensure that the model not only learns from
the contrastive relationships but also improves the
capabilities of code sequence generation and er-
ror correction and optimization, we incorporate the
cross-entropy loss LCE from the dialogue interac-
tions. This process ensures that the model learns to
recognize why certain code snippets are incorrect
and how to improve upon them. The cross-entropy
loss plays a crucial role in helping the model adapt
and optimize its output in response to the dialogue
context, further enhancing its overall performance.

The final loss function used to train the model
is a weighted sum of the InfoNCE loss and the
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Write a function two_sum that takes an integer array 
nums and an integer target, and returns the indices of 
the two numbers such that they add up to the target.

def two_sum(nums, target):
    for i in range(len(nums)):
        for j in range(i + 1, len(nums))
            if nums[i] + nums[j] == target:
                return [i, j]

  File "solution.py", line 3
    for j in range(i + 1, len(nums))
                                  ^
SyntaxError: invalid syntax

I missed a colon at the end of the for loop. 

def two_sum(nums, target):
    for i in range(len(nums)):
        for j in range(i + 1, len(nums)):
            if nums[i] + nums[j] == target:
                return [i, j]

Congratulations!
Excuate and validate successfully!

Input: nums = [2, 7, 11, 15], target = 9
Output: [0, 1] ... ...

Write a function two_sum that takes an 
integer array nums and an integer target, 
and returns the indices of the two ...

Error: Failed on input: nums = [3, 3], 
target = 6

My code returns the same index twice if 
the target is double the value of a single 
element in the array. 

def two_sum(nums, target):
    nums_map = {}
    for i, num in enumerate(nums):
        if target - num in nums_map:
            return [nums_map[target - num], i]
        nums_map[num] = i

Congratulations!
Excuate and validate successfully!
... ...

def two_sum(nums, target):
    nums_map = {}
    for i, num in enumerate(nums):
        nums_map[num] = i
    for i, num in enumerate(nums):
        if target - num in nums_map:
            return [i, nums_map[target - num]]

Figure 1: The training process of contrastive learning.

cross-entropy loss. By combining the above losses,
the model can learn from the underlying causes
of errors and the associated feedback, while also
refining its ability to clearly differentiate between
correct and incorrect code snippets. This distinc-
tion mitigates the potential drawback of the cross-
entropy loss, where optimizing for both correct
and incorrect code generation probabilities simul-
taneously could diminish the model’s focus on pro-
ducing accurate solutions from the outset. The
combined loss function is expressed as:

L = αLInfoNCE + LCE (2)

where α is a hyperparameter that controls the bal-
ance between the two loss components. By ad-
justing α, we can regulate the relative contribution
of the contrastive learning objective and the cross-
entropy loss, enabling us to optimize the model’s
performance based on specific training goals.

3 Experiment

3.1 Dataset and Implementation
During the training phase, we construct a large-
scale dataset consisting of 200k code examples
with execution feedback using GPT-4. It leverages
GPT-4’s advanced language and reasoning capabil-
ities to simulate a variety of realistic programming
tasks and generate corresponding execution feed-
back. And this dataset is generated based on the

open-source code dataset available in OpenCodeIn-
terpreter (Zheng et al., 2024), which aggregates
multiple datasets from Code Alpaca (Chaudhary,
2023), Magicoder (Wei et al., 2023), WizardCoder
(Luo et al., 2023) and so on. Each code sample is
equipped with detailed feedback, highlighting the
execution outcomes and potential improvements
or corrections for the code. By curating a diverse
range of examples, we ensure that the dataset en-
compasses a broad spectrum of programming con-
cepts and scenarios.

For the prediction and evaluation phase, we se-
lect four widely used datasets in code evaluation:
HumanEval, HumanEval+, MBPP, and MBPP+.
Specifically, HumanEval+ and MBPP+ are ex-
panded versions of the original HumanEval and
MBPP datasets, created by EvalPlus (Liu et al.,
2024), which have been enlarged by several dozen
times to provide a more comprehensive testbed.
We adopt a single-turn configuration, meaning that
for each problem, our model generates only one
code answer without multiple iterations or external
feedback. The evaluation is conducted using the
pass@1 metric.

In our experiments, we employ NVIDIA A800
GPU for training and evaluation. The hyper-
parameters of models are decided by original base
model, including Code LLaMA and DeepSeek
Coder. The batch size of the model is set to 256.
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Model Size Type HumanEval (+) MBPP (+) Average (+)

API

GPT-4 Turbo (Achiam et al., 2023) - - 85.4 (81.7) 83.0 (70.7) 84.2 (76.2)
GPT-3.5 Turbo - - 72.6 (65.9) 81.7 (69.4) 77.2 (67.7)
Gemini Pro (Saeidnia, 2023) - - 63.4 (55.5) 72.9 (57.9) 68.2 (56.7)

Open Source Models

StarCoder (Li et al., 2023) 7B Base 24.4 (20.7) 33.1 (28.8) 28.8 (24.8)
CodeT5+ (Wang et al., 2023b) 6B Base 29.3 (23.8) 51.9 (40.9) 40.6 (32.4)
CodeGen-Mono (Nijkamp et al., 2022) 6B Base 29.3 (25.6) 49.9 (42.1) 39.6 (33.9)
Mistral (Jiang et al., 2023) 7B Base 28.7 (23.2) 50.1 (40.9) 39.4 (32.1)
OpenChat (Wang et al., 2023a) 7B Instruct 72.0 (67.1) 62.7 (52.9) 67.4 (60.0)

CodeLlama-Python (Roziere et al., 2023) 7B Base 37.8 (34.1) 57.6 (45.4) 47.7 (39.8)
WizardCoder-CL (Luo et al., 2023) 7B Instruct 48.2 (40.9) 56.6 (47.1) 52.4 (44.0)
Magicoder-CL (Wei et al., 2023) 7B Instruct 60.4 (55.5) 64.2 (52.6) 62.3 (54.1)
Magicoders-S-CL (Wei et al., 2023) 7B Instruct 70.7 (66.5) 68.4 (56.6) 69.6 (61.6)
OpenCodeInterpreter (Zheng et al., 2024) 7B Instruct 72.6 (67.7) 66.4 (55.4) 69.5 (61.6)
ConCoder (Our Model) 7B Instruct 73.2 (68.3) 70.9 (59.8) 72.1 (64.1)

DeepseekCoder (Guo et al., 2024) 6.7B Base 47.6 (39.6) 70.2 (56.6) 58.9 (48.1)
DeepseekCoder-Instruct 6.7B Instruct 73.8 (70.1) 73.2 (63.4) 73.5 (66.8)
Magicoder-DS (Wei et al., 2023) 6.7B Instruct 66.5 (60.4) 75.4 (61.9) 71.0 (61.2)
Magicoder-S-DS (Wei et al., 2023) 6.7B Instruct 76.8 (70.7) 75.7 (64.4) 76.3 (67.6)
OpenCodeInterpreter (Zheng et al., 2024) 6.7B Instruct 76.2 (72.0) 73.9 (63.7) 75.1 (67.9)
ConCoder (Our Model) 6.7B Instruct 79.3 (72.0) 81.7 (69.0) 80.5 (70.5)

- contrastive loss 6.7B Instruct 77.4 (72.0) 79.6 (68.8) 78.5 (70.4)
- a negative pair in contrastive loss 6.7B Instruct 79.1 (72.7) 80.5 (68.3) 79.8 (70.5)

Table 1: Pass@1 of different code LLMs on HumanEval (+), MBPP (+) and their average (+).

And the max length of code sequence is set to 4096.
The AdamW (Loshchilov and Hutter, 2018) is used
as our optimizer with 4e-5 learning rate. α is set to
0.35 according to the performance of our model.

3.2 Result and Analysis

As illustrated in Table 1, we conduct experiments
on code LLMs of various base models, includ-
ing CodeLlama-7B (Roziere et al., 2023) and
DeepseekCoder-6.7B (Guo et al., 2024). Other
results are obtained from OpenCodeInterpreter
(Zheng et al., 2024). Compared with the previous
best feedback-based model, OpenCodeInterpreter,
our model, ConCoder, has achieved an average rel-
ative improvement of approximately 3% to 7%. In
particular, for the model based on DeepseekCoder,
our method has increased the Pass@1 from 73.9%
to 81.7% on MBPP. The improvement is signifi-
cant, indicating that our approach is more effective
in utilizing feedback to generate accurate and rel-
evant code. Besides, the consistent performance
enhancements across diverse architectures suggest

that ConCoder is not limited to a specific model or
dataset. Instead, it can be seamlessly integrated into
a variety of pre-trained code LLMs. This adaptabil-
ity makes ConCoder a highly versatile tool, capable
of enhancing code generation across a broad range
of scenarios and data distributions.

As further evidenced by the results at the bot-
tom of Table 1, our ablation study sheds light on
the pivotal role played by the contrastive learning
component in the success of ConCoder. When the
contrastive mechanism was entirely removed, the
model’s performance suffered a marked decline
on both the HumanEval and MBPP datasets. This
outcome underscores the importance of contrastive
learning in guiding the model to better understand
feedback. When only one negative pair is removed
from the contrastive loss, the impact is less pro-
nounced on HumanEval but considerably larger on
MBPP. Intuitively, MBPP encompasses a broader
range of programming tasks and samples, which
particularly benefits from the enriched representa-
tion learning facilitated by multiple negative pairs.
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4 Related Work

4.1 Pre-training with Code
Code plays a critical role in the pre-training of
large language models (Zhang and Yang, 2023c,
2025), significantly contributing to their reasoning
and problem-solving capabilities. By incorporating
code into the training corpus, LLMs can better
handle complex logical structures and sequential
reasoning tasks. For this reason, many general-
purpose LLMs, such as LaMDA (Thoppilan et al.,
2022), LLaMA (Touvron et al., 2023a,b) and PaLM
(Chowdhery et al., 2023), include a proportion of
code data in their pre-training datasets, ranging
from 5% to 13% of their training corpus.

In addition to general-purpose LLMs, there has
been a surge of specialized LLMs designed ex-
plicitly for code-related tasks. These models are
typically pre-trained on vast amounts of code data,
allowing them to achieve high performance in code
generation, debugging, and understanding. No-
table examples include CodeGeeX (Zheng et al.,
2023), CodeT5+ (Wang et al., 2023b), StarCoder
(Li et al., 2023), CodeLLaMa (Roziere et al., 2023)
and DeepSeek-Coder (Guo et al., 2024; Zhu et al.,
2024). These models rely heavily on massive
pre-training datasets consisting primarily of code,
showcasing the importance of domain-specific cor-
pora in addressing programming tasks.

4.2 Fine-tuning with Code
Despite the success of specialized LLMs for code,
pre-training such models requires extensive com-
putational resources and a vast amount of data,
which may not always be feasible. Furthermore,
while pre-trained models are capable of generat-
ing syntactically correct code, they often lack fine-
grained instruction-following and interactive capa-
bilities essential for real-world applications. To ad-
dress these challenges, fine-tuning approaches have
emerged as an effective alternative. Fine-tuning
leverages pre-trained general-purpose models by
adapting them to specific domains (Zhang and
Yang, 2023b; Zhang et al., 2023a) or tasks (Zhang,
2019, 2020; Zhang and Wang, 2020; Zhang and
Yang, 2021b; Zhang et al., 2022b, 2023b; Zhang
and Yang, 2023a; Zhang et al., 2023b) with smaller
and task-specific datasets. In the field of code,
WizardCoder (Luo et al., 2023) introduced Evol-
Instruct, a framework that evolves existing instruc-
tion data into more complex and diverse datasets,
enhancing the model’s ability to handle intricate

instructions. Similarly, MagiCoder (Wei et al.,
2023) proposed the OSS-Instruct method, which
leverages open-source code snippets to generate di-
verse, realistic, and controllable coding instruction
datasets. These datasets have proven instrumen-
tal in significantly improving the performance of
various LLMs through instruction tuning.

4.3 Fine-tuning with Code Feedback

The executable nature of code has led to the de-
velopment of numerous feedback-driven methods
for improving code generation through iteration.
Unlike traditional text generation tasks, code out-
puts can be executed to provide concrete feedback
in the form of runtime results or error messages.
This has motivated researchers to explore iterative
approaches, where the feedback from previous it-
erations is used to refine and improve subsequent
generations. For example, OpenCodeInterpreter
(Zheng et al., 2024) amalgamates execution and
human feedback to effectuate dynamic code refine-
ment. It deploys compiler diagnostics for the recti-
fication of errors and capitalizes on human insights
to refine code generation.

Although OpenCodeInterpreter (Zheng et al.,
2024) successfully integrates code execution feed-
back into the code generation process by utiliz-
ing compiler diagnostics and user feedback for dy-
namic optimization, its training approach combines
erroneous and the final correct code into a single tar-
get sequence. That is to say, this method allows the
model to iteratively refine and correct its outputs,
but it also increases the likelihood of generating
incorrect code during the initial stages of inference.
However, the contrastive learning method we use
can solve this problem well, allowing the model to
extract its essence and discard its dross.

5 Conclusion

In this paper, we introduce ConCoder, a novel con-
trastive learning-based model for code generation
that addresses the limitation where the model tends
to simultaneously increase the probability of gen-
erating both correct and incorrect code. Unlike
previous models that relied solely on cross-entropy
loss, ConCoder enhances the separation between
correct and incorrect code representations, ensur-
ing that the model generates accurate code from
the outset and reduces reliance on iterative feed-
back. Extensive experiments on diverse datasets
showcased the superior performance of ConCoder.



10574

References
Josh Achiam, Steven Adler, Sandhini Agarwal, Lama

Ahmad, Ilge Akkaya, Florencia Leoni Aleman,
Diogo Almeida, Janko Altenschmidt, Sam Altman,
Shyamal Anadkat, et al. 2023. Gpt-4 technical report.
arXiv preprint arXiv:2303.08774.

Jinze Bai, Shuai Bai, Yunfei Chu, Zeyu Cui, Kai Dang,
Xiaodong Deng, Yang Fan, Wenbin Ge, Yu Han, Fei
Huang, et al. 2023. Qwen technical report. arXiv
preprint arXiv:2309.16609.

Sahil Chaudhary. 2023. Code alpaca: An instruction-
following llama model for code generation. GitHub
repository.

Ting Chen, Simon Kornblith, Mohammad Norouzi, and
Geoffrey Hinton. 2020. A simple framework for
contrastive learning of visual representations. In In-
ternational conference on machine learning, pages
1597–1607. PMLR.

Aakanksha Chowdhery, Sharan Narang, Jacob Devlin,
Maarten Bosma, Gaurav Mishra, Adam Roberts, Paul
Barham, Hyung Won Chung, Charles Sutton, Sebas-
tian Gehrmann, et al. 2023. Palm: Scaling language
modeling with pathways. Journal of Machine Learn-
ing Research, 24(240):1–113.

Daya Guo, Qihao Zhu, Dejian Yang, Zhenda Xie,
Kai Dong, Wentao Zhang, Guanting Chen, Xiao
Bi, Yu Wu, YK Li, et al. 2024. Deepseek-coder:
When the large language model meets programming–
the rise of code intelligence. arXiv preprint
arXiv:2401.14196.

Raia Hadsell, Sumit Chopra, and Yann LeCun. 2006.
Dimensionality reduction by learning an invariant
mapping. In 2006 IEEE computer society confer-
ence on computer vision and pattern recognition
(CVPR’06), volume 2, pages 1735–1742. IEEE.

Albert Q Jiang, Alexandre Sablayrolles, Arthur Men-
sch, Chris Bamford, Devendra Singh Chaplot, Diego
de las Casas, Florian Bressand, Gianna Lengyel, Guil-
laume Lample, Lucile Saulnier, et al. 2023. Mistral
7b. arXiv preprint arXiv:2310.06825.

Raymond Li, Loubna Ben Allal, Yangtian Zi, Niklas
Muennighoff, Denis Kocetkov, Chenghao Mou, Marc
Marone, Christopher Akiki, Jia Li, Jenny Chim, et al.
2023. Starcoder: may the source be with you! arXiv
preprint arXiv:2305.06161.

Jiawei Liu, Chunqiu Steven Xia, Yuyao Wang, and Ling-
ming Zhang. 2024. Is your code generated by chatgpt
really correct? rigorous evaluation of large language
models for code generation. Advances in Neural
Information Processing Systems, 36.

Ilya Loshchilov and Frank Hutter. 2018. Fixing weight
decay regularization in adam.

Anton Lozhkov, Raymond Li, Loubna Ben Allal, Fed-
erico Cassano, Joel Lamy-Poirier, Nouamane Tazi,

Ao Tang, Dmytro Pykhtar, Jiawei Liu, Yuxiang Wei,
et al. 2024. Starcoder 2 and the stack v2: The next
generation. arXiv preprint arXiv:2402.19173.

Ziyang Luo, Can Xu, Pu Zhao, Qingfeng Sun, Xi-
ubo Geng, Wenxiang Hu, Chongyang Tao, Jing Ma,
Qingwei Lin, and Daxin Jiang. 2023. Wizardcoder:
Empowering code large language models with evol-
instruct. arXiv preprint arXiv:2306.08568.

Erik Nijkamp, Bo Pang, Hiroaki Hayashi, Lifu Tu, Huan
Wang, Yingbo Zhou, Silvio Savarese, and Caiming
Xiong. 2022. Codegen: An open large language
model for code with multi-turn program synthesis.
arXiv preprint arXiv:2203.13474.

Baptiste Roziere, Jonas Gehring, Fabian Gloeckle, Sten
Sootla, Itai Gat, Xiaoqing Ellen Tan, Yossi Adi,
Jingyu Liu, Romain Sauvestre, Tal Remez, et al. 2023.
Code llama: Open foundation models for code. arXiv
preprint arXiv:2308.12950.

Hamid Reza Saeidnia. 2023. Welcome to the gemini
era: Google deepmind and the information industry.
Library Hi Tech News, (ahead-of-print).

Romal Thoppilan, Daniel De Freitas, Jamie Hall, Noam
Shazeer, Apoorv Kulshreshtha, Heng-Tze Cheng,
Alicia Jin, Taylor Bos, Leslie Baker, Yu Du, et al.
2022. Lamda: Language models for dialog applica-
tions. arXiv preprint arXiv:2201.08239.

Hugo Touvron, Thibaut Lavril, Gautier Izacard, Xavier
Martinet, Marie-Anne Lachaux, Timothée Lacroix,
Baptiste Rozière, Naman Goyal, Eric Hambro, Faisal
Azhar, et al. 2023a. Llama: Open and effi-
cient foundation language models. arXiv preprint
arXiv:2302.13971.

Hugo Touvron, Louis Martin, Kevin Stone, Peter Al-
bert, Amjad Almahairi, Yasmine Babaei, Nikolay
Bashlykov, Soumya Batra, Prajjwal Bhargava, Shruti
Bhosale, et al. 2023b. Llama 2: Open founda-
tion and fine-tuned chat models. arXiv preprint
arXiv:2307.09288.

Guan Wang, Sijie Cheng, Xianyuan Zhan, Xiangang Li,
Sen Song, and Yang Liu. 2023a. Openchat: Advanc-
ing open-source language models with mixed-quality
data. arXiv preprint arXiv:2309.11235.

Yue Wang, Hung Le, Akhilesh Deepak Gotmare,
Nghi DQ Bui, Junnan Li, and Steven CH Hoi. 2023b.
Codet5+: Open code large language models for
code understanding and generation. arXiv preprint
arXiv:2305.07922.

Yuxiang Wei, Zhe Wang, Jiawei Liu, Yifeng Ding, and
Lingming Zhang. 2023. Magicoder: Source code is
all you need. arXiv preprint arXiv:2312.02120.

Xuanyu Zhang. 2019. MCˆ2: Multi-perspective con-
volutional cube for conversational machine reading
comprehension. In Proceedings of the 57th Annual
Meeting of the Association for Computational Lin-
guistics, pages 6185–6190, Florence, Italy. Associa-
tion for Computational Linguistics.



10575

Xuanyu Zhang. 2020. Cfgnn: Cross flow graph neural
networks for question answering on complex tables.
Proceedings of the AAAI Conference on Artificial
Intelligence, 34(05):9596–9603.

Xuanyu Zhang, Bingbing Li, and Qing Yang. 2023a.
Cgce: A chinese generative chat evaluation bench-
mark for general and financial domains. arXiv
preprint arXiv:2305.14471.

Xuanyu Zhang, Zhepeng Lv, and Qing Yang. 2023b.
Adaptive attention for sparse-based long-sequence
transformer. In Findings of the Association for Com-
putational Linguistics: ACL 2023, pages 8602–8610,
Toronto, Canada. Association for Computational Lin-
guistics.

Xuanyu Zhang and Zhichun Wang. 2020. Rception:
Wide and deep interaction networks for machine read-
ing comprehension (student abstract). Proceedings
of the AAAI Conference on Artificial Intelligence,
34(10):13987–13988.

Xuanyu Zhang and Qing Yang. 2021a. Dml: Dynamic
multi-granularity learning for bert-based document
reranking. In Proceedings of the 30th ACM Interna-
tional Conference on Information & Knowledge Man-
agement, CIKM ’21, page 3642–3646, New York,
NY, USA. Association for Computing Machinery.

Xuanyu Zhang and Qing Yang. 2021b. Position-
augmented transformers with entity-aligned mesh
for textvqa. In Proceedings of the 29th ACM Inter-
national Conference on Multimedia, MM ’21, page
2519–2528, New York, NY, USA. Association for
Computing Machinery.

Xuanyu Zhang and Qing Yang. 2023a. Generating ex-
tractive answers: Gated recurrent memory reader for
conversational question answering. In Findings of the
Association for Computational Linguistics: EMNLP
2023, pages 7699–7704, Singapore. Association for
Computational Linguistics.

Xuanyu Zhang and Qing Yang. 2023b. Self-qa: Un-
supervised knowledge guided language model align-
ment. arXiv preprint arXiv:2305.11952.

Xuanyu Zhang and Qing Yang. 2023c. Xuanyuan 2.0:
A large chinese financial chat model with hundreds of
billions parameters. In Proceedings of the 32nd ACM
International Conference on Information and Knowl-
edge Management, CIKM ’23, page 4435–4439, New
York, NY, USA. Association for Computing Machin-
ery.

Xuanyu Zhang and Qing Yang. 2025. Finmoe: A moe-
based large chinese financial language model. In Pro-
ceedings of the Ninth Workshop on Financial Technol-
ogy and Natural Language Processing, pages 42–45,
Abu Dhabi, UAE. Association for Computational
Linguistics.

Xuanyu Zhang, Qing Yang, and Dongliang Xu. 2021.
Combining explicit entity graph with implicit text
information for news recommendation. WWW ’21,

page 412–416, New York, NY, USA. Association for
Computing Machinery.

Xuanyu Zhang, Qing Yang, and Dongliang Xu. 2022a.
Deepvt: Deep view-temporal interaction network
for news recommendation. In Proceedings of the
31st ACM International Conference on Informa-
tion & Knowledge Management, CIKM ’22, page
2640–2650, New York, NY, USA. Association for
Computing Machinery.

Xuanyu Zhang, Qing Yang, and Dongliang Xu. 2022b.
TranS: Transition-based knowledge graph embed-
ding with synthetic relation representation. In Find-
ings of the Association for Computational Linguistics:
EMNLP 2022, pages 1202–1208, Abu Dhabi, United
Arab Emirates. Association for Computational Lin-
guistics.

Qinkai Zheng, Xiao Xia, Xu Zou, Yuxiao Dong, Shan
Wang, Yufei Xue, Zihan Wang, Lei Shen, Andi Wang,
Yang Li, et al. 2023. Codegeex: A pre-trained model
for code generation with multilingual evaluations on
humaneval-x. arXiv preprint arXiv:2303.17568.

Tianyu Zheng, Ge Zhang, Tianhao Shen, Xueling Liu,
Bill Yuchen Lin, Jie Fu, Wenhu Chen, and Xiang
Yue. 2024. Opencodeinterpreter: Integrating code
generation with execution and refinement. arXiv
preprint arXiv:2402.14658.

Qihao Zhu, Daya Guo, Zhihong Shao, Dejian Yang,
Peiyi Wang, Runxin Xu, Y Wu, Yukun Li, Huazuo
Gao, Shirong Ma, et al. 2024. Deepseek-coder-v2:
Breaking the barrier of closed-source models in code
intelligence. arXiv preprint arXiv:2406.11931.


