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Abstract

Logical reasoning is a crucial factor in machine
reading comprehension tasks (MRC). Existing
methods suffer from the balance between se-
mantic and explicit logical relation represen-
tations, in which some emphasize contextual
semantics, while others pay more attention to
explicit logical features. Additionally, previ-
ous methods utilize graph convolutional net-
works (GCN) for node updates, still exhibit-
ing some shortcomings. To address these chal-
lenges, in this paper, we propose a logical rea-
soning method with contrastive learning and
lightweight graph networks (LogiGraph). Our
method focuses on the lightweight aspect of
the GCN, which greatly improves the short-
comings of the GCN, and employs conjunction
and punctuation marks as two types of edges
to construct a dual graph. Besides, we com-
bine contrastive learning with graph reasoning,
which changes the logical expression’s content
as the negative sample of the original context,
enabling the model to capture negative logical
relationships and improving generalization abil-
ity. We conduct extensive experiments on two
public datasets, ReClor and LogiQA. Experi-
mental results demonstrate that LogiGraph can
achieve state-of-the-art performance on both
datasets. 1

1 Introduction

Over the past few years, with the continuous de-
velopment of QA datasets, the ability of MRC
has become important (Hirschman and Gaizauskas,
2001; Liu et al., 2019a). With the emergence of
SQuAD (Rajpurkar et al., 2016), DROP (Dua et al.,
2019), and other similar datasets, the field of MRC
has made further advances. Logical reasoning is an
important task in MRC. The emergence of datasets
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Figure 1: An example of the constructed graphs and
data augmentation from the ReClor (Yu et al., 2020).

like ReClor (Yu et al., 2020) and LogiQA (Liu et al.,
2020) has improved the development of logical rea-
soning tasks. It emphasizes that models possess not
only comprehension capabilities but also the ability
to understand logical structures, such as context
claims, assumptions, and potential fallacies.

Although pre-trained language models (PLMs)
(Radford et al., 2018; Raffel et al., 2020) excel
in capturing contextual semantic information, they
struggle to understand the inherent logical structure
and complex relationships within context, which
limits their performance in complex logical rea-
soning tasks. To address the shortcomings of
PLMs, previous methods construct graphs (Ran
et al., 2019; Chen et al., 2020) based on entities in
the context to extract relationships from text and
utilize GCN to aggregate messages. However, they
still have substantial room for improvement.

For example, excessive GCN can result in
smoothed nodes, where the features of the nodes
tend to become similar, losing their distinguish-
ing characteristics (Li et al., 2018). Moreover, we
discover that certain components in the GCN do
not provide improvements. They even result in
an increase in the model parameter’s number and
longer inference time. For instance, multiple lay-
ers of feature transformation have no practical ef-
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fect on the model inference, but rather increase
the difficulty and parameter size of model training.
Thus, in logical reasoning, we should focus more
on the lightweight of the GCN. Additionally, re-
lying solely on GCN to understand the semantic
information of texts is insufficient. It is necessary
to further enhance the exploration of the logical
structure of a text.

To tackle these challenges, we propose Logi-
Graph for solving logical reasoning tasks, which
enhances the model’s ability to discover the logi-
cal structures within contexts and performs logical
inferences. Compared to the previous method, our
approach alleviates the problem of GCN, including
training speed, inference time, and model parame-
ter size, enhancing the ability of the model. More-
over, we integrate contrastive learning to improve
the ability of the model to recognize the negative
logical structure of context. Also, we provide an
example of the procedure for constructing a graph
structure from the context in Figure 1. In summary,
the contribution of our paper lies in three folds:

• We propose a lightweight graph network for
logical reasoning of MRC, which emphasizes
the lightweight of the GCN, abandons multi-
ple invalid components of GCN, and utilizes
conjunction and punctuation marks as two
types of edges to establish the dual graph.

• We combine contrastive learning with graph
reasoning, which changes the content of log-
ical expression as the negative sample of the
original context, enabling the model to iden-
tify negative logical relationships.

• Extensive experiments reveal that LogiGraph
outperforms existing methods on two public
datasets. The ablation studies also demon-
strate the efficiency of each module within.

2 Methodology

This section aims to introduce our LogiGraph, an
end-to-end model proposed for logical reasoning.
The architecture of LogiGraph is depicted in Fig-
ure 2. The left part of Figure 2 shows an example
of the logical reasoning task. The comprehension
of text will be split into dual branchs: original con-
text (upper) and augmented context (lower), which
via contrastive learning capture negative logical
relationships, and via deletion, conditional inver-
sion, negation operations to create negative sam-
ples. Each branch goes through the same compo-

Notations Description

ci ∈ C different contexts (indexed by i)
qi ∈ Q different question
oij ∈ O The jth option in ith context (indexed by ij)

Gi two graphs in specific option i

Ni nodes set in one graph (indexed by i)
nk ∈ Ni The kth node in ith context (indexed by k)

Ei edges set in one graph (indexed by i)
ts ∈ T token in one particular node
vs ∈ V vector of each token
AR The adjacent matrix with two graphs

R ∈ (Rc, Rs) Two different graph
Rc edges that correspond to explicit conjunction
Rs edges that correspond to punctuation marks
Ng global graph embedding in graph

Vfinal the predicted answer

Table 1: Descriptions of key notations

nents to accomplish its respective tasks. Ultimately,
the losses of both branches will be consolidated.

Branch comprises three components: Taking
RoBERTa-Large 1⃝ as the token encoder for an
example, the construction of the graph splits the
sample into a conjunctive and a structural graph
based on explicit conjunction relations and punctu-
ation marks. Subsequently, the lightweight graph
network 2⃝ updates the node features, as detailed
in Figure 3. Finally, the cross-attention module 3⃝
combines the feature to predict the answer. The
key notations are summarized in Table 1.

2.1 Task Definition

The focus of this task is logical reasoning in the con-
text of multiple-choice question answering. Specif-
ically, the concatenated sequence for each input
represented as [CLS] C [SEP ] Q || O [SEP ],
which is formed by sequentially connecting the
context C, and each option O to the question Q.

Subsequently, the representations of the special
token [CLS] in the four sequences are propagated
through a linear layer that employs a softmax func-
tion to obtain the probability distribution of op-
tions, represented as P (o1, o2, o3, o4|C,Q). The
cross-entropy loss is performed according to Eq.1.

L = −
∑

logP (otrue | C,Q) (1)

where otrue denotes the correct option. The for-
mula can also be expressed in the following form:

scoreoij = linear (Ci ∥Qi∥Oij) , (2)
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Figure 2: The architecture of LogiGraph. The left part shows an example of the LogiQA dataset and the process of
data augmentation. We take RoBERTa-Large 1⃝ as the token encoder for samples. The construction of the graph
split the sample into conjunctive and structural graphs based on explicit conjunction relations and punctuation
marks; Subsequently, the lightweight graph networks 2⃝ update nodes features, as detailed in Figure 3. Finally, 3⃝
the cross-attention module combines features to predict the answers.

score′oij = log
exp

(
scoreoij

)
∑

oij∈Oi
exp

(
scoreoij

) (3)

where oij denotes the jth option in the ith context
sample, Ci, Qi and Oi indicate the representation
of the ith context, question and option, respectively.

2.2 Construction of Graph
Our model constructs conjunctive and structural
graphs based on explicit conjunction relations and
punctuation marks. We divide the context into
nodes and utilize their relationships as edges to
construct the graph, which categorized relations
into explicit and implicit conjunctions. Each node
represents a text segment connected by logical re-
lationships, making it more of a logical graph than
a sequential structure.

Explicit connections are found in sentences con-
nected by various conjunctions, such as so” and
and”, which indicate multiple relationships includ-
ing causation, contrast, condition, and so on. In
terms of how these explicit connections are identi-
fied, our model uses a fixed list of conjunction key-
words, which are further enhanced by NLTK (Hard-
eniya et al., 2016) stemming. This approach allows

for robust recognition of various word forms and
ensures accurate detection of logical relationships.
Utilizing these conjunctions to distinguish different
nodes enables the model to better learn the logical
structure and relationships within the text. Specifi-
cally, these conjunctions link sentences, enhancing
the clarity of logical relationships between them.

Implicit ones are between continuous spans of
text separated by punctuation marks, such as “,”.
It is important to identify these delimiters as they
serve as markers to distinguish different segments
of text. Recognizing them aids the model in com-
prehending the boundaries between sentences, en-
hancing its overall contextual understanding.

Edges For each sample, we only segment the con-
text and options, and excluded the question, since
it lacks logical content. We utilize the conjunctions
and punctuation marks as two types of edges to
establish the conjunctive and structural graphs.

The use of conjunctions and punctuation marks
creates a more intricate structure that captures logi-
cal relationships beyond mere adjacency. For exam-
ple, causal conjunctions like "because" and "there-
fore" create edges representing cause-effect rela-
tionships, while contrastive conjunctions like "but"
and "however" capture opposing ideas. These logi-
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cal connections are essential for understanding the
text’s deeper meaning, rather than just sequential
links. For example, as shown in Figure 1:

Option (nodes): A. [n11] It gives a rea-
son [why] [n12] police might be [more]
[n13] inclined to respond to burglar
alarms than to car alarms [.]

In this example, the conjunction “why” creates a
causal edge between [n11] and [n12], while the
word “more” indicates a comparative relationship
between [n12] and [n13]. The period at the end
creates a structural edge, segmenting the sentence.
This graph construction mirrors the text’s logical
flow, improving the model’s comprehension and
reasoning abilities.

2.3 Node Encoder
To commence the LogiGraph process, the original
feature embedding for each node must be obtained.
Given the input sequence of the ith context:

Input (Ci, Oi,j) = [CLS] Ci [SEP ] Oi,j [SEP ]
(4)

To encode token features, we use the
RoBERTa (Liu et al., 2019b) as our encoder. For
the token sequence Ti : {t1, t2, ..., ts} with length
s of each node ni, we obtain the corresponding to-
ken embedding represented as Vi : {v1, v2, ..., vn}.
We derive the original feature for the node si by
computing the sum of t tokens, which can capture
the overall representation of the sequence. To ad-
dress concerns about sparsity, we use a dual-graph
structure with each node containing multiple to-
kens. Node representations are averaged across
tokens, effectively preventing sparsity and ensur-
ing a more comprehensive feature representation.

si =
∑

vn∈Vi

vn (5)

To preserve the sequential ordering of nodes in
the context, positional embedding is employed:

ni = si + PosEmbed (si) (6)

where ni represents the node features after adding
the original node and position encoding. For each
sample’s context, the graph that corresponds to a
specific option (i) is denoted by:

Gi = (Ni, Ei) (7)

where Ei indicates the edges connecting nodes ni.
Ei includes the edges of the conjunction and punc-
tuation marks. The set Ni can be defined as follows:
Ni : {n1, n2, ...nk}.

Figure 3: A sample is shown, divided into two graphs
using conjunction and punctuation marks. The graphs
undergo node feature aggregation using a lightweight
GCN.

2.4 Lightweight Graph Network
After node encoding, we conduct reasoning over
conjunctive and structural graphs. Previous meth-
ods utilize GCN for node updates, still exhibiting
some shortcomings. The traditional GCN (Wang
et al., 2019) can be described as follows:

A = D
−1/2
(i) · AR

start, ARji =
A√
|Ni|

(8)

where ARji is the adjacency matrix. D−1/2
(i) is the

diagonal degree matrix. Then, it will calculate
weight αi for each node using a linear transforma-
tion and a sigmoid function:

αk = σ (Wα (nk) + bα) (9)

ñk =
∑
j∈Ni

αjA
Rjinj , Rji ∈ {Rc, Rs} (10)

where ñk is the message representation of nk. Fol-
lowing the neighborhood aggregation, the nodes
are updated through a combination of the initial nk

and the message representation ñi:

n′
k = ReLU (Wunk + ñk + bu) (11)

In logical reasoning, capturing explicit logical
relationships between nodes is crucial. Traditional
GCN may lose some information due to complex
feature transformations and non-linear activation.

To address these issues, we propose a
lightweight GCN, as shown in Figure 3. This net-
work discards feature transformation, non-linear
function activation, symmetric normalization term,
and self-connection in the traditional GCN. By sim-
plifying the model structure and focusing on the
linear aggregation of neighborhood information,
the lightweight GCN better preserves and utilizes
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logical relationships, thereby enhancing model per-
formance in logical reasoning tasks. This simpli-
fication not only accelerates model convergence
but also improves inference speed, making it more
suitable for large-scale reasoning applications.

So the node update formula is as follows:

ñk =
∑
j∈Ni

ARjinj , Rji ∈ {Rc, Rs} (12)

where ñk is the message representation of node nk,
nj refer to the initial node embedding of sj . The ad-
jacency matrix ARji , is designated for one of two
edge types. Rc represents conjunctive graph edges
that correspond to explicit conjunction, while Rs

represents structural graph edges that correspond
to punctuation marks. Following message aggrega-
tion, the node representations are modified through
the activation of ReLU. To enhance the efficacy of
the model, we employ multiple rounds to perform
higher-order feature extraction on the nodes:

n′
k = ReLU

∑
j∈Ni

ARñl−1
j

 , R ∈ {Rc, Rs}

(13)
where l is the number of graph layers. n′

k is
also formed by adding the initial node features
with the features obtained after the last layer. After
performing graph reasoning, we acquire features
of all nodes from both conjunctive and structural
graphs. Then, we apply a basic average operation
to obtain the whole graph representation Ng:

Ng =
1

N

∑
i∈Ni

n′
k (14)

Finally, we add all node features together, to get
the final node representation Ñg:

Ñg = NRd
g +NRp

g +Vcls (15)

where Vcls is the embedding of the original se-
quence based on the PLMs. NRc

g and NRs
g are the

node embedding of conjunction graph and struc-
tural graph, respectively.

2.5 Answer Forecast
We incorporate context and question into the de-
sign of node representation via utilizing a cross-
attention module:

Q = Vcontext/question ·WQ (16)

K = Vk ·Wk (17)

V = Vk ·Wv (18)

where WQ,Wk,Wv are the learnable projection
matrices, then we compute the attention based on
the query, key, and the value matrices.

A =
QKT

√
dk

(19)

Att(Q,K,V) = softmax(A) ·V, (20)

Thus, we obtain the enhanced context and question
embedding, which are expressed as:

V′
question = softmax

(
QquestionK

T

√
d

)
· Ñg

(21)
where V′

context and V′
question are the embedding

of context and question. After that, to enhance
the model’s ability, we concatenate Ñg, V′

context

and V′
question, fed into the feed-forward network

to get the final feature, from which we select the
maximum value to determine the predicted answer.

Vfinal = σ(w ·
[
Ñg;Vcontext;V

′
question

]
) (22)

2.6 Contrastive Learning

To enhance the model’s predictive ability, espe-
cially considering negative logical relationships,
we incorporate contrastive learning. This approach
allows the model to better distinguish between pos-
itive and negative contexts.

We generate positive samples from the original
context, while negative samples are crafted through
various modifications, including deletion, condi-
tional inversion, and negation operations. Specif-
ically, we use the NLTK library for tokenization,
POS-tagging, and text negation. This process in-
volves turning "be" verbs negative and adding "did
not" before other verbs, resulting in a semantically
negated text.

For instance, an affirmative statement like "He
likes football" becomes "He does not like foot-
ball" using the negation operation. Similarly, we
transform positive expressions into their negative
counterparts or vice versa. By applying these tech-
niques, we enrich our training dataset with a variety
of negative samples, ensuring the model can learn
a wide range of linguistic structures and logical
relationships. The objective can be described as:

s
(
f(Sk=n), f

(
S+
n

))
≫ s

(
f(Sn), f

(
S−
n

))
(23)
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Model
Dataset ReClor LogiQA

Dev Test Test-E Test-H Dev Test
Random 25.00 25.00 25.00 25.00 25.00 25.00
Human (Yu et al., 2020) - 63.00 57.10 67.20 - 86.00
BERT-Large (Devlin et al., 2018) 53.80 49.80 72.00 32.30 34.10 31.03
XLNet-Large (Yang et al., 2019) 62.00 56.00 75.70 40.50 - -
RoBERTa-Large (Liu et al., 2019b) 62.60 55.60 75.50 40.00 35.02 35.30
DAGN (Huang et al., 2021) 65.20 58.20 76.14 44.46 36.87 39.32
DAGN (Aug) (Huang et al., 2021) 65.80 58.30 75.91 44.46 36.87 39.32
AdaLoGn (Li et al., 2022) 65.20 60.20 79.32 45.18 39.94 40.71
FocalReasoner (Ouyang et al., 2021) 66.80 58.90 77.05 44.64 41.01 40.25
LReasoner (Wang et al., 2021) 66.20 62.40 81.40 47.50 38.10 40.60
APOLLO (Sanyal et al., 2022) 67.20 58.20 76.80 43.60 41.60 42.10
HGN (Chen et al., 2022) 66.40 58.70 77.70 43.80 40.10 39.90
APOLLO + MERIt (Sanyal et al., 2022) 67.20 59.80 76.80 46.40 41.80 42.40
MERIt (Jiao et al., 2022) 67.80 60.70 79.60 45.90 42.40 41.50
MERIt +Prompt (Jiao et al., 2022) 70.20 62.60 80.50 48.50 39.50 42.40
LoCSGN (Zhao et al., 2022) 68.20 62.60 78.90 49.80 39.80 42.20
Logiformer (Xu et al., 2022) 68.40 63.50 79.09 51.25 42.24 42.50
ChatGPT (Turbo3.5) (OpenAI, 2023) 61.50 55.30 58.86 52.50 40.93 40.65
LogiGraph 70.80 65.00 82.05 51.60 43.94 44.42

Table 2: Experimental results on ReClor and LogiQA. We utilize accuracy as the evaluation metric and all the
baselines are based on RoBERTa-Large.The ReClor is further segmented into two categories, Easy and Hard, with a
total of 440 and 560 data points respectively.

where Sk=n is the sample from the datasets, and
the S+

n and S−
n are the positive and negative sam-

ple, respectively. The s(·) and f(·) represent the
similarity function and the encoder of the model.

Subsequently, both positive and negative sam-
ples are fed into the model. We construct conjunc-
tive and structural graphs for both samples. Finally,
we change the scoring function from measuring
similarity between them:

LC = −
∑

log
es

′(Sn,S
+
n )

es′(Sn,S
+
n ) + es′(Sn,S

−
n )

(24)

Ultimately, our model is trained using a compos-
ite loss function, which can be described as:

Ltotal = L+ LC (25)

3 Experiments

In this part, we perform a series of experiments
to compare our model to existing state-of-the-art
(SOTA) methods on both ReClor and LogiQA
datasets. To further verify the effectiveness of the
proposed model, we conduct a thorough analysis
via ablation studies and supplementary analysis.

3.1 Datasets
Experiments involve the evaluation of our model
effectiveness on two datasets, ReClor (Yu et al.,

Model TEST Valid Test Reason Type
ReClor 4,638 500 1,000 17
LogiQA 7,376 651 651 5

Table 3: The details of ReClor and LogiQA datasets

2020) and LogiQA (Liu et al., 2020), which consti-
tute a diverse range of logical reasoning skills. The
ReClor dataset is based on different exams, with
unbiased instances separated from the test data to
evaluate logical reasoning. On the other hand, the
LogiQA dataset is derived from the National Civil
Servants Examination of China. It has been trans-
lated professionally into English. Table 3 shows
the details of ReClor and LogiQA datasets.

3.2 Hyper-parameters for Fine-tuning

Name of Parameter Search Scope Best

training batchsize {1,2,4,8} 2

epoch {9,10,11,12,15} 10

Layer in graph graph {1,2,3,4,5} 2

max sequence length {128,256,288,512} 288

learning rate for RoBERTa {4e-6, 5e-6, 6e-6, 5e-5} 5e-6

Table 4: The tuned hyper-parameters with search scopes

We utilized the Transformer model implemen-
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tation provided by Huggingface (Wolf et al.,
2020) along with the pytorch framework. Hyper-
parameters for training LogiGraph are reported in
Table 4.

3.3 Baselines

ReClor and LogiQA have been proposed as bench-
marks for this task (Khot et al., 2018; Habernal
et al., 2017). In their work, ReClor presents the
outcomes of BERT-Large (Devlin et al., 2018),
RoBERTa-Large, and XLNet-Large (Yang et al.,
2019), while LogiQA reports the performance of
BERT-Large and RoBERTa-Large.

• DAGN (Huang et al., 2021) proposes
a discourse-aware network that employs
RoBERTa and GCN for feature updating.

• Logiformer (Xu et al., 2022) proposes a
graph transformer network, which uses the
graph transformer to extract the features.

• FocalReasoner (Ouyang et al., 2021) focuses
on the fact units extracted from the text and
then builds a super graph for reasoning.

3.4 Comparison of Results

Our approach has been evaluated on the ReClor and
LogiQA datasets, with the main results presented
in Table 2.

The ReClor test split includes easy “Test-E” and
hard “Test-H” folds. For fair comparison, all base-
lines use the RoBERTa-Large encoder with 355
million parameters.

Our method shows improvements over the
SOTA. On ReClor, we observe 3.51% and 2.36%
gains on the validation and test splits compared to
Logiformer. On LogiQA, our method outperforms
Logiformer by 4.02% and 4.39%. However, a gap
remains between human and machine performance,
as humans find the structured context in LogiQA
easier to understand.

Moreover, LogiGraph achieves 65.0% accuracy
on the ReClor test split, surpassing ChatGPT. On
LogiQA, our model’s accuracy is 40.65%, also
higher than ChatGPT.

Regarding Table 2 and Table 5, they are sepa-
rated due to differing encoders used in baseline
methods. RoBERTa-Large encoder is the main
encoder for all baselines. Compared to other back-
bone models like ALBERT and DeBERTa, our
method consistently demonstrates improvements,

shown in Table 5, proving its robustness in enhanc-
ing logical reasoning across various pre-trained
models.

3.5 Ablation Study

To assess the efficacy of our method’s components,
we conducted an ablation study using RoBERTa-
Large as the backbone.

First, we evaluate each graph independently. Ta-
ble 6 shows that the conjunctive graph boosts per-
formance on the ReClor dataset, increasing vali-
dation and test scores by 3.5% and 4.7%, respec-
tively. The structural graph also contributes to per-
formance gains.

Second, we examine the impact of the
lightweight graph network on model performance,
focusing on its role in node feature extraction. Ad-
ditionally, we compare model performance with
and without contrastive learning, finding that con-
trastive learning improves results (Table 6).

To further validate our lightweight graph net-
work over traditional GCNs, we refine our experi-
ments. Table 7 indicates that removing certain com-
ponents improves performance. Our lightweight
network reduces parameters and increases effi-
ciency, achieving 65.0% on ReClor and 44.42% on
LogiQA, compared to GCN’s 62.7% and 42.54%.
The lightweight design also optimizes model size
and inference time, demonstrating its efficiency.

Finally, we analyze the ReClor test split by ques-
tion type, showing improvements in most cate-
gories, especially Necessary Assumption and Prin-
ciple (Table 8). This suggests our model effectively
explains and infers hidden facts within contexts.

3.6 Supplementary Analysis

Figure 4 and 5 display the accuracy of ReClor on
both the test set and test-H set. It is apparent that
as the quantity of training data increases, all mod-
els exhibit improved results. Our model excels
even with limited resources, achieving nearly 59%
accuracy at 60% data, highlighting its consistent
performance across different data volumes.

4 Related Work

Over recent years, numerous datasets aimed at en-
hancing models to approach human intelligence.
Mulit-hop MRC tasks in HotpotQA (Yang et al.,
2018) and WikiHop (Welbl et al., 2018) require
reading multiple supporting passages to answer a
question. Meanwhile, NLI (Bowman et al., 2015;
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Model
Dataset ReClor LogiQA

Dev Test Test-E Test-H Dev Test
ALBERT (Lan et al., 2019) 69.1 66.5 76.7 58.4 38.9 37.6
MERIt (ALBERT) (Jiao et al., 2022) 74.2 70.1 81.6 61 43.7 42.5
MERIt (ALBERT) + Prompt (Jiao et al., 2022) 74.7 70.5 82.5 61.1 46.1 41.7
LReasoner (ALBERT) (Wang et al., 2021) 73.2 70.7 81.1 62.5 41.6 41.2
LogiGraph (ALBERT) 75.0 71.5 82.27 63.04 46.85 42.9
DeBERTa (He et al., 2020b) 74.4 68.9 83.4 57.5 44.4 41.5
LReasoner (DeBERTa) (Wang et al., 2021) 74.6 71.8 83.4 62.7 45.8 43.3
MERIt (DeBERTa) (Jiao et al., 2022) 78.0 73.1 86.2 64.4 - -
LoCSGN (DeBERTa) (Zhao et al., 2022) 78.6 73.2 84.8 64.1 - -
LogiGraph (DeBERTa) 78.8 73.9 85.45 64.82 47.19 45.04

Table 5: Experimental result on ReClor and LogiQA dataset. We utilize the accuracy as the evaluation metric and
all the baselines are based on ALBERT-xxlarge-v2 and DeBERTa-v2-xlarge.

Williams et al., 2018) datasets focus on performing
the task sentence-by-sentence and are restricted to
a few logical reasoning types.

To improve model reasoning, datasets like
LogiQA and ReClor require models to reveal texts
logic. However, PLMs may not be capable of han-
dling these datasets since they encode given texts
directly for predicting outputs.

To better handle these datasets, DAGN and Fo-
calReasoner extract relationships from text and rep-

Model
Dataset ReClor LogiQA

Dev Test Dev Test
LogiGraph 70.8 65.0 43.94 44.42
Graph Construction
w/o conjunctive graph 68.4 61.5 41.20 41.93
w/o structural graph 68.6 61.0 40.40 41.47
Graphs reasoning
w/o lightweight GCN 68.1 61.6 41.94 40.86
Cross attention
w/o attention-layer 69.5 63.5 43.47 43.54
contrastive Learning
w/o CL 68.8 61.8 41.32 42.85

Table 6: Ablation studies results (by accuracy %) on
ReClor and LogiQA development set and test set

Model
Dataset ReClor LogiQA Params Inference

Test Test size Time
LogiGraph 65.0 44.42 370.06m 0.1918s
GCN 62.7 42.54 373.21m 0.2231s
GCN-F 63.1 43.18 371.11m 0.2143s
GCN-N 62.6 42.65 373.21m 0.2107s
GCN-SN 63.4 43.47 373.21m 0.2129s
GCN-SC 63.8 43.31 372.16m 0.2106s

Table 7: Ablation study results (by accuracy %) on Re-
Clor and LogiQA test set, show the impact of discarding
different components of GCN. F: feature transformation,
N: non-linear function activation function, SN: symmet-
ric normalization, SC: self-connection

Figure 4: Results on the test set of ReClor.

Figure 5: Results on the test-H set of ReClor.

resent them as a graph, using GCN to aggregate
messages. However, traditional GCN can result in
excessively smoothed nodes, which weakens the
model’s ability. Additionally, in traditional GCN,
many components do not provide actual benefits
to the performance and, increase the model’s pa-
rameter size and inference time. FocalReasoner
emphasizes the importance of fact units, extract-
ing the units from the text and building a graph
for the reasoning. However, it only uncovers the
logical structure in one aspect. MERIt (Jiao et al.,
2022) uses Wikipedia for logical graphs, but their
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Model NA S W I CMP ER P D R IF O
LogiGraph 76.32 62.77 53.10 58.70 70.01 70.24 64.61 50.66 62.75 64.96 63.02
w/o conjunctive graph 72.80 61.50 52.98 52.17 69.4 65.47 60.0 50.0 59.37 60.68 64.38
△ -3.52 -1.27 -0.22 -6.53 -0.7 -4.77 -4.61 -0.66 -3.38 -4.28 +1.36
w/o structural graph 71.93 57.45 49.56 56.52 69.44 63.09 61.54 50.0 56.25 64.10 57.53
△ -4.39 -5.32 -3.54 -2.18 -0.66 -7.15 -3.07 -0.66 -6.5 -0.86 -5.49

Table 8: The details of the ReClor test are Split on different question types. NA: Necessary Assumption, S:
Strengthen, W: Weaken, I: Implication, CMP: Conclusion/Main Point, ER: Explain or Resolve, P: Principle, D:
Dispute, R: Role, IF: Identify a Flaw, O: Other.

contrastive loss needs counterfactual data augmen-
tation, which may distort factual knowledge. Dif-
ferently, we propose a method that combines con-
trastive learning (Wu et al., 2018; He et al., 2020a)
with a lightweight graph network to enhance the
model’s ability to recognize the negative logical
structure, reduce the potential problem of GCN.

5 Conclusion

In this paper, we propose LogiGraph for logical rea-
soning in MRC, unitizing a lightweight graph net-
work to extract node features from the context. It
is effective in improving the shortcomings of GCN.
We employ conjunction and punctuation marks as
two types of edges to construct dual graphs. Fur-
thermore, we combine contrastive learning into our
model, which constructs negative samples to better
capture negative and complex logical relationships
in the context. With the evaluation of two datasets,
ReClor and LogiQA, LogiGraph achieves SOTA
performance on both of them. In the future, we
plan to strengthen our method with respect to both
data construction and model architecture design.

6 Ethics Statement

We assert that there are no ethical dilemmas sur-
rounding the submission of this article and have
no known competing financial interests or personal
relationships that could have had an impact on the
research work presented.

7 Limitations

There are two limitations to this study. Firstly, it re-
quires substantial GPU resources, with a minimum
of A10 with 22GB memory, to ensure experimenta-
tion. If the base model is switched from the larger
model to DeBERTa and ALBERT, A100 comput-
ing resources will need to be used. This is indeed
a limitation of the model, as it requires substantial
computational resources.

Secondly, while the model’s architecture is inter-
pretable at a macroscopic level with each module
serving a specific function, it lacks interpretabil-
ity at a microscopic level, rendering the reasoning
process a black box. This is especially challeng-
ing when considering which nodes in the extracted
graph structure are more significant and how to in-
terpret their implications. Additionally, accurately
identifying the formalized logical chains and the
faithful representation of logical reasoning abili-
ties during the inference process poses challenges.
Therefore, in future research, we aim to explore
new approaches that improve model structure by
employing more lightweight networks to mitigate
computational requirements. We also plan to en-
hance model interpretability by incorporating capa-
bilities such as symbolic reasoning.
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