
Proceedings of the 31st International Conference on Computational Linguistics, pages 10618–10633
January 19–24, 2025. ©2025 Association for Computational Linguistics

10618

Understanding Token Probability Encoding in Output Embeddings

Hakaze Cho1,✩, Yoshihiro Sakai1, Kenshiro Tanaka1, Mariko Kato1, Naoya Inoue1,2
1Japan Advanced Institute of Science and Technology, 2RIKEN

✩Primary Contributor, Correspondence to: yfzhao@jaist.ac.jp

Abstract

In this paper, we investigate the output token
probability information in the output embed-
ding of language models. We find an approxi-
mate common log-linear encoding of output to-
ken probabilities within the output embedding
vectors and empirically demonstrate that it is ac-
curate and sparse. As a causality examination,
we steer the encoding in output embedding to
modify the output probability distribution ac-
curately. Moreover, the sparsity we find in out-
put probability encoding suggests that a large
number of dimensions in the output embedding
do not contribute to causal language model-
ing. Therefore, we attempt to delete the output-
unrelated dimensions and find more than 30%
of the dimensions can be deleted without sig-
nificant movement in output distribution and
sequence generation. Additionally, in the pre-
training dynamics of language models, we find
that the output embeddings capture the cor-
pus token frequency information in early steps,
even before an obvious convergence of param-
eters starts.

1 Introduction

Modern Language Models (LMs) have two kinds
of token embeddings: one is the input embedding
E(i) located at the earliest layer of LMs, for map-
ping the input token index into distributed inner
representation, the other is the output embedding
E(o) in the Language Modeling head (LM head),
for mapping the hidden state to the predicted prob-
ability distribution of the next token in the causal
language modeling task.

Since the output embeddings were often tied
with the input embeddings (Chung et al., 2020;
Press and Wolf, 2017), i.e. input embeddings are di-
rectly used as the output embedding, the behaviors
and features of independent output embeddings are
rarely investigated. Along with the scaling of LMs,
such embedding tying, which is proven to be harm-
ful to model performance (Chung et al., 2020), is

Figure 1: The PCA result of the output embedding vec-
tors of GPT2. Colors refer to the ranking percentile of
the averaged output token probability. Output embed-
dings encode the probabilities linear-likely.

gradually being discarded in modern LMs such as
GPT-J (Wang and Komatsuzaki, 2021) and LLaMa
2 (Touvron et al., 2023). This raises attention to
the independent output embeddings, and explain-
ing its underlying mechanism can be beneficial to
understanding and improving LMs.

The most obvious and expected role of the LM
heads, where the output embedding is located, is
to map the last hidden states into token probabili-
ties. Therefore, following Kobayashi et al. (2023),
who found an encoding of the averaged output to-
ken probability distribution in the bias term of the
output LM head, this paper also focuses on the
averaged output probabilities1 as an overall rep-
resentation of LM outputs. We observe there is
a linear-like correlation between the output token
probabilities and the output embedding as shown in
Fig. 1. In §2, our mathematical derivation indicates
that softmax-based LM head naturally encodes the
output probabilities log-linearly in a common di-
rection of the output embeddings, as long as the
output dimension is sufficiently large, and the out-

1We may omit the “averaged” in the following.

10619

put values are concentrated.
To prove our derivation empirically, we con-

duct Multiple Linear Regression (MLR) on output
probabilities against output embeddings, where a
strong log-linear correlation is observed, as shown
in Fig. 3. Additionally, we find that: (1) Almost all
directions highly correlated with output probability
are the top principal components of the embedding
matrix; (2) Only a few dimensions of output em-
bedding are highly correlated to output probability.

Based on such findings, to further examine the
causality between the encoding and the output prob-
abilities, in §3, we try to steer the output proba-
bility by the output embedding. We use a linear
and sparse vectorized algorithm, modifying a small
portion of dimensions along the detected encod-
ing direction in the output embeddings to steer the
probabilities. Our experiments find that: even on
embedding-tied models, our steering method has
respectable precision and a large available range,
stably scaling the probability of tokens up to 20x
(both scaling up or down), with little disturbing on
the normal inference process of LMs. Moreover,
with the encoding direction estimated from few-
shot examples, the steering remains precise. Such
results suggest that the log-linear correlation has
good stability and generalization.

Moreover, the sparsity of the probability encod-
ing demonstrates that most of the dimensions of
the output embedding have minor effects on output.
Therefore, we try removing these dimensions to
prune the parameters in output embedding without
obvious harm to the causal language modeling in
§4. Our experiments show that more than 30% of
the output embedding dimensions can be removed
without significant impairment.

Additionally, we use such log-linear encoding
to investigate how and when the word frequency
information of the training corpus is encoded into
the output embedding during the training process.
In §5, we find that the frequency encoding occurs
at the very early steps in the training dynamics
of LMs, even earlier than an obvious convergence
trend is observed.

Our contributions can be summarized as:

• We find a log-linear correlation as an encod-
ing of the output probability in a particular
common and sparse direction of the output
embeddings.

• As a causality examination of the findings, we

steer the averaged output probabilities along
the detected encoding direction, and remove
dimensions with weak correlation to output
probabilities without harm to the LMs.

• Based on the findings, we find that the LMs
catch the token frequency in the training cor-
pus at very early training steps.

2 Token Probability Encoding in Output
Embedding

In this section, we preliminarily reveal how the
output probabilities are encoded in the output em-
bedding by mathematical derivation, then conduct
numerical experiments to confirm it empirically.

2.1 Mathematical Log-linear Form
Considering an LM parameterized by θ with vo-
cabulary V. Denoting the last hidden state w.r.t.
input sequence x as hx, we can describe the output
probability of token w with an output embedding
E

(o)
w as:

Pθ(w|x) =
eE

(o)
w ·hx∑

i∈V eE
(o)
i ·hx

,

we have:

− log [Pθ(w|x)] = −E(o)
w ·hx+log

[∑
i∈V

eE
(o)
i ·hx

]
.

When we calculate the averaged output token prob-
ability αw,D,θ = Ex∈D[Pθ(w|x)] of token w on a
dataset D (detecting dataset):

− logαw,D,θ ≈ Ex∈D[− log[Pθ(w|x)]]

=− Ex∈D[E
(o)
w · hx] + Ex∈D[log(

∑
i∈V

eE
(o)
i ·hx)]

=− E(o)
w · Ex∈D[h

(o)
x] + Ex∈D[log(

∑
i∈V

eE
(o)
i ·hx)].

(1)

We make a local linear approximation in the ap-
proximately equal sign, while we confirm it is pre-
cise when the output logits are concentrated in Ap-
pendix A.2. Notice that if the LM head is biased,
the bias term can be re-constructed equally by fix-
ing one dimension of hx to 1, w.l.o.g.

We denote AD = −Ex∈D[hx], and BD =

Ex∈D

[
log

(∑
i∈V eE

(o)
i ·hx

)]
. Here we make an-

other approximation that the BD is independent to

10620

Model Decoder-only Encoder-only Encoder-decoder

GPT2 GPT2-XL Pythia GPT-J BERT-base BERT-large BART-base BART-large

Parameter # 137M 1.6B 2.8B 6B 110M 340M 139M 406M
Embedding tied ✓ ✓ ✗ ✗ ✗ ✗ ✗ ✗

Random Adj.R2 0.001 0.000 0.001 0.000 − − − −

Adj.R2 on E
(o)
w 0.892 0.893 0.856 0.882 0.833 0.826 0.998 0.952

Adj.R2 on E
(i)
w (0.892) (0.893) 0.814 0.658 − − − −

Table 1: The goodnesses (Adj.R2) of MLR of − logαw,D,θ against the output(E(o)
w) / input(E(i)

w) embedding.
Random Adj. R2: The Adj.R2 of normalized random vector against E(o)

w . Parameter #: the number of LM
parameters. Embedding tied: whether the output embedding is tied with the input embedding.

(a) GPT2, 137M, Principal (b) GPT2-XL, 1.6B, Principal (c) Pythia, 2.8B, Principal (d) GPT-J, 6B, Principal

(e) GPT2, 137M, Original (f) GPT2-XL, 1.6B, Original (g) Pythia, 2.8B, Original (h) GPT-J, 6B, Original

Figure 2: Only a few directions/dimensions of output embedding are strongly correlated to the output
probabilities. (a-d): horizontal axis: the principle components of output embedding, vertical axis: absolute
Spearman r between the principle and the output probability distribution, color bar: the variance ratio loaded in the
principal component; (e-h): horizontal axis: original dimensions, vertical axis: absolute MLR slopes between this
dimension and the output probability distribution, color bar: the absolute Spearman correlations on the dimension.

E
(o)
w , which is precise when the logits of the output

token w are small, and the vocabulary size |V| is
large. Then, we get an approximated log-linear
form between the αw,D,θ and the E

(o)
w :

− logαw,D,θ ≈ AD · E(o)
w +BD. (2)

As a special case, we consider a fixed-to-one di-
mension in hx (also in AD) for a biased LM head,
where the bias re-constructed in E

(o)
w becomes a

linear factor of − logαw,D,θ with slope 1.
With such a derivation, we find that the phe-

nomenon shown in Fig. 1 is the nature of softmax-
based output head if it has plenty of output dimen-
sions, and small and concentrated logits to make the
approximations numerically accurate. LMs have

a very wide output space and undergo regularized
training, which makes LMs meet the requirements
to have an accurate log-linear correlation between
output probabilities and output embeddings. That
is, the output probabilities are encoded within a
common direction of output embedding.

2.2 Empirical Confirmation

We conduct experiments to prove our derivation
in Eq. 2 empirically accurate. First, following
Kobayashi et al. (2023), we define the detect
dataset D as an 8192-sample of shuffled WIKIDPR

dataset (Karpukhin et al., 2020) to calculate the
averaged output probabilities. In detail, we input
the sampled data points into the model, and aver-

10621

Algorithm 1: Output token probability steering.
αD,θ ∈ R|V|: the output token probability distribution among the vocabulary; |D|: the length of
the probability detecting dataset; S: the element-wise correlation significance (p-value) of MLR;
Element-wise calculations: (·)× (·): multiplication; (·)p: p-th power; | · |: absolute value.

Input: Language model Pθ(x) with output embedding E(o); Probability detecting dataset D;
Token index to be steered w; Expected scale of the steered token’s probability r;
Steering amount allocation parameter b

Output: Updated LM Pθ′(x)

1 αD,θ ← |D|−1
∑

x∈D Pθ(x) ; /* Calculate the averaged probability distribution */

2 AD,S ← MLR
(
− logαD,θ, E

(o)
)

; /* Conduct MLR, get the slope and significance */

3 Ω← |AD|b × S ×
∥∥|AD|b × S

∥∥−1

1
; /* Allocate the steering weight to elements */

4 E
′(o)
w ← E

(o)
w − log(r)Ω×A−1

D ; /* Apply the steering to output embedding */

5 return Updated LM Pθ′(x) with new output embedding E
′(o)
w

(a) GPT2, 137M (b) GPT-J, 6B

Figure 3: The MLR results on GPT2 and GPT-J.

age the output probability distribution among every
time step (aligned with input token) of every input
sequence as the token probability distribution of
the dataset (see Appendix A.1). Then, we conduct
MLR to fit the AD and the BD.

We conduct such experiment on GPT2, GPT2-
XL (Radford et al., 2019), Pythia 2.8B (Bider-
man et al., 2023), and GPT-J (Wang and Komat-
suzaki, 2021). The fitting results are shown in
Fig. 3, where good fittings are observed. We also
list the adjusted R2 i.e. the goodness of fitting
in Table 1. Surprisingly, both input and output
embeddings have strong correlations with the to-
ken probabilities. Additionally, as a reference,
we provide some rough results for the encoder-
only (BERT-base and BERT-large (Kenton and
Toutanova, 2019)) and encoder-decoder (BART-
base and BART-large (Lewis, 2019)) models, in
addition to the decoder-only model2.

More interestingly, as shown in Fig. 2, we find

2Note: This paper focuses exclusively on an in-depth dis-
cussion of the decoder-only model.

that only the top principal components and a few
dimensions in the output embedding are highly
correlated to the output token probabilities. That
is, such probability encoding is sparse. In detail,
we calculate the correlation coefficient (absolute
Spearman r / MLR slope) between the output em-
bedding’s sorted principle components / original
dimensions against the output probabilities, and
we find that the overwhelming majority of both
kinds of dimensions have poor correlations with
the output probabilities.

3 Token Probability Steering on Output
Embeddings

Our findings in §2 suggest that the output proba-
bilities are encoded in a common direction in the
output embeddings. So, as a causality examina-
tion, we steer the output embeddings along this
detected direction and confirm that (1) such steer-
ing can control the output probabilities accurately
on a large scale, implying a robust log-linear to-
ken probability encoding. (2) steering based on
a few-shot detect dataset D can still be effective,
confirming that such encoding is significant and
widely present.

3.1 Algorithm
Based on the fact that the output probabilities are
log-linearly encoded in a direction on the output
embedding sparsely, we propose an output proba-
bility steering algorithm as shown in Algorithm 1.
Step 1: We first estimate an averaged output prob-
ability distribution αD,θ on a detect dataset D and
conduct MLR to calculate the encoding direction
AD and the correlation significance (p-value used)

10622

Emb. Tied b
Reliability Generalization Specificity

elocal ↓ eid ↓ eood ↓ drKL × 10−7 ↓ MAUVE↑

- Baseline Values -
unedited − − 1.101.06 1.101.06 1.101.06 0.000.00 1.000.00

137M, random ✓ 2 1.331.28 1.331.28 1.291.24 2.311.02 0.960.01
137M, shuffled ✓ 2 1.181.07 1.181.08 1.181.08 1.640.48 0.960.01

- Experimental Values -
137M ✓ 2 0.190.30 0.200.32 0.150.28 9.515.87 0.960.01
1.6B ✓ 2 0.640.67 0.610.65 0.650.63 1.513.66 0.910.17
6B ✗ 5 0.310.43 0.250.39 0.100.12 3.6414.65 −3

Table 2: Main results on the evaluation of Algorithm 1. Unedited: the baseline without any steering. Random: the
baseline with a random AD. Shuffled: the baseline with a shuffled AD from the calculated value. b: the softness
parameter in Algorithm 1. Fine-grained results are reported in the Appendix C.

S of each element of the common encoding. Step
2: Then we assign a steering weight Ω to every
dimension in the embedding vector based on the
significance of its correlation to the output prob-
abilities, as shown in line 3 of Algorithm 1. We
allocate more steering amount to stronger correla-
tions to obtain smaller and more accurate steering4.
Step 3: Given the token index to be steered and the
expected steering scale, we calculate the detailed
steering amount on each dimension and update it
as shown in line 4 of Algorithm 1.

As data costs, our steering only needs a detect set
D and a feed-forward process to calculate the AD
and S, and we are about to prove that it is stable
for the size of D and consistently precise.

3.2 Experiment Settings
We use the same detect dataset D as in §2, and a
set of scales of {1, 1.1, 1.2, 1.5, 2, 5, 10, 20} for
both scaling up and down. We randomly select 10
tokens to be steered and conduct experiments on
GPT2, GPT2-XL, and GPT-J.

Metrics. We use 3 metrics to test the algorithm.

• Scale error e: To describe the precision of the
probability steering, given the expected steer-
ing scale r and the actual measured steered
scale r̂ on a test dataset, the scale error is cal-
culated as e = | log(r)− log(r̂)|.

• KL divergence on the retained token drKL:
To investigate the side effect on the retained

3It is difficult to conduct MAUVE experiments of GPT-J
on such a repeating scale due to computational costs.

4Parameter b is introduced to control the softness, or spar-
sity of such allocation, while the algorithm is stable on the
parameter as shown in Appendix B. Basically, we suggest that
a large b is suitable for a large model.

Figure 4: The eood on detect datasets with various num-
bers of sentence (averaged token per sentence ≈ 134).

tokens, we calculate KL divergence between
the probability distribution before and after
steering with the steered token excluded.

• MAUVE: To investigate the side effect on
text generation, we generate a set of sentences
from the steered model, then calculate the
MAUVE5 with the generated set from the orig-
inal model (see Appendix A.3).

Evaluations. Applying the aforementioned met-
rics, following the widely-used aspects of model
editing evaluations (Yao et al., 2023), we define our
evaluations in 3 categories:

• Reliability: The local effectiveness of the
steering. We use elocal, the scale error with
the detect dataset D as the test dataset.

• Generalization: The global effectiveness of
the steering. We set multi-level generaliza-
tion evaluations to ensure robustness: (i) In-
domain Scale Error eid: the scale error with

5Proposed by Pillutla et al. (2021), a measurement of the
similarity of two language datasets. The value range is [0, 1],
the larger means a greater similarity.

10623

(a) GPT2, 137M (b) GPT-J, 6B

Figure 5: The expected probability scales against the
actually steered scales measured in the steered LMs.

the other 8192 samples of WIKIDPR (where
the updated parameters are estimated) as the
test dataset; and (ii) Out-of-domain Scale Er-
ror eood: the scale error on 2048 samples of
BOOKCORPUS (Zhu et al., 2015) as the test
dataset.

• Specificity: The harmless to the retained part.
We use two metrics for this evaluation: (i)
the averaged drKL on the three data samples
(detect set, in-domain, out-of-domain), and
(ii) the aforementioned MAUVE.

3.3 Results
The main statistical evaluation results are shown
in Table 2. Compared to the baseline values, the
results from Algorithm 1 are more accurate, gener-
alizable, and harmless, even on the out-of-domain
data. Especially, despite the embedding tying in
GPT2 and GPT2-XL, such a steering algorithm is
still accurate and harmless, which demonstrates
that the log-linear probability encoding is orthog-
onal to the possible semantical encoding in the
output and also input embedding.

Wide-scale stable: Large-scaled probability
steering is supported by a global log-linear pat-
tern. The correlation of actually steered scales
of token probability against the expected scales is
shown in Fig. 5. The steering remains accurate
even on a large scale of up to 20x. This indicates
that the algorithm and the log-linear encoding are
wide-ranged, not only locally effective, i.e. the log-
linear encoding is a widely stable common essence.

Few-shot generalizable: Encoding remains dis-
tinct even by an AD estimated by few-shot cor-
pus. Instead of using the 8192 examples for the
detecting dataset D, we try various numbers of ex-
amples to test the generalization of the encoding on

GPT2. As shown in Fig. 4 and 16, we find that even
2 examples can produce a distinct averaged proba-
bility distribution for precise probability steering.
This result strengthens the significance and general-
ization of our findings, that is, effective encodings
can be detected in a small set of samples.

These steering results demonstrate a clear causal-
ity between the log-linear encoding and the token
probabilities, further than a simple statistical co-
variance relationship, and also demonstrate a wide-
scale stability and generalization of our algorithm,
while reflecting the same attributes of token proba-
bility encoding in output embedding. We can con-
firm that such log-linear encoding of token proba-
bilities is an inherent attribute of output embedding,
which (1) has wide-scale linearity, allowing a large-
scaling probability steering, and (2) is common
among tokens, so only a small number of samples
are needed to find an accurate encoding. By our
steering experiments, the properties of probability
encoding are strengthened.

4 Removing Dimensions with Weak
Probability Encoding

Moreover, based on the sparsity of probability en-
coding as shown in Fig. 2, we can infer that a large
number of dimensions in the output embeddings
are less effective for next token decoding. So we
try to reduce the less related dimensions towards a
lightweight output head.

4.1 Method & Experiment Settings

First, we assign the aforementioned absolute MLR
slopes as shown in (e-h) of Fig. 2 as the impor-
tance (or, saliency) to each dimension of output
embedding. Then, we remove the dimensions in
ascending order of such weight, i.e. we remove the
identified less important dimension early. In detail,
as a prototype setting in the laboratory, we only
zero out the dimensions in the embedding matrix,
while the dimensions of the attention mapping ma-
trix, the feed-forward layer, and the dimensions of
the last hidden state corresponding to the removed
dimensions can also be removed equally.

Experiment Settings. We use the same MLR
settings as §2 on GPT2, Pythia 2.8B, and GPT-J. As
metrics for the causal language modeling quality,
we test the MAUVE of the pruned model similarly
to §3.2, and test the KL divergence of the averaged
probability distribution against the original model

10624

(a) GPT2, 137M, dim=768, tied (b) Pythia, 2.8B, dim=2560 (c) GPT-J, 6B, dim=4096

Figure 6: The MAUVE(↑) and KL divergence(↓) of output token probability distribution dKL against original
distributions w.r.t. the dimension removing ratio on the output embedding. Solid curves: results of removing
dimensions from the least important ones to the most important ones; Dashed curves: adversarial controlling
experiment, removing dimensions reversely.

Figure 7: The training dynamics of Pythia. Left: the MLR goodness (adjusted R2) of the negative logarithm of
corpus frequency against the output embedding. Right: on the Pythia-1B, the MLR goodness in the left figure, and
the convergence rate of various representative blocks. Notice the horizontal axis is logarithmically scaled.

on the out-of-domain dataset mentioned before. As
an adversarial controlling experiment, we remove
dimensions in descending order of importance, i.e.
we remove the more important dimension early,
reverse to the original settings.

4.2 Result

The results are shown in Fig. 6. With the ascend-
ing removing order (the positive experiment, solid
curve), at the beginning of the removal, both met-
rics deteriorate slightly until around 50% of the
dimensions are removed. Regarding MAUVE >
0.80 as a threshold, we can confirm that 30% ∼
40% of the dimensions in the output embedding
can be removed without significant impairment of
the causal language modeling quality of LMs. In
contrast, in the adversarial experiment with a de-
scending removing style (dashed curve), both met-
rics deteriorate sharply at the beginning of remov-
ing. Such results suggest that the weights from the
MLR are faithful importance metrics.

Noticeably, our method also works on the tied
models (Fig. 6 (a)), i.e. removing unnecessary di-

mensions concurrently from the input embedding
and the output embedding, the metrics remain at a
considerable level.

Consistent with previous works (Kovaleva et al.,
2021; Timkey and van Schijndel, 2021; Gordon
et al., 2020), our results identify the anisotropy
in the importance among the dimensions of the
output embedding. Moreover, we confirm by di-
mensional ablation that the MLR results of the log-
linear correlation are a good metric of importance,
i.e. saliency score. This can be a new paradigm of
saliency if a direct one-step statistical model (like
MLR in our paper) can be estimated between the
features and the model output.

5 Output Embedding Learns Corpus
Frequency in Early Training Steps

Additionally, the findings in this paper inspire us to
utilize such log-linear correlation for detecting the
encoding of corpus token frequency in the output
embedding during the pre-training of LMs, for a
closer observation of the pre-training dynamics. In-
tuitively, since the model can refract overall output

10625

probability distribution in the output embedding
matrix, it should be forced to produce the same
output distribution with the corpus token frequency
by the training objective. Therefore, when a log-
linear encoding of token frequency of the training
corpus is observed in the output embedding, we
can confirm that the output embedding learns the
token frequency information of the corpus.

We use the Pythia suite (Biderman et al., 2023),
where sequences of the model intermediate training
checkpoints are accessible. We estimate the token
frequencies of the pre-training corpus PILE (Gao
et al., 2020; Biderman et al., 2022) by sampling
14.3B tokens, then conduct MLR on the negative
logarithm of the estimated token frequencies w.r.t.
the output embeddings on each training checkpoint,
with various training steps. The results of MLR
fitting goodness against training steps are shown
in the left part of Fig. 7, where we can confirm an
effective encoding since the very early steps of the
training process, and larger models have slightly
better fitting goodness but almost no difference in
the timing of emergence.

Moreover, we want to know whether such a phe-
nomenon is a subsidiary or subsequent effect of the
convergence of the parameters. We use the con-
vergence rate following the Chen et al. (2022) to
describe the actual training completion: denoting
the trained parameter matrix as θ∗, the initialized
parameter matrix as θ0, and the parameter matrix
at step t as θt, the convergence rate at step t can
be written as (1 − ∥θ∗ − θt∥F /∥θ∗ − θ0∥F). We
visualize the convergence rate of the input and out-
put embeddings and the query-key-value mapping
matrix of the multi-head attention blocks on Pythia-
1B, as shown in the right part of Fig. 7. We find
that the log-linear correlation occurs even earlier
than an obvious convergence trend is observed by
the convergence rate, and the appearance of such
correlation happens to be the starting point of the
convergence process of the model. We infer that the
output embedding should learn the coarse-grained
output pattern earlier than the semantics details.

Additionally, we initially find that each layer of
the transformer appears to have a uniform conver-
gence curve, instead of an obvious deeper-slower
pattern found by Chen et al. (2022). Especially,
the input embedding and output embedding have
almost overlapping training curves. We speculate
that this is the effect of such full-residual connec-
tion networks, which makes the layering of the
network inconspicuous during the gradient descent.

6 Conclusion and Discussion

Conclusion. In this paper, based on the observa-
tion of a linear-like correlation between the out-
put token probability and the output token embed-
dings shown in Fig. 1, we derive an approximate
log-linear correlation from the nature of softmax-
based output head with a large output space and
concentrated output value, i.e. the output token
probabilities are encoded in a common direction of
output embeddings. To test the causality of such
correlation, we steer the token probabilities along
such encoding direction with high accuracy, sta-
bility, and generalizability. Then, based on the
sparsity of the encoding, we can distinguish the
contributions of dimensions for the output proba-
bility of the model, which allows us to remove the
determined non-contributing dimensions, and no
critical deterioration is found. Finally, based on
the findings, we find that the LMs catch the token
frequency in training data at very early steps in the
training process log-linearly, even earlier than an
obvious convergence trend is observed. This paper
reveals the inner mechanism of LM heads on the
causal language modeling task and helps under-
stand the global principles and training dynamics
of LMs.

Comparing to previous works. Previous work
about analyzing LM heads was conducted
by Kobayashi et al. (2023), where a correlation
between the output token probability and bias term
in the LM head was found. They declared that the
bias term is a projection to extract the probability
from the output embedding, but almost no more
discussion about the embedding matrix, which is
the major component of the LM head. Making up
for their work is one of the original motivations for
our work. More discussions about related works
can be found in §7.

Demonstrations towards application. Our out-
put probabilities steering algorithm on the LM head
reveals the possibility of model steering on only the
output probability rather than in the hidden states
or the lower layers (Dai et al., 2022; Meng et al.,
2022), which is more concise, and easy to explain.
Some global toxicity generation (Gehman et al.,
2020), or biases in some application scenario (Fei
et al., 2023) can be suppressed by such a method,
but as we will mention in the Limitations, it is ele-
gant but not engineering-oriented. Moreover, the
dimension compression method in this paper can

10626

be an easy-to-use and harmless inference-time ac-
celeration. Notice that we have supervision on such
dimension compression by the MLR slopes, so it
can be more accurate than the previous random or
unsupervised pruning (Gordon et al., 2020).

Towards a new saliency score of output embed-
dings. Saliency score (Zhao et al., 2024; Sun
et al., 2021) is to weight a component (feature or
parameter) in a deep learning model by its contribu-
tion. In this paper, we find that the log-linear token
probability encoding works like a saliency score to-
wards the output embedding, and build a log-MLR
model to assign saliency scores to the parameters.
Such a posterior statistical method can be a new
paradigm of model-based saliency (Dabkowski and
Gal, 2017), if one-step correlations can be detected
between the output and components of the neu-
ral network, a closed-form saliency model can be
proposed instead of a universal statistical model.

7 Related Works

As mentioned before, Kobayashi et al. (2023)
mainly found a correlation between the output to-
ken probability and the bias term in the LM head
and tried to remove this bias towards more diversi-
fied text generation. However, they didn’t analyze
the output embedding matrix, which has the most
parameters in the LM head, and this paper com-
pletes their research.

Geometry of Input Embedding. As a similar
research object with the output embedding, it
was found that the word embeddings in LMs, as
well as the hidden states, are anisotropy (Mu and
Viswanath, 2018; Ethayarajh, 2019; Gao et al.,
2018), i.e., these vectors share a common radial
bias. Such anisotropies hurt the expressiveness of
word embeddings, and the word frequency in the
corpus may be an inducement (Mu and Viswanath,
2018; Valentini et al., 2023). Also, some efforts
tried to remove the harmfulness of anisotropies
and towards isotropy word embeddings (Mu and
Viswanath, 2018; Gong et al., 2018). These works
are based on input embedding, while our paper is
on output embedding. Although we can confirm
that the input and output embeddings act similarly,
they are still completely different components of
untied LMs. So the existing conclusions on input
embeddings cannot overwrite our work.

Embedding Tying in LMs. LMs in previous gen-
erations often have a shared output embedding

from the input embedding, such as BERT (Ken-
ton and Toutanova, 2019), RoBERTa (Liu et al.,
2019), GPT2 (Radford et al., 2019), etc. That is,
the LM head maps the last hidden state to the token
probability by dpt-producing the input embedding.
Such a paradigm is recommended by Press and
Wolf (2017) for fewer parameters. And also re-
futed by Chung et al. (2020) for a harmfulness to
expressiveness. Such a paradigm is being depre-
cated currently, but the model behavior with and
without embedding tying is still interesting to ana-
lyze.

(Language) Model Editing and Model Pruning.
Recent Large LMs are expensive to fine-tune or
retrain, so there are many model editing methods
to control the output of LMs (Yao et al., 2023).
Current LM parameter editing methods are mainly
oriented to entity relationship editing, where they
locate some parameters with correlations to the
entities, and interference is applied on such param-
eters (Dai et al., 2022; Meng et al., 2022). More-
over, vectorized methods are also proposed with
the arithmetic of parameter vectors with editing in-
formation (Ilharco et al., 2022; Ortiz-Jimenez et al.,
2024). As a specific and extreme scenario of model
editing, research on model pruning, similar to our
dimension removing is also proposed in current
years (Zhu et al., 2023; Frantar and Alistarh, 2023;
Kovaleva et al., 2021; Timkey and van Schijndel,
2021; Gordon et al., 2020). These pruning are usu-
ally unsupervised, where our dimension removing
can be a new practice in the supervised pruning
paradigm.

Training Dynamics (of LMs). Investigating
what is happening in the training process of lan-
guage models and other deep learning models is an
attractive research topic. Many works about train-
ing trajectory (Kalra and Barkeshli, 2024; Jastrzęb-
ski et al., 2018; Lewkowycz et al., 2020), early pe-
riod training behaviors (Frankle et al., 2019; Kalra
and Barkeshli, 2024; Achille et al., 2018), loss land-
scape (Neyshabur et al., 2020; Keskar et al., 2017;
Li et al., 2018), and “knowledge” earned in differ-
ent stages of training (Tirumala et al., 2022; Liu
et al., 2021) have been done. Differences in training
speed among various network layers (the deeper-
slower pattern) have been discovered by Chen et al.
(2022), while in this paper, following their method,
we don’t find a similar pattern.

10627

8 Limitations

Although we declare that the probability steering
algorithm proposed in §3 is only an experimental
method for investigation, we acknowledge that it
is elegant but not practical. It can never be faster,
more accurate, and more harmless than a filter on
the output head (Guo et al., 2017). Future works
can be focused on a local or directional probability
editing method, limiting the detecting dataset D,
and only editing the probability on specific input
prefix to resolve a controlled-generation task.

The dimension-reducing method in §4 may lead
LMs to be unavailable on other tasks depending on
the last hidden state, such as sentence summarizing
vectors encoding, etc. However, we can always
keep the original checkpoint to restore these addi-
tional abilities of LM heads easily.

Furthermore, despite our efforts, we cannot con-
firm the source of the sparsity of the probability
encoding mentioned in Fig. 2. Future works can be
focused on the detailed training dynamics to trace
such a sparsity.

The findings in this paper seriously depend on
the properties of the last hidden state of LMs. Al-
though the layer normalization (Ba et al., 2016;
Vaswani et al., 2017) in current Transformer-based
LMs provides some intuitive assurance for the sta-
bility and consistency of the last hidden state, fur-
ther discussion is still needed to confirm the homo-
geneity or heterogeneity of the models’ intrinsic
properties to explain the differences between dif-
ferent models in the token probability encoding
phenomena investigated in the paper (e.g. the rea-
son of our method perform better on GPT-J than
GPT2-XL in Table 2, or, the reason of the sparsity
of GPT2-XL is weaker than all the models we in-
vestigated in Fig. 2), to establish a connection with
the essential properties of LMs. Also, we should
examine the distribution of the last hidden state so
that the output probability to find how the accuracy
of the averaged output probabilities can reflect the
individual output probability.

Acknowledgements

This work is supported by the Nakajima Founda-
tion.
The authors would like to thank Mr. Yuxuan Wang
at Beijing Institute of Technology for his proofread-
ing and constructive criticism.

References
Alessandro Achille, Matteo Rovere, and Stefano Soatto.

2018. Critical learning periods in deep networks. In
International Conference on Learning Representa-
tions.

Jimmy Lei Ba, Jamie Ryan Kiros, and Geoffrey E Hin-
ton. 2016. Layer normalization. arXiv preprint
arXiv:1607.06450.

Stella Biderman, Kieran Bicheno, and Leo Gao.
2022. Datasheet for the pile. arXiv preprint
arXiv:2201.07311.

Stella Biderman, Hailey Schoelkopf, Quentin Gregory
Anthony, Herbie Bradley, Kyle O’Brien, Eric Hal-
lahan, Mohammad Aflah Khan, Shivanshu Purohit,
USVSN Sai Prashanth, Edward Raff, et al. 2023.
Pythia: A suite for analyzing large language mod-
els across training and scaling. In International
Conference on Machine Learning, pages 2397–2430.
PMLR.

Yixiong Chen, Alan Yuille, and Zongwei Zhou. 2022.
Which layer is learning faster? a systematic explo-
ration of layer-wise convergence rate for deep neural
networks. In The Eleventh International Conference
on Learning Representations.

Hyung Won Chung, Thibault Fevry, Henry Tsai, Melvin
Johnson, and Sebastian Ruder. 2020. Rethinking em-
bedding coupling in pre-trained language models. In
International Conference on Learning Representa-
tions.

Piotr Dabkowski and Yarin Gal. 2017. Real time image
saliency for black box classifiers. Advances in neural
information processing systems, 30.

Damai Dai, Li Dong, Yaru Hao, Zhifang Sui, Baobao
Chang, and Furu Wei. 2022. Knowledge neurons in
pretrained transformers. In Proceedings of the 60th
Annual Meeting of the Association for Computational
Linguistics (Volume 1: Long Papers), pages 8493–
8502.

Kawin Ethayarajh. 2019. How contextual are contex-
tualized word representations? comparing the ge-
ometry of bert, elmo, and gpt-2 embeddings. In
Proceedings of the 2019 Conference on Empirical
Methods in Natural Language Processing and the 9th
International Joint Conference on Natural Language
Processing (EMNLP-IJCNLP), pages 55–65.

Yu Fei, Yifan Hou, Zeming Chen, and Antoine Bosselut.
2023. Mitigating label biases for in-context learning.
In The 61st Annual Meeting Of The Association For
Computational Linguistics.

Jonathan Frankle, David J Schwab, and Ari S Morcos.
2019. The early phase of neural network training. In
International Conference on Learning Representa-
tions.

https://arxiv.org/abs/1711.08856
https://arxiv.org/abs/1607.06450
https://arxiv.org/abs/2201.07311
https://arxiv.org/abs/2304.01373
https://arxiv.org/abs/2304.01373
https://openreview.net/forum?id=wlMDF1jQF86
https://openreview.net/forum?id=wlMDF1jQF86
https://openreview.net/forum?id=wlMDF1jQF86
https://arxiv.org/abs/2010.12821
https://arxiv.org/abs/2010.12821
https://arxiv.org/abs/1705.07857
https://arxiv.org/abs/1705.07857
https://arxiv.org/abs/2104.08696
https://arxiv.org/abs/2104.08696
https://aclanthology.org/D19-1006/
https://aclanthology.org/D19-1006/
https://aclanthology.org/D19-1006/
https://arxiv.org/abs/2305.19148
https://arxiv.org/abs/2002.10365

10628

Elias Frantar and Dan Alistarh. 2023. Sparsegpt: Mas-
sive language models can be accurately pruned in
one-shot. In International Conference on Machine
Learning, pages 10323–10337. PMLR.

Jun Gao, Di He, Xu Tan, Tao Qin, Liwei Wang, and
Tieyan Liu. 2018. Representation degeneration prob-
lem in training natural language generation models.
In International Conference on Learning Representa-
tions.

Leo Gao, Stella Biderman, Sid Black, Laurence Gold-
ing, Travis Hoppe, Charles Foster, Jason Phang, Ho-
race He, Anish Thite, Noa Nabeshima, et al. 2020.
The pile: An 800gb dataset of diverse text for lan-
guage modeling. arXiv preprint arXiv:2101.00027.

Samuel Gehman, Suchin Gururangan, Maarten Sap,
Yejin Choi, and Noah A. Smith. 2020. RealToxi-
cityPrompts: Evaluating neural toxic degeneration
in language models. In Findings of the Association
for Computational Linguistics: EMNLP 2020, pages
3356–3369, Online. Association for Computational
Linguistics.

Chengyue Gong, Di He, Xu Tan, Tao Qin, Liwei Wang,
and Tie-Yan Liu. 2018. Frage: Frequency-agnostic
word representation. Advances in neural information
processing systems, 31.

Mitchell Gordon, Kevin Duh, and Nicholas Andrews.
2020. Compressing bert: Studying the effects of
weight pruning on transfer learning. In Proceedings
of the 5th Workshop on Representation Learning for
NLP, pages 143–155.

Chuan Guo, Geoff Pleiss, Yu Sun, and Kilian Q Wein-
berger. 2017. On calibration of modern neural net-
works. In International conference on machine learn-
ing, pages 1321–1330. PMLR.

Gabriel Ilharco, Marco Tulio Ribeiro, Mitchell Worts-
man, Ludwig Schmidt, Hannaneh Hajishirzi, and Ali
Farhadi. 2022. Editing models with task arithmetic.
In The Eleventh International Conference on Learn-
ing Representations.

Stanisław Jastrzębski, Zachary Kenton, Nicolas Bal-
las, Asja Fischer, Yoshua Bengio, and Amos Storkey.
2018. On the relation between the sharpest directions
of dnn loss and the sgd step length. In International
Conference on Learning Representations.

Dayal Singh Kalra and Maissam Barkeshli. 2024. Phase
diagram of early training dynamics in deep neural
networks: effect of the learning rate, depth, and width.
Advances in Neural Information Processing Systems,
36.

Vladimir Karpukhin, Barlas Oguz, Sewon Min, Patrick
Lewis, Ledell Wu, Sergey Edunov, Danqi Chen, and
Wen-tau Yih. 2020. Dense passage retrieval for open-
domain question answering. In Proceedings of the
2020 Conference on Empirical Methods in Natural
Language Processing (EMNLP), pages 6769–6781,
Online. Association for Computational Linguistics.

Jacob Devlin Ming-Wei Chang Kenton and Lee Kristina
Toutanova. 2019. Bert: Pre-training of deep bidirec-
tional transformers for language understanding. In
Proceedings of NAACL-HLT, pages 4171–4186.

Nitish Shirish Keskar, Jorge Nocedal, Ping Tak Peter
Tang, Dheevatsa Mudigere, and Mikhail Smelyan-
skiy. 2017. On large-batch training for deep learning:
Generalization gap and sharp minima. In 5th Inter-
national Conference on Learning Representations,
ICLR 2017.

Goro Kobayashi, Tatsuki Kuribayashi, Sho Yokoi, and
Kentaro Inui. 2023. Transformer language models
handle word frequency in prediction head. In Find-
ings of the Association for Computational Linguis-
tics: ACL 2023, pages 4523–4535, Toronto, Canada.
Association for Computational Linguistics.

Olga Kovaleva, Saurabh Kulshreshtha, Anna Rogers,
and Anna Rumshisky. 2021. Bert busters: Outlier
dimensions that disrupt transformers. Findings of
the Association for Computational Linguistics: ACL-
IJCNLP 2021.

M Lewis. 2019. Bart: Denoising sequence-to-
sequence pre-training for natural language genera-
tion, translation, and comprehension. arXiv preprint
arXiv:1910.13461.

Aitor Lewkowycz, Yasaman Bahri, Ethan Dyer, Jascha
Sohl-Dickstein, and Guy Gur-Ari. 2020. The large
learning rate phase of deep learning: the catapult
mechanism. arXiv preprint arXiv:2003.02218.

Hao Li, Zheng Xu, Gavin Taylor, Christoph Studer, and
Tom Goldstein. 2018. Visualizing the loss landscape
of neural nets. Advances in neural information pro-
cessing systems, 31.

Yinhan Liu, Myle Ott, Naman Goyal, Jingfei Du, Man-
dar Joshi, Danqi Chen, Omer Levy, Mike Lewis,
Luke Zettlemoyer, and Veselin Stoyanov. 2019.
Roberta: A robustly optimized bert pretraining ap-
proach. arXiv preprint arXiv:1907.11692.

Zeyu Liu, Yizhong Wang, Jungo Kasai, Hannaneh Ha-
jishirzi, and Noah A Smith. 2021. Probing across
time: What does roberta know and when? In Find-
ings of the Association for Computational Linguistics:
EMNLP 2021, pages 820–842.

Kevin Meng, David Bau, Alex Andonian, and Yonatan
Belinkov. 2022. Locating and editing factual asso-
ciations in GPT. Advances in Neural Information
Processing Systems, 35.

Jiaqi Mu and Pramod Viswanath. 2018. All-but-the-top:
Simple and effective postprocessing for word repre-
sentations. In International Conference on Learning
Representations.

Behnam Neyshabur, Hanie Sedghi, and Chiyuan Zhang.
2020. What is being transferred in transfer learning?
Advances in neural information processing systems,
33:512–523.

https://arxiv.org/abs/2301.00774
https://arxiv.org/abs/2301.00774
https://arxiv.org/abs/2301.00774
https://arxiv.org/abs/1907.12009
https://arxiv.org/abs/1907.12009
https://arxiv.org/abs/2101.00027
https://arxiv.org/abs/2101.00027
https://doi.org/10.18653/v1/2020.findings-emnlp.301
https://doi.org/10.18653/v1/2020.findings-emnlp.301
https://doi.org/10.18653/v1/2020.findings-emnlp.301
https://arxiv.org/abs/1809.06858
https://arxiv.org/abs/1809.06858
https://arxiv.org/abs/2002.08307
https://arxiv.org/abs/2002.08307
https://arxiv.org/abs/1706.04599
https://arxiv.org/abs/1706.04599
https://arxiv.org/abs/2212.04089
https://arxiv.org/abs/1807.05031
https://arxiv.org/abs/1807.05031
https://arxiv.org/abs/2302.12250
https://arxiv.org/abs/2302.12250
https://arxiv.org/abs/2302.12250
https://doi.org/10.18653/v1/2020.emnlp-main.550
https://doi.org/10.18653/v1/2020.emnlp-main.550
https://arxiv.org/abs/1810.04805
https://arxiv.org/abs/1810.04805
https://arxiv.org/abs/1609.04836
https://arxiv.org/abs/1609.04836
https://doi.org/10.18653/v1/2023.findings-acl.276
https://doi.org/10.18653/v1/2023.findings-acl.276
https://arxiv.org/abs/2105.06990
https://arxiv.org/abs/2105.06990
https://fq.pkwyx.com/default/https/aclanthology.org/2020.acl-main.703.pdf
https://fq.pkwyx.com/default/https/aclanthology.org/2020.acl-main.703.pdf
https://fq.pkwyx.com/default/https/aclanthology.org/2020.acl-main.703.pdf
https://arxiv.org/abs/2003.02218
https://arxiv.org/abs/2003.02218
https://arxiv.org/abs/2003.02218
https://arxiv.org/abs/1712.09913
https://arxiv.org/abs/1712.09913
https://arxiv.org/abs/1907.11692
https://arxiv.org/abs/1907.11692
https://arxiv.org/abs/2104.07885
https://arxiv.org/abs/2104.07885
https://arxiv.org/abs/2202.05262
https://arxiv.org/abs/2202.05262
https://arxiv.org/abs/1702.01417
https://arxiv.org/abs/1702.01417
https://arxiv.org/abs/1702.01417
https://arxiv.org/abs/2008.11687

10629

Guillermo Ortiz-Jimenez, Alessandro Favero, and Pas-
cal Frossard. 2024. Task arithmetic in the tangent
space: Improved editing of pre-trained models. Ad-
vances in Neural Information Processing Systems,
36.

Krishna Pillutla, Swabha Swayamdipta, Rowan Zellers,
John Thickstun, Sean Welleck, Yejin Choi, and Zaid
Harchaoui. 2021. Mauve: Measuring the gap be-
tween neural text and human text using divergence
frontiers. Advances in Neural Information Process-
ing Systems, 34:4816–4828.

Ofir Press and Lior Wolf. 2017. Using the output embed-
ding to improve language models. In Proceedings of
the 15th Conference of the European Chapter of the
Association for Computational Linguistics: Volume
2, Short Papers, pages 157–163.

Alec Radford, Jeff Wu, Rewon Child, David Luan,
Dario Amodei, and Ilya Sutskever. 2019. Language
models are unsupervised multitask learners.

Xiaofei Sun, Diyi Yang, Xiaoya Li, Tianwei Zhang,
Yuxian Meng, Han Qiu, Guoyin Wang, Eduard Hovy,
and Jiwei Li. 2021. Interpreting deep learning mod-
els in natural language processing: A review. arXiv
preprint arXiv:2110.10470.

William Timkey and Marten van Schijndel. 2021. All
bark and no bite: Rogue dimensions in transformer
language models obscure representational quality.
In Proceedings of the 2021 Conference on Empiri-
cal Methods in Natural Language Processing, pages
4527–4546.

Kushal Tirumala, Aram Markosyan, Luke Zettlemoyer,
and Armen Aghajanyan. 2022. Memorization with-
out overfitting: Analyzing the training dynamics of
large language models. Advances in Neural Informa-
tion Processing Systems, 35:38274–38290.

Hugo Touvron, Louis Martin, Kevin Stone, Peter Al-
bert, Amjad Almahairi, Yasmine Babaei, Nikolay
Bashlykov, Soumya Batra, Prajjwal Bhargava, Shruti
Bhosale, et al. 2023. Llama 2: Open founda-
tion and fine-tuned chat models. arXiv preprint
arXiv:2307.09288.

Francisco Valentini, Juan Sosa, Diego Slezak, and Edgar
Altszyler. 2023. Investigating the frequency distor-
tion of word embeddings and its impact on bias met-
rics. In Findings of the Association for Computa-
tional Linguistics: EMNLP 2023, pages 113–126.

Ashish Vaswani, Noam Shazeer, Niki Parmar, Jakob
Uszkoreit, Llion Jones, Aidan N Gomez, Łukasz
Kaiser, and Illia Polosukhin. 2017. Attention is all
you need. Advances in neural information processing
systems, 30.

Ben Wang and Aran Komatsuzaki. 2021. GPT-J-
6B: A 6 Billion Parameter Autoregressive Lan-
guage Model. https://github.com/kingoflolz/
mesh-transformer-jax.

Yunzhi Yao, Peng Wang, Bozhong Tian, Siyuan Cheng,
Zhoubo Li, Shumin Deng, Huajun Chen, and Ningyu
Zhang. 2023. Editing large language models: Prob-
lems, methods, and opportunities. In Proceedings
of the 2023 Conference on Empirical Methods in
Natural Language Processing, pages 10222–10240.

Haiyan Zhao, Hanjie Chen, Fan Yang, Ninghao Liu,
Huiqi Deng, Hengyi Cai, Shuaiqiang Wang, Dawei
Yin, and Mengnan Du. 2024. Explainability for large
language models: A survey. ACM Transactions on
Intelligent Systems and Technology, 15(2):1–38.

Xunyu Zhu, Jian Li, Yong Liu, Can Ma, and Weip-
ing Wang. 2023. A survey on model compres-
sion for large language models. arXiv preprint
arXiv:2308.07633.

Yukun Zhu, Ryan Kiros, Rich Zemel, Ruslan Salakhut-
dinov, Raquel Urtasun, Antonio Torralba, and Sanja
Fidler. 2015. Aligning books and movies: Towards
story-like visual explanations by watching movies
and reading books. In The IEEE International Con-
ference on Computer Vision (ICCV).

A Calculation Details

A.1 Calculation of Averaged Token
Probability

Given a dataset D = {xi}mi=1, we input each xi
into LMs in a teacher forcing style. Denote the
length of xi as li, we can get output token prob-
ability distribution on each time step (noted as j)
αD,θ,i,j ∈ R|V| of an amount of li.

We average all the αD,θ,i,j on every i and j, and
get the averaged token probability distribution αD,θ

on dataset D.

A.2 Error Analysis of Eq. 1

In Eq. 1, we do a local linear approximation as:

− logαw,D,θ = − logEx∈D [Pθ(w|x)]
≈ Ex∈D [− log [Pθ(w|x)]] .

That is, given a set of {pi}ni=0, where ∀i, pi > 0 we
approximate that logEi∈[0,n][pi] ≈ Ei∈[0,n][log pi].
Assume that we have a non-descending sequence
of p, that is, p0 ⩽ p1 ⩽ p2 ⩽ · · · ⩽ pn, w.l.o.g.
We can confirm that Ei∈[0,n][pi] ∈ [p0, pn]. So we
have: ∃ξ ∈ (p0,Ei∈[0,n][pi]), s.t.,

logEi∈[0,n][pi] =
1

ξ
(Ei∈[0,n][pi]− p0) + log p0

We have:

Ei∈[0,n][log pi] ⩾ log p0,

https://arxiv.org/abs/2305.12827
https://arxiv.org/abs/2305.12827
https://arxiv.org/abs/2102.01454
https://arxiv.org/abs/2102.01454
https://arxiv.org/abs/2102.01454
https://arxiv.org/abs/1608.05859
https://arxiv.org/abs/1608.05859
https://cdn.openai.com/better-language-models/language_models_are_unsupervised_multitask_learners.pdf
https://cdn.openai.com/better-language-models/language_models_are_unsupervised_multitask_learners.pdf
https://arxiv.org/abs/2110.10470
https://arxiv.org/abs/2110.10470
https://aclanthology.org/2021.emnlp-main.372/
https://aclanthology.org/2021.emnlp-main.372/
https://aclanthology.org/2021.emnlp-main.372/
https://arxiv.org/abs/2205.10770
https://arxiv.org/abs/2205.10770
https://arxiv.org/abs/2205.10770
https://arxiv.org/abs/2307.09288
https://arxiv.org/abs/2307.09288
https://aclanthology.org/2023.findings-emnlp.9/
https://aclanthology.org/2023.findings-emnlp.9/
https://aclanthology.org/2023.findings-emnlp.9/
https://arxiv.org/abs/1706.03762
https://arxiv.org/abs/1706.03762
https://github.com/kingoflolz/mesh-transformer-jax
https://github.com/kingoflolz/mesh-transformer-jax
https://arxiv.org/abs/2305.13172
https://arxiv.org/abs/2305.13172
https://arxiv.org/abs/2309.01029
https://arxiv.org/abs/2309.01029
https://arxiv.org/abs/2308.07633
https://arxiv.org/abs/2308.07633
https://arxiv.org/abs/1506.06724
https://arxiv.org/abs/1506.06724
https://arxiv.org/abs/1506.06724

10630

Reliability Generalization Specificity

elocal ↓ eid ↓ eood ↓ drKL × 10−7 ↓ MAUVE↑

- Baseline Values -
unedited 1.091.06 1.091.06 1.091.06 0.000.00 1.000.00
random 1.331.28 1.331.28 1.291.24 2.311.02 0.960.01

137M, shuffled 1.181.07 1.181.08 1.181.08 1.640.48 0.960.01

- Experimental Values -
Average (b = −∞) 2.793.21 2.863.24 2.613.12 4.00× 103 0.920.08

Softmax
b = 1 0.170.29 0.170.31 0.180.33 11.978.22 0.950.02
b = 2 0.190.30 0.200.32 0.150.28 9.515.87 0.960.01
b = 5 0.170.28 0.180.31 0.160.28 12.257.91 0.950.01

Argmax (b = +∞) 1.211.68 1.271.70 1.301.84 9.29× 103 0.920.14

Table 3: Supplementary results of Table 2 with various b on GPT2.

Figure 8: The expected probability scales and the ac-
tually steered scales measured in the edited LMs w.r.t.
different values of b.

since log′(·) > 0. That is:

[logEi∈[0,n][pi]− Ei∈[0,n][log pi]]
2

⩽
1

ξ2
(
Ei∈[0,n][pi]− p0

)2
⩽

1

p20

(
Ei∈[0,n][pi]− p0

)2
.

(3)

We can empirically confirm the concentration
of pi, shown as examples in Fig. 11, which makes
the error shown in Eq. 3 acceptably small. Ad-
ditionally, a low-probability token shows a wide
probability distribution, which is consistent with
our findings in Fig. 3, where a low-probability to-
ken is assigned with more inaccurate predictions
(manifested as a comet-shaped figure).

A.3 Details of MAUVE Calculation
The MAUVE is a similarity between two datasets.
Refer Pillutla et al. (2021) for the calculating details

(a) GPT2-XL, 1.6B (b) Pythia, 2.8B

Figure 9: Supplement for Fig. 3. The MLR results on
GPT2-XL and Pythia-2.8B.

of MAUVE. Here we explain our method to get
both datasets for MAUVE to measure the harmful-
ness of our model steering method. We sample 512
data points from the BOOKCORPUS (Zhu et al.,
2015), and take the first two words of each data
point as a prefix to collect a prefix set. Given a gen-
erative language model, we input the prefixes and
let the model generate naturally into a generated
dataset. We do this process on the original model
and the steered model and use the two generated
datasets to calculate the MAUVE.

B Ablation Study on Steering Amount
Allocation Parameter b

We discuss the steering amount allocation parame-
ter b in Algorithm 1. We try different settings of b
on GPT2 as shown in Table 3 and Fig. 8.

The results show that when the b is not infinities,
the steering remains accurate and stable. That is,
the algorithm is not sensitive to a positive integer b.
But we still recommend a large b when the model

10631

Figure 10: Supplement for Fig. 5. The expected proba-
bility scales and the actually steered scales measured in
the steered GPT2-XL.

(a) GPT2, 137M (b) GPT2-XL, 1.6B

(c) Pythia, 2.8B (d) GPT-J, 6B

Figure 11: Examples of the probability distribution of
one token among input prefixes.

is large and the sparsity of MLR slope is not fine.
However, when the b is +∞ or −∞, the steer-

ing can not be accurate and is easy to get a larger
scale than expected. We infer that both of these
infinity b increase the norm of the embedding vec-
tor too much, leading to an increase in its output
probability as well.

C Supplementary Experiment Results

Supplement for Fig. 1. Output embedding visual-
izations w.r.t. output token probability for GPT2-
XL, Pythia, GPT-J are shown in Fig. 12.
Supplement for Fig. 3. Output probability fitting
results of GPT2-XL and Pythia-2.8B are shown in
Fig. 9.
Supplement for Fig. 5. The expected probability
scales and the actually edited scales of GPT2-XL
is shown in Fig. 10.

Supplement for Table 2. Fine-grained results w.r.t.
expected steering scales of GPT2 (Fig. 13), GPT2-
XL (Fig. 14), GPT-J (Fig. 15).
Supplement for Fig. 4. The elocal, eid, drKL w.r.t.
the detect dataset size are shown in Fig. 16.
Supplement for Fig. 7. The figures without log-
scaling are shown in Fig. 17.

D Necessary Statements

Author Contributions. Hakaze Cho, also pro-
nounced Yufeng Zhao, handled virtually all the
workload in this paper. N.I. is their supervisor, pro-
viding important and beneficial guidance, revision,
and research support. Y.S., K.T, and M.K. partici-
pated in the discussion and provided some helpful
suggestions and revisions.

Repeatability statement. Models and datasets
are all loaded from huggingface. All the datasets
are shuffled with random seed 42 and cut into re-
quired slices. We calculate MAUVE by the pack-
age mauve-text by default parameters. In experi-
ments, all the logarithms are natural.

License of the artifacts. The artifacts used in
this paper are all open-sourced and are used for
their intended usage. Models. GPT2 family are
under the MIT license, GPT-J and Pythia are under
the apache-2.0 license. Datasets. WIKIDPR is
under the cc-by-nc-4.0 license, BOOKCORPUS

and PILE is under the MIT license. Tool. MAUVE
is under the GPLv3 license.

10632

(a) GPT2-XL, 1.6B (b) Pythia, 2.8B (c) GPT-J, 6B

Figure 12: Supplement for Fig. 1. Output embedding visualizations w.r.t. output token probability for GPT2-XL,
Pythia, GPT-J.

(a) elocal (b) eid (c) eood (d) drKL (e) MAUV E

Figure 13: Fine-grained results w.r.t. expected steering scales of GPT2.

(a) elocal (b) eid (c) eood (d) drKL (e) MAUV E

Figure 14: Fine-grained results w.r.t. expected steering scales of GPT2-XL.

(a) elocal (b) eid (c) eood (d) drKL

Figure 15: Fine-grained results w.r.t. expected steering scales of GPT-J.

10633

(a) elocal (b) eid (c) drKL

Figure 16: Supplement for Fig. 4. The elocal, eid, drKL w.r.t. the detect dataset size.

Figure 17: Supplement for Fig. 7. Without log-scaling.

	Introduction
	Token Probability Encoding in Output Embedding
	Mathematical Log-linear Form
	Empirical Confirmation

	Token Probability Steering on Output Embeddings
	Algorithm
	Experiment Settings
	Results

	Removing Dimensions with Weak Probability Encoding
	Method & Experiment Settings
	Result

	Output Embedding Learns Corpus Frequency in Early Training Steps
	Conclusion and Discussion
	Related Works
	Limitations
	Calculation Details
	Calculation of Averaged Token Probability
	Error Analysis of Eq. 1
	Details of MAUVE Calculation

	Ablation Study on Steering Amount Allocation Parameter b
	Supplementary Experiment Results
	Necessary Statements

