
Proceedings of the 31st International Conference on Computational Linguistics, pages 10672–10684
January 19–24, 2025. ©2025 Association for Computational Linguistics

10672

A Collaborative Reasoning Framework Powered by Reinforcement
Learning and Large Language Models for Complex Questions Answering

over Knowledge Graph

Zhiqiang Zhang
Peking University

zhangzhiqiang@stu.pku.edu.cn

Wen Zhao
Peking University

zhaowen@pku.edu.cn

Abstract

Knowledge Graph Question Answering
(KGQA) aims to automatically answer natural
language questions by reasoning across
multiple triples in knowledge graphs (KGs).
Reinforcement learning (RL)-based methods
are introduced to enhance model interpretabil-
ity. Nevertheless, when addressing complex
questions requiring long-term reasoning,
the RL agent is usually misled by aimless
exploration, as it lacks common learning
practices with prior knowledge. Recently,
large language models (LLMs) have been
proven to encode vast amounts of knowledge
about the world and possess remarkable
reasoning capabilities. However, they often
encounter challenges with hallucination issues,
failing to address complex questions that
demand deep and deliberate reasoning. In this
paper, we propose a collaborative reasoning
framework (CRF) powered by RL and LLMs
to answer complex questions based on the
knowledge graph. Our approach leverages
the common sense priors contained in LLMs
while utilizing RL to provide learning from
the environment, resulting in a hierarchical
agent that uses LLMs to solve the complex
KGQA task. By combining LLMs and the
RL policy, the high-level agent accurately
identifies constraints encountered during
reasoning, while the low-level agent conducts
efficient path reasoning by selecting the
most promising relations in KG. Extensive
experiments conducted on four benchmark
datasets clearly demonstrate the effectiveness
of the proposed model, which surpasses
state-of-the-art approaches.

1 Introduction

Knowledge Graph Question Answering (KGQA)
is a classical NLP task to automatically answer nat-
ural language questions by reasoning across multi-
ple triples in a given knowledge graph (KG). The
KGQA system uses data from knowledge graphs

to accurately answer user queries. It has significant
applications in various fields, making it a key focus
of academic research and industry innovation. As
user demands become increasingly intricate, recent
research has attempted to build KGQA systems
capable of answering complex questions to better
adapt to real-world scenarios.

Complex questions often involve constraints that
necessitate logical, quantitative, and aggregation
reasoning across a series of KG triples. To an-
swer these complex questions effectively, some
methods (Chen et al., 2019; Han et al., 2020) in-
troduce a hop-by-hop inference process to select
the multi-hop relation paths. They are trained in
strong supervision through pre-annotated interme-
diate golden relations, thus achieving promising
performance for complex KGQA. Unfortunately,
due to the high cost of data annotation, complex
questions are only annotated with final answers,
resulting in weak supervision. To tackle the is-
sue, several studies (Cui et al., 2023; Zhang et al.,
2022; Qiu et al., 2020) train a reinforcement learn-
ing (RL) agent to sequentially extend its path of
reasoning within the KG by iteratively selecting
the most promising actions until the target entity
is reached. RL-based methods exhibit strong per-
formance in both effectiveness and interpretability,
as they establish an interpretable inference chain
throughout the sequential decision-making process.
However, when tackling complex questions that
require long-term reasoning, the RL agent is usu-
ally misled by aimless exploration, due to its lack
of common learning practices with prior knowl-
edge. This issue prevents the rapid convergence of
the RL agent, thereby diminishing its exploration
efficiency (Lv et al., 2020). Furthermore, the ma-
jority of existing methods encounter challenge in
performing effective reasoning in the knowledge
graph for complex questions with constraints.

The emergence of large language models
(LLMs) in recent times, such as GPT4 (Achiam
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et al., 2023) and Llama (Touvron et al., 2023b),
have been shown to encode a tremendous amount
of knowledge about the world by virtue of being
trained on massive amounts of text. LLMs have
achieved significant success in various tasks, which
encourages their application in KGQA research
(Luo et al., 2023; Li et al., 2023; Jiang et al., 2023).
While these studies have significantly enhanced
the performance of KGQA systems, they often en-
counter challenges with hallucination issues, fail-
ing to provide stable and responsible answers when
faced with complex questions requiring deliberate
reasoning (Ye et al., 2023). This limitation is ex-
pected due to the training methodology employed
by LLMs, where they are trained to predict the
next token in sequence based on the context pro-
vided, without an interval for deliberate thoughts.
As explained in (Kahneman, 2011), our cognition
comprises two systems: System 1 is an intuitive
and unconscious thinking system that relies on ex-
perience, while System 2 employs knowledge for
deliberate and reliable logical reasoning. Currently,
LLMs exhibit characteristics that are more in line
with System 1 thinking, which may account for
their shortfall in addressing complex questions.

To this end, in this paper, we propose a collabo-
rative reasoning framework (CRF) that integrates
large language models (LLMs) and hierarchical re-
inforcement learning (HRL) to mimic human cog-
nitive processes, thereby enhancing the ability to
answer complex questions based on the knowledge
graph. Our approach leverages the common sense
priors contained in LLMs while utilizing RL to
provide learning from the environment, resulting
in a hierarchical agent that uses LLMs to solve the
complex KGQA task. Specifically, the proposed
model dismantles the KGQA task into a two-level
hierarchical decision process. In the high-level
process, the agent employs RL policy to identify
constraints (options) encountered during reasoning.
Furthermore, LLMs output the probability of each
option based on the current state and in-context
demonstration, serving as intermediate rewards to
address the challenge of delayed and sparse re-
wards due to weak supervision. In the low-level
process, the agent combining LLMs and the RL pol-
icy conducts efficient path reasoning by selecting
the most promising relations (actions) in KG. More
concretely, we use LLMs to inject common sense
priors into the agent. The LLMs guide the agent
by suggesting the most likely courses of action
to avoid aimless exploration, significantly improv-

ing learning efficiency. Additionally, the trained
policy-based agent can provide deliberate and re-
liable logical reasoning as verification for LLMs
to eliminate hallucinations. In summary, the main
contributions of this paper can be summarized as
follows:

• We propose a collaborative reasoning frame-
work powered by hierarchical RL and LLMs
to mimic human cognitive processes. Our
approach leverages the common sense priors
contained in LLMs while utilizing RL to pro-
vide learning from the environment, resulting
in a hierarchical agent that uses LLMs to solve
the complex KGQA task.

• We dismantle the KGQA task into a high-level
process for constrain detection and a low-level
process for path reasoning, respectively. By
combining LLMs and the RL policy, the hi-
erarchical agents can tackle the challenges of
aimless exploration and hallucination for com-
plex question answering based on the knowl-
edge graph.

• We validate the efficacy of the proposed frame-
work through comprehensive experiments and
meticulous ablation studies on widely-used
benchmark datasets. Empirical results demon-
strate that our method achieves state-of-the-art
performance for complex KGQA.

2 Related Work

Our KGQA method is closely related to the studies
on Reinforcement Learning and Large Language
Models.
Reinforcement Learning (RL) for KGQA. The
RL-based methods are proposed to frame complex
KGQA as a sequential decision-making process to
extend its reasoning path within the KG by itera-
tively selecting promising actions until reaching
the target entity. SRN (Qiu et al., 2020) performs
an effective path search over KG to infer answer
entities based on RL. ARL (Zhang et al., 2022)
proposes a new adaptive reinforcement learning
framework and introduces three atomic operations
to adaptively extend the relation paths. ARN (Cui
et al., 2023) incorporates KG embeddings as an-
ticipation information into RL framework to cap-
ture the potential target information for multihop
reasoning. Moreover, Zhu et al. (2022) apply a
hierarchical reinforcement learning framework to
tackle the challenge of one-to-many relation-entity
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in knowledge graph reasoning task. While these
methods exhibit strong performance in both effec-
tiveness and interpretability, they struggle to per-
form effective reasoning in the knowledge graph
for complex questions with constraints and are in-
fluenced by aimless exploration. Our work extends
the line of RL-based models, utilizing hierarchical
RL to formulate complex KGQA as a hierarchical
decision problem. It introduces a novel perspective
to handle complex questions in knowledge graph
reasoning
Large Language Models (LLMs) for KGQA.
LLMs have achieved significant success in vari-
ous tasks, which encourages their application in
KGQA research. The most intuitive idea is to use
LLMs as parsers to generate logical forms for ques-
tions. KB-BINDER (Li et al., 2023) uses LLMs to
create preliminary logical forms through demon-
stration imitation and then binds the draft to an
executable version through knowledge base inte-
gration. ChatKBQA (Luo et al., 2023) proposes
generating the logical form with fine-tuned LLMs
first, then retrieving and replacing entities and re-
lations through an unsupervised retrieval method.
Furthermore, FlexKBQA uses LLMs to generate
synthetic data for the KGQA task, then use the data
to fine-tune a smaller light-weight KGQA model.
In addition, novel methods have been proposed to
fully leverage the reasoning capability of LLMs.
ToG (Sun et al., 2023) enables the LLM agent to
iteratively execute beam search on KG, discover
the most promising reasoning paths, and return the
most likely reasoning results. StructGPT (Jiang
et al., 2023) gathers relevant evidence from struc-
tured data, allowing LLMs to focus on the reason-
ing task using the acquired information. However,
they often encounter challenges with hallucination
issues, failing to address complex questions.

3 Methodology

3.1 Problem Formulation

Our study focuses on factoid question answering
over a knowledge graph (KG). The KG can be
formally represented as G = (E,R), where E
is the set of entities and R is the set of relations.
Given a natural language question q and a KG G,
our goal is to take an optimal reasoning process
to predict the answer entities Aq ∈ E. In this
paper, we focus on handling complex questions, in
which the corresponding answer entities are multi-
hop away from the topic entities, and the questions

may contain constraints, such as entity constraint,
numerical constraint, etc.

3.2 Framework Overview
Our methodology utilizes the inherent common
sense priors in LLMs and incorporates RL for envi-
ronmental learning, leading to the construction of a
hierarchical agent for solving the complex KGQA
task. Figure 1 shows the overall architecture of our
framework, which mainly consists of four parts:
a high-level policy-based agent for constraint de-
tection, a low-level policy-based agent for path
reasoning, LLMs as reward function and LLMs as
guider. The high-level policy-based agent identifies
constraints (options) encountered during reasoning,
while the low-level policy-based agent conducts ef-
ficient path reasoning by selecting the most promis-
ing relations (actions) in KG. The LLMs-based
reward function generates the probability of each
option as intermediate rewards for the high-level
policy-based agent. Moreover, the LLMs guide
the low-level policy-based agent by suggesting the
most likely courses of action.

3.3 High-level Process for Constraint
Detection

In the high-level process, the agent is designed
to detect the constraint type of current timestep t,
which guides the corresponding path reasoning.
State. At timestep t, the state of the high-level
process is defined as Sh

t = (e0, q, et, ht), where
e0 is the topic entity of the given question q; et
represents the current entity at timestep t during
reasoning process; and ht refers the representation
of the historical relation path selected, we apply
LSTM to represent the sequential path information
as following: ht = LSTM(ht−1, rt−1). Note that
h0 and r0 are both set to zero vectors.
Option. To handle different types of complex ques-
tions, we define six types of options correspond-
ing to the constraints: Basic, Bridge, Union,
Filter, Ordinal, and Aggregation. Specifically,
Basic indicates that the current option is gener-
ating the reasoning path by adding relations hop-
by-hop. In Bridge, the option can incorporate
the path from different topic entities to handle the
questions with multiple topic entities. The option
Union aims to solve questions containing mul-
tiple relations from the same topic entity. The
option of Filter represents a numerical or tem-
poral comparison, including <,≤, >,≥,=, ̸=. In
Ordinal, the option involves sorting the current
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Figure 1: The overview of our proposed collaborative reasoning framework (CRF).

entity set in either ascending or descending order
and selecting entities based on the ordinal num-
ber. Within Aggregation, the option signifies the
use of aggregation functions on the current enti-
ties, such as Count, Limit, etc. At the timestep t,
the option ot is selected from option space Ot =
{Basic,Bridge, Union, F ilter, Aggregation,
Ordinal}.
Reward. The rewards received by the high-level
agent are primarily divided into two parts: extrinsic
rewards provided by the environment KG and the
likelihood of options output by LLMs. Regarding
extrinsic rewards, since only the final answers are
labeled as weak supervision, we utilize the scor-
ing function of the KGE model to calculate soft
rewards for candidate entities (Cui et al., 2023).
Formally, the extrinsic reward function Rh

e (S
h
T ) is

defined as follows:

Rh
e (S

h
T ) =

{
1, eT = ê

fs(e0, q, eT ), otherwise
(1)

where eT is the predicted entity and ê is the golden
answer. Intuitively, if eT matches ê, the agent gets
a reward of 1; otherwise, it receives a soft reward
between 0 and 1 from the scoring function fs().

In addition, the extensive training data of
LLMs enables them to excel as in-context learners
and also equips them to comprehend significant
common-sense priors to assess the reasonableness
of the selected constraint types. Therefore, LLMs
can output the probability of each option based
on the current state and in-context demonstration,

serving as intermediate rewards. Formally, the in-
termediate reward function Rh

i (S
h
t ) is defined as

follows:

Rh
i (ot, S

h
t ) = PLLM (ot,S

h
t ,ρ) (2)

where ot and Sh
t represent the textual descriptions

of the option and state at the timestep t. The details
of the prompt ρ are described in Appendix C. Fi-
nally, the high-level reward function can be defined
as follows:

Rh(ot, S
h
t , S

h
T ) = Rh

i (ot, S
h
t ) +Rh

e (S
h
T ) (3)

Policy. The policy for the high-level process
takes state information as input and outputs
the probabilities over candidate options at each
step. Specifically, we use Transformer encoder
to obtain the question representation denoted as
q = [w1, w2, ...wn]. To make the agent aware
of the current step, a linear network is explored to
generate step-aware question representation qt ∈
R

d×n:
qt = Tanh(Wt · q + bt) (4)

Where Wt ∈ Rd×n and bt ∈ Rd×1 are learnable
parameters. At timestep t, the high-level agent re-
ceives state Sh

t , and selects an option according to
the calculated probability distribution. Addition-
ally, a "Loop" option is added into the option space
to signify when the reasoning process should stop.
The option space is encoded by stacking the em-
bedding of all valid options in Ot : Ot ∈ R|Ot|×d.
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And the high-level policy network πh is defined as:

πh(ot|Sh
t ) = Ot ·Wh2 ·ReLu(Wh1 · [ht; qt]) (5)

where Wh1 and Wh2 are parameter matrices.
[ht; qt] denotes the concatenation of encoded deci-
sion history and step-aware question vector.

3.4 Low-level Process for Path Reasoning

Once the high-level agent has detected a constraint
type, the low-level agent will execute path reason-
ing to select the most promising relation. To make
the detected constraint type accessible in the low-
level process, the option ot is taken as additional
input for guiding the low-level path reasoning pro-
cess.
State. Similar to the process for constraint detec-
tion, the low-level intra-option state includes topic
entity e0, given question q, historical information
ht. In addition, it also contains the high-level op-
tion ot, which can affect the learning of low-level
strategies. Formally, the low-level process state can
be defined as Sl

t = (e0, q, et, ht, ot).
Action. For the option ot, the low-level agent
takes action at to select the most promising re-
lation. The action space for the state Sl

t is the set
of outgoing edges of the current entity et, where
At = {(r, e)|(et, r, e) ∈ G}. Meanwhile, each
option possesses its own list of valid actions for
every step. Based the option Basic, the agent adds
a single-hop relation rt to ht. Note that some re-
lations in the KG are 1-to-many. Therefore, the
target et+1 may be a set of entities. For the op-
tions Bridge, Union, and Filter, the relation rt
is selected based on constraints including entity, re-
lation, or numerical constraints. In addition, for the
options Ordinal and Aggregation, the low-level
RL policy struggles to select the correct actions.
Here, we enable the agent to directly perform cor-
rect reasoning with the assistance of LLMs.
Reward. The low-level agent receives an immedi-
ate reward by intrinsic motivation. Since a correct
decision contains a KG relation which covers part
of the semantic information of the question, we
measure the semantic similarity between the given
question and the selected relation as the low-level
reward, defined as follows:

Rl(Sl
t) = ReLU(cos[rt; q

∗
t ]) (6)

where rt is the representation of the selected rela-
tion; q∗t is produced as the result of the interaction

between relation rt and question q according to the
attention weights.
Policy. Once an option ot is selected, the policy
for the low-level process takes action at to con-
duct path reasoning. Given the low-level state
Sl
t and action space At, a relation-aware question

representation can be calculated for each action
at = (r∗, e∗) ∈ At:

q∗t =
n∑

i=1

α∗
i ·wt,i (7)

α∗
i = σ(Wa · (r∗ ⊙wt,i) + b) (8)

where σ is the SoftMax operator; q∗t is the result of
the interaction between the relation and the ques-
tion according to the attention weights; r∗ is the
vector of relation r∗; wt,i is the step-aware rep-
resentation of token wi; Wa and b are learnable
parameters. Moreover, the action space is encoded
by stacking the embeddings of all valid actions in
At : At ∈ R|At|×d. Therefor, the low-level policy
network πl is defined as:

πl(at|Sl
t) = At ·Wl2 ·ReLu(Wl1 · [ht; q

∗
t ;ot])

(9)
where Wl1 and Wl2 are parameter matrices;
[ht; q

∗
t ;ot] represents the concatenation of en-

coded decision history, relation-aware question vec-
tor and option embedding. In addition, utilizing
RL for exploration without relying on common-
sense intuition may be inefficient when addressing
complex queries that require long-term reasoning.
Therefore, the section 3.5 introduces how to uti-
lize LLMs to improve exploration in the low-level
policy.

3.5 Using LLMs to Guide Low-level Policy
In the low-level process, the agent can conduct
efficient exploration in the KG through the combi-
nation of LLMs and the RL policy. The common
sense priors and planning capabilities of LLMs can
be injected into the policy-based agent to improve
low-level action selection in the form of language.
The core idea is to use LLMs to obtain a value that
approximates the probability that each candidate
action is relevant to answer the question. Specifi-
cally, the LLMs are used to evaluate the function
fLLM (e∗t , a

i
t, o

∗
t , q, h

∗
t ) for each candidate action at

timestep t, where e∗t , o∗t and h∗t are the language
description of the current entity, the current option
and the historical selected relation path; amt repre-
sents the language description of the corresponding
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relation and tail entity. Essentially, the LLM an-
swers the following question: given the task of
answering question q, based on the current entity
e∗t , the current option o∗t and the historical selected
relation path h∗t , should we choose the candidate
action amt ? The output of the LLM, ‘yes’ or ‘no’,
can easily be converted to an int (“0” or “1”). Fur-
ther details are listed in Appendix 4.5.4. Through
these question-answering prompts, we can acquire
common-sense priors from the LLMs. After eval-
uating this for each of the k candidate actions in
the action space, we utilize the SoftMax function
for normalization. The formula is represented as
follows.

DLLM = SoftMax([fLLM1 , fLLM2 , ..., fLLMk
])

(10)
where DLLM represents the probability of each
candidate action evaluated through common sense
priors from LLMs. Since the RL agent encounters
the issue of aimless exploration due to a lack of
common sense. We use the LLMs DLLM to guide
exploration by suggesting the most likely courses
of action. In the low-level process, the probabil-
ity distribution of candidate actions is calculated
through low-level policy πl and LLMs DLLM . The
action selection is formalized as follows.

S(at|Sl
t) = πl(at|Sl

t) +DLLM (Sl
t) (11)

where the prompts inputted into the LLM are ob-
tained by the current state Sl

t.

3.6 Optimization and Inference

Optimization. During the model training, we ex-
ploit the REINFORCE algorithm (Williams, 1992)
to optimize the above policy networks. The al-
gorithm utilizes the current policy to generate nu-
merous trajectories for the purpose of estimating
a stochastic gradient, subsequently updating the
policy via stochastic gradient ascent.

For the high-level and low-level policies opti-
mization, we maximize the expected cumulative
rewards over all the question-answer pairs (q, a).
The object functions for the high-level policy and
low-level policy are computed as follows:

J (θH) =E(q,a)∈D[Eo1,o2,...,oT∼πh
[
T∑
t=1

ηT−t

Rh(ot, S
h
t , S

h
T )]]

(12)

J (θL) = E(q,a)∈D[Ea1,a2,...,aT∼πl
[
T∑
t=1

Rl(Sl
t)]]

(13)
where η is a discount factor. With the likelihood
ratio trick, the gradients for the high-level policy
and low-level policy are denoted as:

∇θHJ (θH) =E(q,a)∈D[Eo1,o2,...,oT∼πh
[
T∑
t=1

ηT−t

Rh(ot, S
h
t , S

h
T )∇θH log πh]] (14)

∇θLJ (θL) =E(q,a)∈D[Ea1,a2,...,aT∼πl
[
T∑
t=1

Rl(Sl
t)∇θL log πl]] (15)

Inference. In the inference stage, our method imi-
tates human cognitive processes. During the long-
term reasoning process to address a complex ques-
tion, LLMs utilize their preexisting knowledge to
provide intuitive assessments for each action, while
the trained policy-based agent can offer deliberate
and reliable logical reasoning as validation, aiding
LLMs in discarding hallucinations.

4 Experiment

4.1 Dataset

In order to evaluate the effectiveness of the pro-
posed CRF method, we conduct experiments us-
ing four public datasets, including WebQuestionSP
(WebQSP) (Yih et al., 2016), ComplexWebQues-
tions (CWQ) (Talmor and Berant, 2018), PathQues-
tion (PQ) (Zhou et al., 2018) and MetaQA (Zhang
et al., 2018). We give a detailed description of each
dataset in Appendix A.

4.2 Baselines

To comprehensively evaluate our approach, we se-
lect a series of following baseline models for com-
parison, which can be divided into three categories:
(1) IR-based methods, including EmbedKGQA
(Saxena et al., 2020), NSM (He et al., 2021), Trans-
ferNet (Shi et al., 2021); (2) RL-based methods,
including SRN (Qiu et al., 2020), ARL (Zhang
et al., 2022), ARN (Cui et al., 2023); (3) LLMs-
based methods, including Llama-2-70B (Touvron
et al., 2023a), ChatGPT, KD-CoT (Wang et al.,
2023), ToG (Sun et al., 2023), StructGPT (Jiang
et al., 2023). The detailed description is introduced
in Appendix B
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Model
WebQSP CWQ PathQuestion MetaQA

Mix Mix 2H 3H Mix 1H 2H 3H
EmbedKGQA (Saxena et al., 2020) 66.6 37.5 - - - 97.5 98.8 94.8
NSM (He et al., 2021) 68.7 47.6 - - - 94.8 97.0 91.0
TransferNet (Shi et al., 2021) 71.4 48.6 - - - 96.5 97.5 90.1
SRN (Qiu et al., 2020) - - 96.3 89.2 89.3 97.0 95.1 75.2
ARL (Zhang et al., 2022) 72.9 48.9 - - - 97.5 99.9 98.9
ARN (Cui et al., 2023) 68.0 - 98.9 90.5 93.6 96.7 93.5 97.0
Llama-2-70B(Touvron et al., 2023a) ♯ 57.4 39.1 - - - - - -
ChatGPT ♯ 62.2 38.8 - - - 61.9 31.0 43.2
KD-CoT (Wang et al., 2023) 73.7 50.5 - - - - - -
ToG w/ChatGPT (Sun et al., 2023) 76.2 58.9 - - - - - -
StructGPT (Jiang et al., 2023) 72.6 - - - - 94.2 93.9 80.2
CRF(ours) 79.5 68.2 99.4 95.7 97.1 99.6 99.9 99.2

Table 1: Experimental results (%Hits@1) on four datasets. The best score is in bold, second best score is underlined.
“-” indicating that no results are reported in the original papers. Results with ♯ are reprinted from (Sun et al., 2023).

4.3 Experimental Setting

Following (Cui et al., 2023), we use the PageRank-
Nibble algorithm (PRN) to find KB entities near
the labeled topic entities in the question, which
helps extract a relatively small question-relevant
subgraph containing answer entities. Since the
inference process involves inverse relations, we
also add the inverse of a fact triple. For example,
given a triple (e1, r, e2), we add the inverse triple
(e2, r

−1, e1), where r−1 is the inverse of relation
r. Throughout our experiments, we apply 300 di-
mensional pre-trained GloVe word embeddings and
set the dimension of KG embeddings (i.e. entity
embeddings and relation embeddings) to 200. The
KG embeddings are assigned with pre-trained ones,
which are learned under the constraint following
TransE (Bordes et al., 2013). Moreover, we use a
two-layer unidirectional LSTM with a hidden state
dimension of 200 as the decision history encoder.
For the question encoder, we use a Transformer
with 2 layers and 4 heads. For REINFORCE algo-
rithm, the discount factor η is set 0.95. In addition,
we use GPT-3.5-turbo API as the LLM for our
model. Here, we utilize the Hits@1 score to assess
model performance, indicating the accuracy of the
top one among predicted answer entities.

4.4 Main Results

Table 1 shows the experimental results in four
datasets. From the results, our method achieves
promising performance on all datasets. Specifi-
cally, when faced with challenging datastes such as
CWQ and WebQSP, our model still demonstrates
impressive performance compared to other meth-
ods, attributed to the proposed collaborative reason-
ing framework powered by RL and LLMs. Further-

more, we observe that many methods on MetaQA
exhibit good performance since the dataset is rela-
tively simple and only focus on the movie domain.
Compared with RL-based models (e.g., SRN, ARL
and ARN), our approach performs well overall. In
order to enhance the interpretability of the model,
our method is based on a RL framework. How-
ever, RL-based methods usually face challenges
of aimless exploration and low-quality rewards.
We use LLMs to assist in enhancing the RL agent,
which significantly improves the performance of
our model. Moreover, our methods exhibit superior
performance, particularly on CWQ. This advan-
tage stems from our approach which formalizes
the KGQA task as a hierarchical decision-making
process, effectively addressing complex questions
with constraints.

As for LLM-based methods, we notice that di-
rectly using LLMs (e.g., ChatGPT and Llama-2-
70B) performs not well on the complex datasets,
such as CWQ, MetaQA-2H and MetaQA-3H. It
indicates that relying solely on LLMs is challeng-
ing for effectively solving the complex KGQA
task. Therefore, some methods incorporate external
knowledge graphs to enhance LLMs in addressing
complex questions (e.g., KD-CoT, ToG and Struct-
GPT). Although these methods demonstrate pos-
itive outcomes, our approach makes even greater
advancements, achieving a 3.3% improvement on
WebQSP and 9.3% improvement on more complex
CWQ compared to the best one. This is because
that we propose a collaborative reasoning frame-
work to mimic human cognitive processes. In the
inference stage, LLMs use prior knowledge for in-
tuitive assessments, while the trained policy-based
agents provide logical reasoning as validation, help-
ing LLMs relieve hallucinations.
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4.5 Further Analysis
4.5.1 Ablation Study
We conduct various ablation studies to verify the
effectiveness of different factors in CRF. The abla-
tion studies are carried out on two datasets, PQ and
CWQ. The ablation results are shown in Table 2.

w/o LLMs as reward function. In the high-
level process, we remove the intermediate rewards
generated by LLMs. The ablated model exhibits
poorer performance than the original one, indicat-
ing that employing LLMs as the reward function
helps mitigate low-quality reward challenges.

w/o LLMs to guide low-level policy. Eliminat-
ing the use of LLMs to guide the low-level policy
indicates that our approach only relies on a RL
framework to solve the KGQA task. The lack of
prior knowledge provided by LLMs poses a chal-
lenge of aimless exploration for the agents when
tackling complex questions that require long-term
reasoning. The significant performance decline
of the ablated model on the more complex CWQ
highlights the critical role of LLMs.

w/o reinforcement learning. When we remove
reinforcement learning, we can find that the perfor-
mance gap between the ablated model and the orig-
inal model increases as the dataset becomes more
complex. This is because there is no RL-based
agent to provide reliable logical reasoning as verifi-
cation to eliminate the illusions of LLMs. As ques-
tions increase in complexity, there is a higher like-
lihood of LLMs generating hallucinations, which
results in a decline in model performance.

w/o hierarchical policy structure. Without hi-
erarchical policy structure, the RL-based agent can
only iteratively select actions to execute path rea-
soning and are unable to account for constraint
conditions, leading to reduce model performance
in handling complex questions with constraints.

Model
PathQuestion CWQ

Mix Mix
CRF(full model) 97.1 68.2
w/o LLMs as reward function 96.8 66.7
w/o LLMs to guide low-level policy 94.9 52.3
w/o reinforcement learning 96.4 58.6
w/o hierarchical policy structure 96.5 65.5

Table 2: Ablation study results (%Hits@1) on PQ and
CWQ. Best results are marked bold.

4.5.2 Stability Study
We define the complexity of the question as the
number of options chosen in the reasoning process.

The stability study is conducted on CWQ with var-
ious complex questions. As shown in Figure 2a,
it is evident that our model maintains consistent
performance even with the increasing complexity
of questions. The stability demonstrates the effec-
tiveness and robustness of CRF at reasoning over
KGs for complex questions with constraints.

4.5.3 Few-shot Study
Figure 2b shows the performance of CRF on differ-
ent proportions of CWQ training data. We observe
that our method still performs well even with only
20% of the training data used. And our method
can achieve essentially the same effect using only
60% of the data as using all the training data. The
results show that our method can achieve good per-
formance in few-shot situations. This is because
that the common sense priors and planning capa-
bilities of LLMs can be injected into the proposed
model to enable it to effectively answer complex
questions.
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(a) Stability Study
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(b) Few-shot Study

Figure 2: (a) Performance on CWQ with different com-
plexity. (b) Performance on different proportions of
CWQ training data.

4.5.4 Case Study
As shown in Figure 3, we present a case study
to make a better understanding how our proposed
CRF model works. Given a complex question
"Which film in which Lucy Hale appeared was
edited by Scot J. Kelly?", the topic entity is Lucy
Hale and the entity constraint is Scot J. Kelly. To
solve the above question, two-hop reasoning is
required with a constraint. In the first step, the
high-level process selects the "Basic" option and
transfers it to the low-level process. Next, we com-
pose the input prompt for LLMs based on the cur-
rent state and action space of the low-level and
generate the probability distribution of the action
space. Finally, we select the top-3 actions, i.e.,
perform_film,publish_album and nationality_in, by
combining the low-level RL policy. In the sec-
ond step, the option "Bridge" is selected to direct
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Figure 3: A case of the hierarchical decision process.

the low-level process in taking actions for execut-
ing path reasoning concerning the entity constraint.
Concretely, the agent reaches Sorority Wars. Since
the option "Loop" is chosen in the subsequent step,
indicating the termination of the reasoning process,
the entity Sorority Wars is considered as the pre-
dicted answer.

5 Conclusion

In this paper, we introduce a collaborative reason-
ing framework powered by hierarchical RL and
LLMs to mimic human cognitive processes. The
proposed model leverages the common sense priors
contained in LLMs while utilizing RL to provide
learning from the environment, resulting in a hi-
erarchical agent that uses LLMs to solve the com-
plex KGQA task. The high-level agent accurately
identifies constraints encountered during reasoning,
while the low-level agent conducts efficient path
reasoning by selecting the most promising relations
in KG. Extensive experiments conducted on four
benchmark datasets clearly demonstrate the effec-
tiveness of the proposed model, which surpasses
state-of-the-art approaches.

Limitations

In our work, we primarily use the frozen LLM
(ChatGPT), whose capabilities may be limited by
its pretraining. In the future, it would be worth-
while to explore how fine-tuning LLMs can more
effectively guide the reasoning of RL-based agents
and improve the accuracy of intermediate rewards
provided by LLMs. Additionally, we assume that
the given questions contain topic entities, enabling
reasoning within the knowledge graph to obtain an-
swers. Consequently, the questions lacking entities
cannot be answered through reasoning. For this
case, we rely on the LLM to directly generate the
answers.

Acknowledgments

This work was supported by the National Key Re-
search and Development Program of China under
Grant No.2023YFC3304404.

References
Josh Achiam, Steven Adler, Sandhini Agarwal, Lama

Ahmad, Ilge Akkaya, Florencia Leoni Aleman,



10681

Diogo Almeida, Janko Altenschmidt, Sam Altman,
Shyamal Anadkat, et al. 2023. Gpt-4 technical report.
arXiv preprint arXiv:2303.08774.

Kurt D. Bollacker, Colin Evans, Praveen K. Paritosh,
Tim Sturge, and Jamie Taylor. 2008. Freebase: a
collaboratively created graph database for structuring
human knowledge. In Proceedings of the ACM SIG-
MOD International Conference on Management of
Data, SIGMOD 2008, Vancouver, BC, Canada, June
10-12, 2008, pages 1247–1250. ACM.

Antoine Bordes, Nicolas Usunier, Alberto Garcia-
Duran, Jason Weston, and Oksana Yakhnenko.
2013. Translating embeddings for modeling multi-
relational data. Advances in neural information pro-
cessing systems, 26.

Zi-Yuan Chen, Chih-Hung Chang, Yi-Pei Chen, Jij-
nasa Nayak, and Lun-Wei Ku. 2019. Uhop: An
unrestricted-hop relation extraction framework for
knowledge-based question answering. In Proceed-
ings of NAACL-HLT, pages 345–356.

Hai Cui, Tao Peng, Feng Xiao, Jiayu Han, Ridong Han,
and Lu Liu. 2023. Incorporating anticipation em-
bedding into reinforcement learning framework for
multi-hop knowledge graph question answering. Inf.
Sci., 619:745–761.

Jiale Han, Bo Cheng, and Xizhou Wang. 2020. Two-
phase hypergraph based reasoning with dynamic re-
lations for multi-hop kbqa. In IJCAI, pages 3615–
3621.

Gaole He, Yunshi Lan, Jing Jiang, Wayne Xin Zhao, and
Ji-Rong Wen. 2021. Improving multi-hop knowledge
base question answering by learning intermediate
supervision signals. In Proceedings of the 14th ACM
international conference on web search and data
mining, pages 553–561.

Jinhao Jiang, Kun Zhou, Zican Dong, Keming Ye,
Wayne Xin Zhao, and Ji-Rong Wen. 2023. Structgpt:
A general framework for large language model to
reason over structured data. In Proceedings of the
2023 Conference on Empirical Methods in Natural
Language Processing, pages 9237–9251.

Daniel Kahneman. 2011. Thinking, fast and slow.
macmillan.

Tianle Li, Xueguang Ma, Alex Zhuang, Yu Gu, Yu Su,
and Wenhu Chen. 2023. Few-shot in-context learning
on knowledge base question answering. In Proceed-
ings of the 61st Annual Meeting of the Association for
Computational Linguistics (Volume 1: Long Papers),
pages 6966–6980.

Haoran Luo, Zichen Tang, Shiyao Peng, Yikai Guo,
Wentai Zhang, Chenghao Ma, Guanting Dong, Meina
Song, Wei Lin, et al. 2023. Chatkbqa: A generate-
then-retrieve framework for knowledge base question
answering with fine-tuned large language models.
arXiv preprint arXiv:2310.08975.

Xin Lv, Xu Han, Lei Hou, Juanzi Li, Zhiyuan Liu, Wei
Zhang, Yichi Zhang, Hao Kong, and Suhui Wu. 2020.
Dynamic anticipation and completion for multi-hop
reasoning over sparse knowledge graph. In EMNLP,
pages 5694–5703.

Yunqi Qiu, Yuanzhuo Wang, Xiaolong Jin, and Kun
Zhang. 2020. Stepwise reasoning for multi-relation
question answering over knowledge graph with weak
supervision. In WSDM, pages 474–482. ACM.

Apoorv Saxena, Aditay Tripathi, and Partha Talukdar.
2020. Improving multi-hop question answering over
knowledge graphs using knowledge base embeddings.
In Proceedings of the 58th annual meeting of the as-
sociation for computational linguistics, pages 4498–
4507.

Jiaxin Shi, Shulin Cao, Lei Hou, Juanzi Li, and Han-
wang Zhang. 2021. Transfernet: An effective and
transparent framework for multi-hop question an-
swering over relation graph. In Proceedings of the
2021 Conference on Empirical Methods in Natural
Language Processing, pages 4149–4158.

Jiashuo Sun, Chengjin Xu, Lumingyuan Tang, Saizhuo
Wang, Chen Lin, Yeyun Gong, Lionel M. Ni, Heung-
Yeung Shum, and Jian Guo. 2023. Think-on-
graph: Deep and responsible reasoning of large
language model on knowledge graph. Preprint,
arXiv:2307.07697.

Alon Talmor and Jonathan Berant. 2018. The web as
a knowledge-base for answering complex questions.
In NAACL-HLT, pages 641–651.

Hugo Touvron, Louis Martin, Kevin Stone, Peter Al-
bert, Amjad Almahairi, Yasmine Babaei, Nikolay
Bashlykov, Soumya Batra, Prajjwal Bhargava, Shruti
Bhosale, Dan Bikel, Lukas Blecher, Cristian Canton-
Ferrer, Moya Chen, Guillem Cucurull, David Esiobu,
Jude Fernandes, Jeremy Fu, Wenyin Fu, Brian Fuller,
Cynthia Gao, Vedanuj Goswami, Naman Goyal, An-
thony Hartshorn, Saghar Hosseini, Rui Hou, Hakan
Inan, Marcin Kardas, Viktor Kerkez, Madian Khabsa,
Isabel Kloumann, Artem Korenev, Punit Singh Koura,
Marie-Anne Lachaux, Thibaut Lavril, Jenya Lee, Di-
ana Liskovich, Yinghai Lu, Yuning Mao, Xavier Mar-
tinet, Todor Mihaylov, Pushkar Mishra, Igor Moly-
bog, Yixin Nie, Andrew Poulton, Jeremy Reizen-
stein, Rashi Rungta, Kalyan Saladi, Alan Schelten,
Ruan Silva, Eric Michael Smith, Ranjan Subrama-
nian, Xiaoqing Ellen Tan, Binh Tang, Ross Tay-
lor, Adina Williams, Jian Xiang Kuan, Puxin Xu,
Zheng Yan, Iliyan Zarov, Yuchen Zhang, Angela Fan,
Melanie Kambadur, Sharan Narang, Aurélien Ro-
driguez, Robert Stojnic, Sergey Edunov, and Thomas
Scialom. 2023a. Llama 2: Open foundation and fine-
tuned chat models. CoRR, abs/2307.09288.

Hugo Touvron, Louis Martin, Kevin Stone, Peter Al-
bert, Amjad Almahairi, Yasmine Babaei, Nikolay
Bashlykov, Soumya Batra, Prajjwal Bhargava, Shruti
Bhosale, et al. 2023b. Llama 2: Open founda-
tion and fine-tuned chat models. arXiv preprint
arXiv:2307.09288.

https://doi.org/10.1145/1376616.1376746
https://doi.org/10.1145/1376616.1376746
https://doi.org/10.1145/1376616.1376746
https://arxiv.org/abs/2307.07697
https://arxiv.org/abs/2307.07697
https://arxiv.org/abs/2307.07697
https://doi.org/10.48550/ARXIV.2307.09288
https://doi.org/10.48550/ARXIV.2307.09288


10682

Keheng Wang, Feiyu Duan, Sirui Wang, Peiguang Li,
Yunsen Xian, Chuantao Yin, Wenge Rong, and Zhang
Xiong. 2023. Knowledge-driven cot: Exploring faith-
ful reasoning in llms for knowledge-intensive ques-
tion answering. Preprint, arXiv:2308.13259.

Ronald J Williams. 1992. Simple statistical gradient-
following algorithms for connectionist reinforcement
learning. Machine learning, 8:229–256.

Hongbin Ye, Tong Liu, Aijia Zhang, Wei Hua, and
Weiqiang Jia. 2023. Cognitive mirage: A review
of hallucinations in large language models. arXiv
preprint arXiv:2309.06794.

Wen-tau Yih, Matthew Richardson, Christopher Meek,
Ming-Wei Chang, and Jina Suh. 2016. The value of
semantic parse labeling for knowledge base question
answering. In Proceedings of the 54th Annual Meet-
ing of the Association for Computational Linguistics
(Volume 2: Short Papers), pages 201–206.

Qixuan Zhang, Xinyi Weng, Guangyou Zhou, Yi Zhang,
and Jimmy Xiangji Huang. 2022. ARL: an adaptive
reinforcement learning framework for complex ques-
tion answering over knowledge base. Inf. Process.
Manag., 59(3):102933.

Yuyu Zhang, Hanjun Dai, Zornitsa Kozareva, Alexan-
der Smola, and Le Song. 2018. Variational reasoning
for question answering with knowledge graph. In
Proceedings of the AAAI conference on artificial in-
telligence, volume 32.

Mantong Zhou, Minlie Huang, and Xiaoyan Zhu. 2018.
An interpretable reasoning network for multi-relation
question answering. In Proceedings of the 27th Inter-
national Conference on Computational Linguistics,
pages 2010–2022.

Anjie Zhu, Deqiang Ouyang, Shuang Liang, and Jie
Shao. 2022. Step by step: A hierarchical framework
for multi-hop knowledge graph reasoning with re-
inforcement learning. Knowledge-Based Systems,
248:108843.

https://arxiv.org/abs/2308.13259
https://arxiv.org/abs/2308.13259
https://arxiv.org/abs/2308.13259


10683

Appendix

A Datasets

In order to evaluate the effectiveness of the pro-
posed CRF method, we conduct experiments
using four public datasets, including WebQues-
tionSP(WebQSP) (Yih et al., 2016), ComplexWe-
bQuestions(CWQ) (Talmor and Berant, 2018),
PathQuestion(PQ)(Zhou et al., 2018) and MetaQA
(Zhang et al., 2018). Table 3 shows the statistics of
the four datasets.

Datasets KG Train Valid Test
WebQSP Mix Freebase 2848 250 1639
CWQ Mix Freebase 27639 3519 3531

PQ
2H Freebase 1528 189 191
3H Freebase 4163 515 520
Mix Freebase 5691 704 711

MetaQA
1H OMDb 96106 9992 9947
2H OMDb 118980 14872 14872
3H OMDb 114196 14274 14274

Table 3: Statistics of the experiment datasets.

WebQuestionSP(WebQSP) (Yih et al., 2016)
contains 4373 questions, where the answer entities
are within a maximum of 2 hops from the topic
entity on the Freebase (Bollacker et al., 2008).

ComplexWebQuestions(CWQ) (Talmor and
Berant, 2018) is constructed based on WebQSP,
which is more complex. It extends the question
entities or adds constraints to answers to construct
complex questions consisting of four types and
requiring up to 4-hops of reasoning based on Free-
base.

PathQuestion(PQ) (Zhou et al., 2018) is from
the general domain, and based on the subsets of
Freebase. It extracts paths between two entities in
the KG, and generated questions more real by some
rules. PQ-2H and PQ-3H deNote 2-hop and 3-hop
questions, respectively. PQ-Mix represents the mix
of all questions.

MetaQA (Zhang et al., 2018) focuses on the
movie domain, comprising over 400,000 questions.
Based on the number of hops, the dataset includes
three sets of question-answer pairs: 1-hop, 2-hop,
and 3-hop.

B Baselines

To comprehensively evaluate our approach, we se-
lect a series of following baseline models for com-
parison, which can be divided into three categories:
(1) IR-based methods, including EmbedKGQA
(Saxena et al., 2020), NSM (He et al., 2021), Trans-

ferNet (Shi et al., 2021); (2) RL-based methods,
including SRN (Qiu et al., 2020), ARL (Zhang
et al., 2022), ARN (Cui et al., 2023); (3) LLMs-
based methods, including Llama-2-70B (Touvron
et al., 2023a), ChatGPT, KD-CoT (Wang et al.,
2023), ToG (Sun et al., 2023), StructGPT (Jiang
et al., 2023). The elaborate descriptions of base-
lines are as follows.

EmbedKGQA (Saxena et al., 2020) embeds the
question and KG triples into a vector space. Sub-
sequently, a scoring function is employed to evalu-
ate the candidate answer entities, with the highest-
scoring entity as the predicted answer.

NSM (He et al., 2021) proposes a novel teacher-
student framework where the student network fo-
cuses on answering queries, while the teacher net-
work provides intermediate supervision to enhance
the student’s reasoning ability.

TransferNet (Shi et al., 2021) jointly manages
labeled and textual relations, navigating between
entities in several steps. At each step, it focuses on
parts of the question, calculates scores for relations,
and moves the scores of entities along those active
relations smoothly.

SRN (Qiu et al., 2020) pioneers the formaliza-
tion of complex KGQA as a sequential decision-
making process grounded in reinforcement learn-
ing. Through a potential-based reward shaping
strategy, SRN mitigates the challenges posed by
delayed and sparse rewards.

ARL (Zhang et al., 2022) proposes a new adap-
tive reinforcement learning framework and intro-
duces three atomic operations to adaptively extend
the relation paths.

ARN (Cui et al., 2023) incorporates KG embed-
dings as anticipation information into RL frame-
work to capture the potential target information for
multihop reasoning. Moreover, a KEQA frame-
work is designed to assign soft rewards for the RL
agent.

ChatGPT is large language model developed by
OpenAI. We can use their provided APIs to access
them and solve KGQA tasks.

Llama-2-70B (Touvron et al., 2023a) is the
large language model developed by Meta. We can
use their provided APIs to solve KGQA tasks.

KD-CoT (Wang et al., 2023) proposes an inter-
active framework that utilizes a QA system to ac-
cess external knowledge and provide high-quality
answers to LLMs for solving knowledge-intensive
KBQA tasks.

ToG (Sun et al., 2023) enables the LLM agent
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to iteratively execute beam search on KG, discover
the most promising reasoning paths, and return the
most likely reasoning results.

StructGPT (Jiang et al., 2023) gathers relevant
evidence from structured data, allowing LLMs to
focus on the reasoning task using the acquired in-
formation.

C Prompt for Reward Function

Figure 4 shows the detail of the prompt ρ.

Given the current entity, the historical selected relation path, 
and the description of the selected option, please output the 
likelihood of the selected option to the question within the range 
of 0 to 1.

In-Context Few-shot

Q: {Query}
Current entity,  Historical selected relation path, The description 
of the slected option
Likelihood:

e

Figure 4: Prompt for Reward Function
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