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Abstract

With the extensive use of large language mod-
els, automatically generating QA datasets for
domain-specific fine-tuning has become cru-
cial. However, considering the multifaceted
demands for readability, diversity, and compre-
hensiveness of QA data, current methodolo-
gies fall short in producing high-quality QA
datasets. Moreover, the dependence of existing
evaluation metrics on ground truth labels fur-
ther exacerbates the challenges associated with
the selection of QA data. In this paper, we in-
troduce a novel method for QA data generation,
denoted as MDPO. We proposes a set of un-
supervised evaluation metrics for QA data, en-
abling multidimensional assessment based on
the relationships among context,question and
answer. Furthermore, leveraging these metrics,
we implement a customized direct preference
optimization process that guides large language
models to produce high-quality and domain-
specific QA pairs. Empirical results on pub-
lic datasets indicate that MDPO’s performance
substantially surpasses that of state-of-the-art
methods.

1 Introduction

With the advancement of large language models
(LLMs), QA-based services have increasingly been
adopted across various sectors, including finance
(Passali et al., 2021), education (Yuhao Dan, 2024),
and healthcare (Singhal et al., 2023). To improve
the performance of general-purpose large mod-
els in specific domains, it is common to infuse
domain-specific knowledge through Supervised
Fine-Tuning (SFT) techniques (Mecklenburg et al.,
2024), which necessitates the use of large-scale
labeled datasets. However, the acquisition of large-
scale labeled datasets through manual annotation
is laborious and time-consuming. Consequently,
the study of automatic generation methods for QA

*Equal contribution.
†Corresponding authors.

pairs, known as Question Generation (QG), has
emerged as a topic of significant interest in both
the academic and industrial communities.

Existing approaches for QG can be broadly
classified into two categories: rule-based and
model-based methods. Rule-based methods em-
ploy expert-designed templates to formulate ques-
tions with content extracted from contexts. Notable
techniques within this category include those utiliz-
ing dependency syntax trees, implementing knowl-
edge graphs, and applying semantic role labeling to
systematically generate questions. However, these
methods are constrained by the prior knowledge of
domain experts, resulting in the low quality of QA
pairs. Additionally, predefined templates are inade-
quate for handling diverse and complex application
scenarios, demonstrating a lack of flexibility and
scalability.

With the continuous advancement of deep learn-
ing, artificial neural networks, due to their ex-
ceptional nonlinear modeling capabilities, have
demonstrated powerful semantic extraction poten-
tial. Model-based approaches have emerged and
been widely applied to address the QG task. For
instance, Chan and Fan (2019) employed BERT as
both the Encoder and Decoder for question gener-
ation, while Lopez et al. (2021) used a fine-tuned
GPT2 method to generate questions, the latest re-
search, Ushio et al. (2022) builds on previous work
in QG. It establishes a complete process for gen-
erating and evaluating paragraph or sentence-level
QG based on fine-tuned language models. These
methods typically take a part of the context as the
answer and then generate questions using specially
designed models, which limits diversity and fails
to generate comprehensive questions that require
cross-paragraph analysis. Recent advancements
Ushio et al. (2023) introduce a new problem defi-
nition, discarding the assumption that the answer
is a part of the context. Instead, they posit that the
answer should also be generated, thereby aligning
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the approach more closely with real-world scenar-
ios. However, since both the questions and answers
need to be generated by the model using a black-
box mechanism, the quality and reliability of the
QA pairs cannot be guaranteed, severely limiting
its application.

In this paper, we focus on the problem definition
in Lee et al. (2020), i.e., generating QA pairs given
a context. It is challenging to solve, primarily in
two aspects: (i) Low Quality: The generation of
QA pairs requires the model to fully understand
the semantic information of the context, which is
inherently challenging. Additionally, ensuring the
readability and diversity of the generated questions,
as well as providing comprehensive and accurate
answers, imposes further demands on the model.
These challenges collectively hinder the generation
of QA pairs, frequently resulting in low-quality out-
comes. (ii) Lack of Comprehensive Metric: The
quality of QA pairs directly impacts the fine-tuning
effectiveness of the model. To filter high-quality
QA pairs and enhance the reliability of the gener-
ated data, it is essential to design robust metrics for
QA pair quality assessment. However, evaluating
these pairs involves multiple dimensions, such as
the relevance of the question to the context, the
accuracy and completeness of the answer, and the
logical consistency between the question and the
answer, making comprehensive assessment chal-
lenging. In the absence of ground truth answers,
aligning with human evaluation standards is impos-
sible, further complicating the assessment.

In response, We propose a novel method for gen-
erating QA pairs. For the issue of low-quality, we
employ a large language model as the foundational
architecture, which has been widely validated for
its robust performance across various tasks. To mit-
igate the generation of unanswerable questions and
unfaithful answers, we fine-tune the model on a
reading comprehension dataset to enhance its abil-
ity to uncover deep semantic meanings in the text.
Furthermore, to guide the model to generate high-
quality QA pairs, we propose a metric-based direct
preference optimization mechanism that increases
the logarithmic probability of preferred samples
while simultaneously decreasing the logarithmic
probability of non-preferred responses. For the
issue of lacking metrics, we introduce a set of un-
supervised evaluation metrics that analyze the cor-
relations among pairs within triplets composed of
context, question, and answer, assessing the quality
of QA pairs from three distinct dimensions.

Overall, our contributions can be summarized as
follows:

• We introduce a novel method for QA genera-
tion that involves the strategic fine-tuning of a
large language model to adapt to the specific
demands of QA tasks. Importantly, we incor-
porate a metric-based DPO mechanism that
systematically guides the model to generate
high-quality QA pairs.

• We propose a set of unsupervised evaluation
metrics, designed to facilitate the selection of
preferred samples during the optimization of
our model. Additionally, these metrics are
versatile enough to assess QA pair quality in
various contexts such as validation set con-
struction and QA system analysis.

• We conduct extensive experiments across mul-
tiple datasets to validate our model’s perfor-
mance. Our findings demonstrate its superior-
ity in QA generation compared to state-of-the-
art models.

2 Related Work

2.1 Question Generation

Traditional question generation mainly focuses on
the task of generating a question given an input con-
sisting of a passage chunk and an answer (Mitkov
and Ha, 2003), a task commonly referred to as
answer-aware QG. Early research on problem gen-
eration relied on rule-based methods (Rus et al.,
2010), which generated fixed format problems us-
ing templates pre-designed by human experts. The
rule-based methods mainly include methods based
on dependency syntax trees and semantic role an-
notation (Dhole and Manning, 2020), as well as
knowledge graph-based methods (Guo et al., 2022).

However, neural approaches quickly gained
prominence, generating questions directly from
text in an end-to-end manner (Du et al., 2017). Af-
ter the emergence of masked pre-trained language
models, such as BERT (Devlin et al., 2018) and
DeBERTa (He et al., 2021b), significant advance-
ments have been made in the fields of machine
reading comprehension (QA, Question Answering)
and machine question generation. This has led to
the creation of high-quality datasets like SQuAD
(Rajpurkar et al., 2016), which address comple-
mentary challenges in natural language processing,
research on question generation based on neural
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network models includes the use of the BERT ar-
chitecture as both Encoder and Decoder structures
to train a question generator, as described by Chan
and Fan (2019). Lopez et al. (2021) fine-tuned
GPT2 to accomplish this task. Murakhovs’ka et al.
(2022) fine-tuned the T5 and BART models for
question generation across multiple tasks, achiev-
ing state-of-the-art results on several different types
of datasets.

Recently, Ushio et al. (2022) have proposed
a paragraph-level automatic question generation
approach. This method involves fine-tuning a
sequence-to-sequence generative language model
to generate questions directly from passage chunks
and ultimately extends to question-answer gener-
ation (Ushio et al., 2023). However, this method
heavily relies on ground-truth data and does not
fully exploit the linguistic capabilities obtained by
LLMs during pre-training, resulting in insufficient
expressive power.

2.2 Reinforcement Learning from Human
Feedback

In recent years, Reinforcement Learning with Hu-
man Feedback (RLHF) (Stiennon et al., 2020) has
emerged as a significant approach in enhancing the
performance of language models, particularly in
tasks requiring nuanced understanding and genera-
tion capabilities. RLHF leverages human feedback
to fine-tune models, guiding them to produce more
accurate and contextually appropriate responses.

RLHF integrates human evaluations directly into
the training loop of machine learning models, en-
abling them to adapt based on real-time feedback.
This approach typically involves converting human
feedback into numerical rewards that the model
can optimize. Reward modeling is a crucial step
where human feedback, either explicit (e.g., thumbs
up/down) or implicit (e.g., click-through rates), is
quantified. Algorithms such as Proximal Policy
Optimization (PPO) (Schulman et al., 2017) and
Trust Region Policy Optimization (TRPO) (Schul-
man et al., 2015) are then used to adjust the model’s
policy based on these rewards. By incorporating
human evaluators who provide ongoing feedback,
models continuously refine their outputs to better
align with human expectations and preferences.

This methodology has proven particularly ef-
fective in domains where precise and contextually
nuanced responses are crucial. Applications in-
clude conversational AI, where chatbots and vir-
tual assistants benefit from RLHF by generating

more accurate and contextually relevant responses,
and personalized recommendation systems, which
align suggestions more closely with user prefer-
ences and feedback.

Another emerging approach is Direct Preference
Optimization (DPO) (Rafailov et al., 2023), which
aims to learn strategies directly from data by un-
derstanding and optimizing preferences without
the explicit need for a reward model. DPO works
by collecting a dataset of human preferences, typ-
ically involving pairs of outputs where one is pre-
ferred over the other. Using machine learning al-
gorithms, these preferences are modeled directly,
often through techniques such as pairwise rank-
ing or more complex neural network architectures.
Once the preference model is trained, it guides the
generation of new outputs by predicting which ones
will be preferred based on learned patterns.

Previous studies have demonstrated the efficacy
of RLHF in mitigating issues such as model hal-
lucination (Ouyang et al., 2024), where the model
generates responses that are not supported by the
provided context. By incorporating human feed-
back, models can learn to avoid generating ques-
tions that the given context cannot answer, thereby
improving the overall quality and reliability of the
generated outputs.

3 Comprehensive Metric for QAG

Our goal is to generate diverse and consistent
question-answer pairs (QA pairs) to provide train-
ing data for large language models fine-tuning in
QA. Formally, given a context C containing N
words, our objective is to generate (Q,A) pairs,
where Q is the question and A is the answer de-
rived from the context for Q.

To systematically introduce our work, we first
present the proposed unsupervised evaluation met-
rics. Specifically, we concentrate on the in-
trinsic connections between the elements within
(C,Q,A), segmenting the evaluation into three sub-
tasks: assessing if the context contains information
to answer the question, evaluating if the answer
suitably responds to the question, and assessing if
the answer remains faithful to the context. Cor-
respondingly, we introduce three metrics: MRC-
Score, NLIScore, and SIMScore, as shown in Fig-
ure 1.
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Figure 1: This is a diagram illustrating the calculation
of a comprehensive metric using (C, Q, A) triples.

3.1 MRCScore

To evaluate whether the context contains the in-
formation needed to answer a question, the model
must deeply analyze the underlying semantic in-
formation covered in the context, and dissect char-
acteristics of the answer (including the inherent
assumptions of the question and the topics cov-
ered by the answer) . To achieve this goal, we
utilize a Transformer-based model (mdeberta-v3-
base-squad2 (He et al., 2021a) (He et al., 2021b))
as the foundational framework and incorporate ma-
chine reading comprehension (MRC) as the pre-
training task to bolster the model’s capabilities in
semantic analysis and logical reasoning.

Specifically, we utilize the Transformer-based
model to extract potential answer intervals from
contexts based on given questions. The model also
provides a confidence value for each extracted an-
swer interval. A low confidence level indicates a
lower probability that the extracted interval cor-
rectly answers the question, thus serving as a mea-
sure of the correlation between questions and con-
texts. We refer to this confidence level as the MRC-
Score, which can be expressed in the following
form:

(Aref , SMRC) = MMRC(Q,C)

where Q represents the given question,and C
represents the given context, Aref represents the
model’s predicted answer, SMRC is the confidence
score for the answer.

3.2 NLIScore

To assess whether the answer appropriately re-
sponds to the question, we model it as a logical
relationship discrimination problem, determining

whether the answer logically supports or contra-
dicts the content of the question. To achieve this
goal, we utilize the same model as in section § 3.1,
especially employing natural language inference
(NLI) (Parikh et al., 2016) for pre-training to en-
hance the model’s ability to discern the subtle con-
nections between the question and the answer.

Follow the traditional NLI task setting (Parikh
et al., 2016), we construct the premise by amalga-
mating the question and its corresponding answer
into a sentence, and formulate the hypothesis:"this
sentence constitutes a question-answer pair". Sub-
sequently, the model assesses the semantic similar-
ity and logical relationship between the hypothesis
and the premise. It then generates a classification
label that reflects the confidence level of the hypoth-
esis given the premise. A lower confidence level
suggests a lower probability that the question and
answer form a logically coherent pair. Therefore,
this confidence level can be used to measure the de-
gree of logical matching between the question and
answer. In this article, we refer to this measure as
NLIScore (deberta-v3-large-tasksource-nli (Sileo,
2023)), which can be expressed in the following
form:

SNLI = MNLI(Q,A)

where SNLI represents the matching score be-
tween Q and A.

3.3 SIMScore

To assess whether the answer remains faithful to the
context, we utilize the Transformer-based model in
section § 3.1, which has been fine-tuned on MRC
task, endowed with capabilities for semantic analy-
sis and logical reasoning. Specifically, we employ
this model to extract a reference answer Aref that
can be found in the context for the current gener-
ated question and compare it with the generated
answer of the model. This calculation is based on
the assumption that the answer should come from
the original context, which can be expressed in the
following format:

SSIM = MSIM (Aref , A)

Where SSIM represents the matching score be-
tween the generated answer and the context, MSIM

is generally a model that can calculate the semantic
similarity between sentences, A represents the gen-
erated answer of the model, and Aref represents
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the most likely reference answer extracted from the
context through the MRC model(§ 3.1).

4 LLM for Question Answer Generation

In this section, we will introduce the specific pro-
cess of MDPO, as illustrated in Figure 2. This
approach includes constructing negative samples,
SFT for QAG, using RLHF to reduce hallucina-
tions, and metric-based RLHF.

4.1 Constructing Negative Samples
We manually selected questions for which an-
swers could not be found in the context and fed
these context-question pairs into the closed-source
model, forcing it to generate an answer.

4.2 SFT for QAG
The encoder-decoder architecture model lacks
strong expressive capabilities. Dong et al. (2021)
have demonstrated that the attention matrix can
suffer from decreased expressive power due to the
low-rank problem. In contrast, the attention matrix
of decoder-only models is a lower triangular ma-
trix, a full-rank lower triangular matrix represents
stronger expressive power. Therefore, we choose to
use a decoder-only model for the generation task.

We extracted (C,Q,A) from the dataset and for-
matted them as Figure 3. In this way, we con-
structed the SFT data needed for the QA generator.

To fully utilize the Encoder-only model’s In-
Context Learning (ICL) ability, we compared two
types of prompts. One explicitly instructs the
model to generate questions whose answers can be
found in the reference contexts, while the other im-
poses no such restriction. We found that explicitly
imposing restrictions on the model in the prompt
significantly reduces the ratio of incorrect questions
generated by the model. So the Prompts we design
in the future all contain statements that explicitly
limit the questions generated by the model must
can be answered using reference contexts.

Through SFT, when given a specified instruc-
tion, the model can output in a designated format.
We refer to this as acquiring instruction-following
capability. Using this specified format, we can pre-
liminarily generate a large number of QA pairs and
parse them into the required format.

4.3 Using RLHF to Reduce Hallucinations
However, the model initially fine-tuned with SFT
still generates some questions whose answers can-
not be found in the context, instead relying on its

own prior knowledge to respond. Therefore, we
need to restrict the model from generating such
questions.

RLHF is particularly relevant for the QAG task,
where the goal is to generate coherent and con-
textually grounded questions and answers. Fig-
ure 4 illustrates our RLHF data template. Each
sample consists of a query, which includes both
the instruction and context. The response con-
sists of a pair of question and answer that are con-
textually appropriate and coherent. Additionally,
we provide a rejected response, which is another
question-answer pair that is deemed inappropri-
ate or incoherent for the given context. There-
fore, we used negative samples constructed by a
proprietary large model and found positive sam-
ples with matching contexts. We then constructed
(query, response, rejected_response) samples for
DPO training (Rafailov et al., 2023). The goal is to
minimize the model’s generation of unanswerable
questions.

Using the above methods, the occurrence of hal-
lucinations in the model-generated QA pairs has
been significantly reduced, both from a human per-
spective and according to the MRCScore evalua-
tion. A typical case can be found in Figure 5.

4.4 Metric-based RLHF
The generation model obtained through the afore-
mentioned methods has already surpassed the pre-
vious generation in terms of capability. However,
we can still leverage the proposed metrics to further
automate the enhancement of the model’s abilities.

Now, instead of relying on human feedback,
we use model-based metric feedback to guide the
fine-tuning process. This approach leverages an
encoder-only model to provide more consistent and
objective feedback, thus avoiding the problem of
overestimating the model’s capabilities (Hasselt
et al., 2016).

We sampled contexts from the dataset and tasked
the models obtained in § 4.2 and § 4.3 with gener-
ating QA pairs. These pairs were then scored using
our proposed metrics. Samples with significant
score differences were selected to construct DPO
data. We performed another round of DPO training
on the model from § 4.3. Evaluation results on the
dataset showed an improvement in the metrics.

This automated approach ensures a systematic
generation of training samples, further refining
the model’s output(§ 3) by penalizing unanswer-
able questions. The combination of using model-
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Figure 2: The overview of MDPO.

Figure 3: This illustrative diagram presents our SFT
data template.

Figure 4: This illustrative diagram presents our RLHF
data template.

based feedback and DPO enhances the model’s per-
formance, aligning its outputs more closely with
contextual expectations and reducing instances of
hallucination. This dual approach leverages the
strengths of both supervised fine-tuning and rein-
forcement learning to achieve a more robust and
reliable QAG system.

5 Experiments

5.1 Dataset Description

To comprehensively evaluate the performance of
our model against others, we conducted a QA gen-
eration capability assessment on three datasets:
SQuAD, SQuAD_v2 (Rajpurkar et al., 2016), and
Tweetqa (Xiong et al., 2019). SQuAD is a read-
ing comprehension dataset consisting of ques-
tions posed by crowdsourced workers on a set of
Wikipedia articles. This dataset includes reference
contexts, questions, and answers extracted from
those contexts. SQuAD_v2 expands on the original

Figure 5: Different questions generated before and after
RLHF training for the same context.

SQuAD dataset by adding manually annotated neg-
ative samples (questions that cannot be answered
using reference contexts). Tweetqa, on the other
hand, collects short tweets from social media, with
human annotators writing questions and answers
specific to each tweet. Unlike SQuAD, the answers
in Tweetqa are not direct excerpts from the tweets
but are freely formulated texts. These three datasets
provide a comprehensive evaluation of the model’s
generation capabilities.

To validate the effectiveness of our evalua-
tion metrics, we selected three commonly used
question-answering datasets: NQ (Kwiatkowski
et al., 2019), HotpotQA (Yang et al., 2018), and
MultiRC (Khashabi et al., 2018). We constructed
negative samples by randomly replacing questions,
reference contexts, and answers to assess the met-
rics’ ability to classify positive and negative cases.
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5.2 Experiment Setting

Due to the lack of preset answer content for neg-
ative samples in the dataset, it is difficult to use
them for reinforcement learning directly. There-
fore, we called the DeepSeek API (DeepSeek-AI,
2024) to generate corresponding answers for the
questions of these negative samples. As the ques-
tions of negative samples are not related to the
context, the generated answers cannot be found
either. We selected two sizes: gemma-2b-instruct
and gemma-7b-instruct. For model fine-tuning and
inference tools, we chose swift (Team, 2024), with
all fine-tuning done using LoRA (Low-Rank Adap-
tation) (Hu et al., 2022).To comprehensively com-
pare with the lmqg method (Ushio et al., 2023),
we selected the results of lmqg method (Ushio
et al., 2023) training on multiple base models and
datasets, including fine-tuning models based on t5-
small, t5-base, t5-large (Raffel et al., 2020), Bart-
base, Bart-large (Lewis et al., 2019) on Tweetqa, as
well as fine-tuning models based on flan-t5-small,
flan-t5-base, and flan-t5-large (Chung et al., 2022)
on SQuAD_v2.

5.3 Feasibility of Metrics

In Table 1, we tested the scores obtained by ARES
(Saad-Falcon et al., 2023) and our metrics on vari-
ous manually curated datasets, as well as the classi-
fication accuracy for positive and negative samples.
ARES provides discrete values of 0 or 1, whereas
our metrics yield continuous values. Both theoret-
ically and experimentally, Our metrics is 21.17%,
30.67%, and 21.67% higher than that of ARES in
terms of the accuracy of distinguishing positive and
negative samples on three commonly used datasets
NQ, HotpotQA, and MultiRC, respectively.

5.4 Models Performance on Comprehensive
Metrics

In Table 2, we tested the comprehensive metrics
scores of a series of models trained by lmqg and
our models, both before and after RLHF. The NLIS-
core and SIMScore of our model on the SQuAD
test set are 13.94% and 33.14% higher than the
highest scores of the lmqg series models, respec-
tively. On the SQuAD_v2 test set, these two scores
are 14.51% and 34.59% higher, respectively. On
the tweetqa test set, the highest NLIScore belongs
to bart-large-tweetqa of the lmqg series, while the
highest SIMScore of our model is 28.94% higher
than the highest score of the lmqg series.We con-

dataset metric score accuracy

N
Q

ARES
Context Relevance 78.74
Answer Faithfulness 72.00 65.50%
Answer Relevance 99.96

Ours
MRCScore 34.60
NLIScore 51.80 86.67%
SIMScore 75.66

H
ot

po
tQ

A ARES
Context Relevance 96.02
Answer Faithfulness 69.00 51.00%
Answer Relevance 81.25

Ours
MRCScore 42.60
NLIScore 66.96 81.67%
SIMScore 73.56

M
ul

tiR
C ARES

Context Relevance 80.34
Answer Faithfulness 96.00 50.00%
Answer Relevance 95.15

Ours
MRCScore 32.79
NLIScore 57.50 71.67%
SIMScore 47.66

Table 1: The evaluation results of ARES and our metrics
on several commonly used datasets show the accuracy
of positive and negative sample classification. Negative
samples were obtained by randomly replacing elements
in the (C,Q,A) triple. To increase the difficulty of
classification, we selected replacement contexts that
closely matched the theme of the correct context.

ducted the following analysis:
(i) Models with a larger number of parameters

significantly outperformed smaller models on the
NLIScore metric. This can be attributed to the
fact that larger models develop stronger language
capabilities during the pre-training phase.

(ii) Our models, both before and after RLHF,
scored lower on the MRCScore compared to the
encoder-decoder models trained by lmqg. We at-
tribute this to the differences in the training meth-
ods of different models. Specifically, Decoder-only
models rely on self-generated context to predict the
next word, making them more prone to hallucina-
tions, especially when earlier content deviates. In
contrast, encoder-decoder models use an encoder
to process input information, providing a stable
context foundation that enhances consistency and
accuracy during generation. This dual processing
mechanism, combined with the ability to integrate
external information, allows encoder-decoder mod-
els to perform better in tasks requiring precision
and fact verification, thereby reducing the likeli-
hood of hallucinations. Nevertheless, our model
still demonstrates greater practical value, as its per-
formance on the MRCScore metric is comparable
to other models, especially when considering its
advantages on SIMScore and NLIScore.
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SQuAD SQuAD_v2 tweetqa

MRCScore NLIScore SIMScore MRCScore NLIScore SIMScore MRCScore NLIScore SIMScore

t5-small-tweetqa 40.04 46.00 39.92 39.16 47.46 40.16 43.04 40.68 40.32
t5-base-tweetqa 44.27 46.35 43.92 43.60 47.39 44.03 54.75 43.16 44.90
t5-large-tweetqa 48.18 46.36 43.42 46.43 48.30 44.05 59.45 46.32 46.96
bart-base-tweetqa 51.83 57.31 49.55 48.57 56.99 48.54 62.26 52.31 49.91
bart-large-tweetqa 50.62 55.29 50.07 48.44 55.61 49.41 63.49 54.16 52.13
flan-t5-small-squad 54.32 32.77 35.44 54.11 33.40 35.21 52.40 22.44 26.07
flan-t5-base-squad 62.10 37.63 41.00 60.38 36.68 39.73 57.86 32.81 41.84
flan-t5-large-squad 65.30 40.14 44.76 62.83 39.67 43.86 64.61 39.47 50.11
gemma-2b-sft(MDPO) 51.09 61.63 78.51 49.20 63.70 79.50 46.68 46.13 71.86
gemma-7b-sft(MDPO) 58.05 65.83 83.21 56.00 66.50 84.00 60.11 50.65 81.07
gemma-2b-rlhf(MDPO) 53.69 64.77 72.22 51.80 67.30 72.50 54.65 50.08 70.70
gemma-7b-rlhf(MDPO) 60.66 71.25 78.03 61.10 71.50 78.00 62.22 51.77 78.74

Table 2: The table compares the scores of a series of models trained by lmqg and our models on comprehensive
metrics, tested on SQuAD, SQuAD_v2, and tweetqa datasets.

Model MRCScore NLIScore SIMScore

gemma-2b-fewshot 52.60 64.30 80.10
gemma-2b-sft 49.20 63.70 79.50
gemma-2b-rlhf 51.80 67.30 72.50
gemma-2b-mrc-iter 54.40 62.97 57.77
gemma-2b-nli-iter 51.82 74.15 63.93
gemma-2b-sim-iter 56.30 70.39 71.00

gemma-7b-fewshot 57.60 65.20 85.00
gemma-7b-sft 56.00 66.50 84.00
gemma-7b-rlhf 61.10 71.50 78.00

Table 3: In the ablation experiment, we evaluated our
model’s performance under three conditions: trained
solely with SFT, trained with a combination of SFT and
RLHF, and trained with SFT combined with RLHF and
further enhanced with Few-shot techniques. For the
2b model, we iteratively conducted RLHF training by
selecting and pairing positive and negative examples
based on samples where the SFT and RLHF models had
significant scoring differences across various metrics.
This approach yielded evaluation results for three itera-
tively trained models based on different metrics.

5.5 Evaluation of the Metric-Based RLHF

Using our metric-based RLHF, the model shows
significant improvements in both MRCScore and
NLIScore in Table 3. Human experts have also
observed an enhancement in the generation quality.
However, there is a noticeable decline in SIMScore.
Our analysis suggests that SIMScore computation
relies on the MRC metrics. When SIMScore is
used directly for feedback, the model does not re-
ceive optimization from the MRCScore perspective,
resulting in a deterioration of the intermediate vari-
able Aref (§ 3.1), which ultimately leads to a drop
in the SIMScore.

6 Conclusion

In this study, we have demonstrated the effective-
ness of our metrics. Specifically, MRCScore and
NLIScore exhibited strong performance on human-
annotated datasets, effectively distinguishing be-
tween positive and negative samples. This capabil-
ity is crucial for filtering generated data and facili-
tating the automatic iteration of training datasets.

Our metric-based RLHF has shown a marked
improvement in the quality of data generated by
the model. Notably, when using MRCScore and
NLIScore as feedback signals in RLHF training,
we observed significant improvements in both met-
rics individually. Furthermore, when SIMScore
was used as the feedback signal, we observed con-
current improvements in MRCScore and NLIScore.
We attribute this phenomenon to the coupling na-
ture of SIMScore, which inherently integrates as-
pects of both MRC and NLI evaluations.

These findings underscore the potential of using
specialized metrics to drive the training process,
leading to substantial enhancements in model per-
formance. The iterative nature of our approach
ensures continuous refinement and improvement,
making it a valuable strategy for developing more
robust and accurate machine reading comprehen-
sion models. In conclusion, our work highlights the
importance of carefully chosen metrics in guiding
the RLHF process and demonstrates the signifi-
cant impact of such metrics on model performance.
Future work will focus on further refining these
metrics and exploring their integration with multi-
task learning approaches to achieve even greater
improvements across multiple evaluation criteria.
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Limitations

While our approach for RLHF has demonstrated
significant improvements, several limitations must
be addressed to enhance the overall effectiveness
and robustness of our methodology.

Firstly, our proposed evaluation metrics, i.e.
MRCScore, NLIScore, and SIMScore, are all
model-based and the scores largely depend on the
model’s performance, which in turn is heavily in-
fluenced by the quality of the training data. This
dependency means that even true positive samples
can receive low scores if the model’s training data
does not adequately cover those scenarios. Ad-
dressing this limitation requires the use of model
alignment techniques to better calibrate the scoring
models.

Secondly, while we selected models trained
on tasks like Machine Reading Comprehension
(MRC) to serve as scoring models based on the
required capabilities, there is an inherent gap be-
tween the training tasks of these models and our
specific application. Although the training tasks
are somewhat similar, they do not perfectly align
with our needs. To better address and explain our
method, extensive research from a meta-learning
perspective is necessary. This involves develop-
ing models that can generalize across various tasks
more effectively.

Thirdly, our metric-based approach has signifi-
cantly enhanced the model’s capabilities. However,
it is challenging to achieve simultaneous improve-
ments across multiple metrics. This difficulty arises
because the fine-tuning data sources for each metric
differ, leading to varied impacts on model perfor-
mance. To overcome this, we propose leveraging
multi-task fine-tuning methods in future work. By
utilizing diverse data sources, we aim to endow
the model with multiple capabilities, thereby im-
proving performance across all key metrics in our
evaluations.

In conclusion, while our current approach has
shown promising results, addressing these limita-
tions is crucial. Future work should focus on bet-
ter alignment techniques, exploring meta-learning
strategies, and employing multi-task learning to
ensure balanced improvements across all evalua-
tion metrics. These steps will be vital for further
advancing the performance and applicability of our
machine reading comprehension models.
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Figure 6: Visualizing the effect of SVM classifiers on our metrics.

aim to minimize the classification error while ensur-
ing the largest possible margin between the support
vectors.

The ability of our metric to separate positive
and negative examples is visualized in Figure 6,
where "random question" denotes a random choice
of question Q between (C,Q,A) tuples, and "ran-
dom context" as well as "random answer" denotes
a random choice of C and A between different
(C,Q,A) tuples, constructing the negative exam-
ples in this way without performing random trans-
formed tuples represent positive examples
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