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Abstract

Modeling text-attributed graphs is a well-
known problem due to the difficulty of captur-
ing both the text attribute and the graph struc-
ture effectively. Existing models often focus on
either the text attribute or the graph structure,
potentially neglecting the other aspect. This is
primarily because both text learning and graph
learning models require significant computa-
tional resources, making it impractical to di-
rectly connect these models in a series. How-
ever, there are situations where text-learning
models correctly classify text-attributed nodes,
while graph-learning models may classify them
incorrectly, and vice versa. To fully leverage
the potential of text-attributed graphs, we pro-
pose a Coupled Text-attributed Graph Learning
(CTGL) framework that combines the strengths
of both text-learning and graph-learning mod-
els in parallel and avoids the computational
cost of serially connecting the two aspect mod-
els. Specifically, CTGL introduces coupled
text-graph augmentation to enable coupled con-
trastive learning and facilitate the exchange of
valuable information between text learning and
graph learning. Experimental results on diverse
datasets demonstrate the superior performance
of our model compared to state-of-the-art text-
learning and graph-learning baselines.

1 Introduction

Text-attributed graphs are increasingly prevalent in
modern society across various domains, including
academic networks (Tang et al., 2008), e-commerce
platforms (He and McAuley, 2016), and social net-
works (Jin et al., 2023). These systems consist of
nodes that contain rich text information such as
paper abstracts, product reviews, and tweets. These
nodes form meaningful graphs, such as citation
graphs, common purchasing graphs, and commu-
nication graphs. In this scenario, text and graph
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structure are not two independent entities. Edges
connect the textual information of various nodes
and they collectively form the dataset. Therefore,
jointly utilizing all available text and graph data is
crucial for handling variable downstream tasks.

When it comes to modeling text-attributed
graphs, researchers typically focus on two primary
aspects: one revolves around modeling the graph
structure, while the other is centered on the text
information contained within the graph. The first
part, graph models, involves using techniques like
Graph Neural Networks (GNNs) (Wu et al., 2019;
Veličković et al., 2018; Zaknich, 1998; Huang et al.,
2022; Hamilton et al., 2017) to refine the root
node by aggregating information from neighbor-
ing nodes. On the other hand, word representation
methods typically include bag-of-words vectors,
fixed embeddings, and pre-trained large language
models (Pennington et al., 2014; Devlin et al.,
2019a). However, a disadvantage of this frame-
work is that it treats text-level features and graph
structure as separate entities, which cannot simul-
taneously consider information from both sides.

Consequently, achieving accurate and compre-
hensive analysis in these systems necessitates a
thorough understanding not only of the semantic
meaning of the nodes but also of the semantic mean-
ing of their connected neighbors. Focusing solely
on one side of the characteristics can easily result
in biased predictions due to the omission of certain
inherent information present in the original text and
graph structure. To quantitatively define this prob-
lem, in Figure 1, we illustrate a case where text
bias occurs when the graph model accurately pre-
dicts node labels, while the text model fails to do so.
In the Amazon dataset, this bias accounts for ap-
proximately 9% of cases, where items possess clear
neighbors and potentially misleading descriptions.
Conversely, graph bias arises when the text model
comprehends the semantic meaning of the text, but
the graph model is incorrect due to the semantic-
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Dog Figure
Description:
This 1-1/4" tall, hard
vinyl Dog Figure can
be placed on your desk
or behind the
windshield of your car.
Girls love it.

Kitten Figure
Description:
Everyone
loves cute
kittens. 

Car Model
Description:
5.5" car model

Graph Bias

class: Toys & Games
class: ?

class: ?
Car Sticker
Description:
This is a high quality
vinyl decal designed
for your car.

Text Model:
    Pet                ✗
Graph Model:
    Toys/Games ✔

Text Model:
    Automotive   ✔
Graph Model:
    Toys/Games ✗

Text:     ✗  
Graph: ✔

Text:     ✔
Graph: ✗

Text:     ✔
Graph: ✔ 70%

  9%

11%

   Co-viewed items
Text Bias

Prediction：

Prediction：class: Toys & Games

Figure 1: a) A demonstration of text bias and graph
bias in the Amazon dataset. For the item "Kitten Fig-
ure", the graph model accurately assigns the label as
"Toys/Games," while the text models are influenced by
the misleading description. Conversely, for the item
"car sticker," the graph model is influenced by its toy-
related connections, whereas the text model provides
the correct answer. b) The Amazon dataset exhibited
text bias (9%) and graph bias (11%) ratios.
poor bag-of-words representation or influenced by
misleading neighbors. Graph bias influences 11%
of instances in the Amazon dataset given the data.

To tackle the aforementioned issues, it is cru-
cial to establish a coupled interaction between em-
beddings obtained from different modules. How-
ever, learning these data relies on different sources
of information. Graph models leverage network
structure while text models concentrate on textual
content. Another challenge is that real-life texts
are not always labeled. Manual labeling is costly,
so only a few graph nodes are annotated. Many
unlabeled features may limit the utilization of tra-
ditional fine-tuning methods. Accordingly, we pro-
pose the Coupled Text and Graph Learning (CTGL)
framework. Our framework introduces the Cou-
pled Text & Graph Augmentation technique, which
augments nodes’ text information by incorporating
textual data from graph-related or graph-unrelated
nodes. Our contributions are summarized as:
• We have noticed that existing models tend to

focus more on either graphs or text and formally
define the bias towards each side.

• We propose a customized text augmentation tech-
nique that takes into account both textual seman-
tic meanings and graph structure, guiding the text
model to differentiate between similarities and
differences from unlabeled nodes.

• By employing a shared augmentation strategy
for text and graph contrastive learning, CTGL
effectively bridges the gap between graph and
text models, mitigating both forms of bias.

• Comprehensive experiments on three public
datasets consistently demonstrate strong classi-
fication performance, with detailed studies con-
firming the effectiveness of each module.

2 Preliminaries

Notations. A text-attributed graph is a data struc-
ture that organizes information through nodes con-
nected by edges, where each node is described
by text and a label. It can be defined as G =
(V, E ,S), where S represents text attributes for
each node. V denotes the set of nodes, E denotes
edges between text nodes and N (l)

v denotes the
l-hop neighbors of node v. Ground truth labels
for a given text-attributed graph are denoted as
Y = {y1, · · · ,y|S|}, where |S| is the size of the
text-attributed nodes. In real-world scenarios, only
a small portion of the labels may be accessible.

3 Methodology

In this section, we present our CTGL framework
for text-attributed graph learning. We begin by in-
troducing the Coupled Text & Graph Augmentation
(CTGA) technique and our framework. We then de-
scribe the Text Contrastive Learning process, which
aims to enhance the text model’s understanding of
graph structure. Lastly, we propose the Graph Con-
trastive Learning approach, which incorporates text
information during graph learning.

3.1 Overall Framework

As discussed in the preliminaries, language models
often ignore graph structure, while current graph
models tend to overlook the inclusion of semantic
information in the text content. Integrating the two
modalities presents a significant challenge due to
two disparities: (1) Data Sources: Language mod-
els use semantic text for training, while graph mod-
els draw on the graph’s structure. (2) Embedding
Space: Language models generate embeddings di-
rectly from textual attributes, while graph models
aggregate information obtained from neighboring
nodes to refine the root node.
Coupled Training Framework. We propose a
Coupled Text Graph Learning (CTGL) approach
to address the disparities mentioned above. Our
approach enables seamless interactions between
text and graph models, without interrupting their
respective training procedures. To achieve this, we
introduce a graph-based loss to the text model and
a text-based loss to the graph model. This strategy
promotes the exchange of information between the
two models, improving the overall learning process.
The text learning loss is denoted as LT , and the
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Figure 2: The proposed CTGL consists of three main parts. Subfigure a) illustrates the Coupled Text and Graph
Augmentation mechanism and showcases how positive and negative views are generated. Subfigures b) and c)
depict the structure of the coupled Text Contrastive Learning and Graph Contrastive Learning module.

graph learning loss as LG , which are defined as,

LT = Lorigin
T + λLcouple

T , (1)

LG = Lorigin
G + γLcouple

G , (2)

where Lorigin
T and Lorigin

G denote the individual
loss for the text and graph models, respectively,
while Lcouple

T and Lcouple
G represent the coupled

text and graph loss for each model.
Coupled Contrastive Learning. In the coupled
contrastive learning phase, our goal is to configure
the text model to generate analogous outputs for
graph-related augmentations, and dissimilar out-
puts for graph-unrelated augmentations. Further-
more, we strive for the graph neural network to
produce similar outputs for semantically related
augmentations and disparate outputs for semanti-
cally unrelated augmentations.

We construct three views for both the text and
graph models: the origin view, the positive view,
and the negative view. The origin view computes
the embeddings of the text and graph models by
default. The positive view generates embeddings
from positively sampled text and graph, whereas
the negative mode does so from negatively sampled
text and graph. Considering our goal of pulling the
origin and positive embeddings closer, and push-
ing the origin and negative embeddings apart, the
coupled text and graph losses can be subdivided as

Lcouple
T = −sim(ET ,E

+
T ) + sim(ET ,E

−
T ), (3)

Lcouple
G = −sim(EG ,E

+
G ) + sim(EG ,E

−
G ). (4)

In this context, ET and EG represent the embed-
dings of the text and graph model in the origin view,
respectively. Similarly, E+

T and E+
G denote the em-

beddings in the positive view, while E−
T and E−

G
denote those in the negative view. In the following
subsections, we elucidate the process of coupled
text and graph augmentation and the method to
compute the embeddings.

3.2 Coupled Text and Graph Augmentation

At the heart of coupled contrastive learning is the
design of Coupled Text and Graph Augmentations
(CTGA), fostering simultaneous contrastive learn-
ing for text and graph models. Traditional augmen-
tation strategies typically focus on single modal
data augmentation, such as text or graph augmen-
tation, for instance, modifying text or randomly
dropping nodes or edges in graphs (Zhu et al.,
2021). However, this approach isolates the text
model from the graph model, thereby preventing
the exchange of knowledge in between.

To address this, the design of CTGA accounts
for the distinctive properties of text and graph mod-
els simultaneously. In the text modality, where the
text represents the attributes of a given node, the
neighbors have a closer relationship with the node
than non-neighbors. In contrast, graph models con-
solidate neighboring text information to enhance
the root node’s text data. By holistically consid-
ering both modalities, we find that a node’s final
representation is profoundly influenced by its text
attributes in both the text model and graph model.
Therefore, we propose positive and negative views.
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Positive views. The concept of positive augmen-
tation refers to either text-based or graph-based
augmentation. In the context of a text model, we
aim for the original node to have an embedding sim-
ilar to that of its neighbors. For the graph model,
we aspire to achieve similar embeddings even when
replacing the original node’s text with the neigh-
bors’ text. Given that first-order neighbors may
not inherently capture semantic similarity or class
membership, we employ cosine similarity to devise
a similarity-based sampling to select chunks from
first-order neighbors. We start by using sentence-
transformers to create representations of all nodes
and then apply softmax to normalize the probabili-
ties given pairwise similarity. Utilizing similarity
for sampling allows for more precise control over
the sample selection process, ensuring that the se-
lected samples are more relevant or possess certain
characteristics. Explicitly, for a specific node, we
randomly select k sentences from its 1-hop neigh-
bors and use these to replace the original text. Thus,
the positive view can be further defined as follows,

s+v = {w1, w2, ..., wk}; (5)

{wi ∈ su|u ∈ {N (0)
v ∪N (1)

v }},

P (u|v) = e−d(v,u)∑
u′ e−d(v,u′)

,

where wi refers to the word sub-sequence drawn
from neighbors, N (0)

v and N (1)
v denote the root

node and the 1-hop neighbors, d denotes the min-
max normalized cosine-similarity function.

Under these circumstances, positive samples
are composed of text from neighboring nodes,
which are likely to possess the same label and
related text attributes. As such, the text model
tends to inherently produce similar embeddings
for the positively augmented text attribute. For the
graph model, despite alterations to the root node’s
text attribute, the final embeddings produced by
the graph neural network remain similar as the
modifications are sourced from neighboring texts.

Negative views. Negative samples are built to dif-
ferentiate content from spatially distant nodes.

s−v = {w1, w2, ..., wk}; (6)

{wi ∈ su|u /∈ {N (1)
v ∪N (2)

v }}.

where wi refers to the word sub-sequence drawn
from non-neighbors that do not belong to the 1-hop
or 2-hop neighborhood of the root node, and N (1)

v

and N (2)
v denote the 1-hop and 2-hop neighboring

nodes, respectively.
In the text model, these negative samples con-

sist of text from non-neighboring nodes, which are
likely to have different labels and unrelated text
attributes. Thus, the text model is expected to gen-
erate dissimilar embeddings for the negative sam-
ples. Meanwhile, for the graph model, modifying
the root node’s text attribute with non-neighboring
nodes results in dissimilar embeddings, as the
graph neural network discerns the distinction be-
tween the root node and its non-neighbors.

3.3 Text Contrastive Learning
The Text Contrastive Learning module learning
consists of two integral components: 1) Text Em-
bedding Learning, and 2) Text Contrastive Learn-
ing. The first part utilizes the ’cls token’ of the
tokenized sequence to effectively embed the orig-
inal, positive, and negative text. By denoting
the embedding function as fcls(·), given three dif-
ferent views, their corresponding embedding of
node v is hv = fcls(sv), h+

v = fcls(s
+
v ) and

h−
v = fcls(s

−
v ). The second part introduces a

method of integration with the CTGA, aiming to
ensure the model generates similar embeddings
for graph-related augmentations while providing
distinct outputs for graph-unrelated augmentations.
Text Classification Loss. As stated in Eq. (1), the
complete text loss is made up of both the original
classification loss and a weighted coupled loss. In
terms of the original loss, we employ the cross-
entropy classification loss. Given ŷ

(t)
v = f

(t)
cls(hv),

The single loss for the text model is shown as,

Lorigin
T = − 1

N

N∑
i=1

K∑
c=1

yi,c · log ŷ(t)
i,c . (7)

Text Contrastive Loss. The contrastive loss com-
prises two components, i.e., positive and negative
view contrasts, following the description in Eq. (3).
The former aims to maximize agreements between
original texts and their positive views, while the
latter is intended to increase the dissimilarity be-
tween the node vector hv and its negative sample
h−
v . only the node representation hv and its cor-

responding augmentation h+
v serve as the positive

pair while any other combination within the batch
is negatively treated, sim(ET ,E

+
T ) is defined as:

Lpos
T =

1

|V|
∑

log
exp(ϕ(hv,h

+
v )/τ)∑|V|

k=1 exp(
ϕ(hv ,h

+
v )

τ )
, (8)
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where ϕ(a, b) function computes the cosine simi-
larity between the vector a and b. τ is the temper-
ature hyperparameter. Additionally, the negative
pair-wise loss sim(ET ,E

−
T ) is defined as follows:

Lneg
T =

1

|V|

|V|∑
v=1

ϕ(hv,h
−
v ). (9)

3.4 Graph Contrastive Learning

The Graph Contrastive Learning module comprises
two key components: 1) Graph Embedding
Learning and 2) Graph Contrastive Learning. The
former generates graph model embeddings for
the original, positive, and negative text attribute
graphs, while the latter integrates with the CTGA
to ensure the model generates similar embeddings
for graph-related augmentations and distinct
outputs for graph-unrelated augmentations.

Graph Embedding Learning. We compute the
graph embedding for the origin, positive, and
negative views separately. In the positive view, the
input embedding of the root node is the positive
embedding, as depicted in Figure 2 (c). Likewise,
in the negative view, the input embedding of
the root node is the negative embedding. Both
positive and negative embeddings pass through the
graph propagation layers first, with further details
available in the appendix A.2.

Graph Module Loss. Similarly, the overall graph
loss contains the original classification loss and
contrast loss. As stated in Eq. (10), we aim to min-
imize the cross-entropy loss between the ground
truth yi,c and the prediction ŷ

(g)
v = f

(g)
cls (g

(L)
v ). In

line with the text-level contrastive loss, as shown
in Eq. (4), we denote the similarity between origin
and positive embeddings as sim(EG ,E

+
G ), as well

as the similarity between origin and negative em-
beddings as sim(EG ,E

−
G ). Our approach involves

the development of batch-wise and pairwise con-
trastive loss, as depicted below:

Lori
G = − 1

N

N∑
i=1

K∑
c=1

yi,c · log ŷ(g)
i,c .

Lpos
G =

1

|V|
∑

log
exp(ϕ(gv, g

+
v )/τ)∑|V|

k=1 exp(
ϕ(gv ,g

+
v )

τ )
,

Lneg
G =

1

|V|
∑
v∈V

ϕ(gv, g
−
v ).

(10)

4 Experiments

We conduct comprehensive experiments on three
datasets across different proportions of labels. Our
study addresses three research questions: (1) Can
CTGL achieve superior prediction performance?
(2) Can each module effectively align text-level
and graph-level features and how do they perform
compared with other baselines? (3) Is there a quan-
titative way to define text and graph bias and does
our framework effectively alleviate such biases?
(4) How can we intuitively understand embedding
spaces possessed by different modalities?

4.1 Experimental Settings
Datasets. We assess the performance of CTGL us-
ing the following three datasets: ACM, Wikipedia,
and Amazon. They are about academic papers,
article categorization, and commercial products.
For each dataset, we divide the labels into training,
validation, and testing sets using three different
proportions. The division of the training, valida-
tion, and testing datasets follows the settings used
in previous studies (Zhang et al., 2022; Zhu et al.,
2021). The detailed statistics of all three datasets
are shown in table 2.

Datasets #nodes #edges #classes

ACM 48,579 193,034 9
Wiki 36,501 1,190,369 10

Amazon 50,000 632,802 7

Table 2: Statistics of datasets in our experiment.

Evaluation Metrics. Main experiments are evalu-
ated based on the prediction accuracy of the testing
set. The corresponding standard deviation quanti-
fies the variations observed across different folds
and runs of the experiment. In prior discussions,
we introduced the definitions of text and graph bias.
Here we intend to mathematically define these con-
cepts with conditional probability to respond Q3,
which are shown as follows:

BiasT = P(fG(G,S) = y| f(G,S) ̸= y), (11)

BiasG = P(fL(G,S) = y| f(G,S) ̸= y), (12)

where f represents the target model to be evaluated
and P is the probability. In Eq (11), f is chosen in
fLM and fCTGL to measure their text bias, while
in Eq (12) f is chosen in fGNN and fCTGL to
measure their graph bias. The text bias refers to the
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ACM Wiki Amazon
Emb GNN 1% 5% 10% 1% 5% 10% 1% 5% 10%

B
oW

GCN .514± .023 .571± .016 .596± .010 .468± .038 .547± .011 .563± .005 .745± .015 .810± .010 .833± .006
SAGE .446± .018 .516± .009 .544± .006 .441± .024 .517± .008 .538± .009 .670± .009 .750± .006 .780± .004
GATv2 .504± .019 .572± .012 .599± .012 .441± .044 .535± .017 .557± .013 .690± .015 .775± .008 .807± .006

M
PA

D GCN .603± .017 .693± .010 .716± .006 .545± .020 .601± .009 .619± .006 .813± .018 .874± .009 .891± .005
SAGE .585± .025 .663± .020 .693± .019 .554± .024 .619± .015 .638± .005 .806± .010 .868± .007 .886± .007
GATv2 .623± .013 .704± .009 .731± .007 .555± .023 .633± .009 .667± .011 .806± .017 .871± .007 .894± .003

L
M

-fi
x GCN .574± .047 .594± .079 .607± .073 .533± .025 .593± .010 .603± .009 .799± .031 .852± .010 .863± .042

SAGE .562± .031 .615± .019 .626± .023 .539± .053 .578± .108 .634± .014 .736± .119 .807± .122 .833± .085
GATv2 .569± .075 .618± .101 .657± .075 .550± .027 .623± .016 .655± .010 .790± .038 .857± .008 .875± .006

L
M

-t
un

e GCN .642± .011 .716± .004 .734± .003 .569± .016 .636± .009 .652± .004 .844± .018 .894± .006 .910± .003
GATv2 .614± .035 .714± .011 .734± .014 .562± .028 .656± .016 .689± .010 .831± .009 .886± .011 .905± .005
SAGE .556± .112 .671± .049 .691± .071 .543± .050 .645± .009 .663± .012 .810± .024 .879± .006 .898± .004

G
L

E
M GCN .559± .057 .692± .040 .725± .010 .489± .045 .635± .018 .659± .017 .772± .032 .872± .013 .894± .007

SAGE .514± .091 .710± .009 .728± .012 .490± .051 .648± .014 .672± .011 .764± .024 .872± .009 .893± .008
GATv2 .518± .087 .698± .011 .727± .011 .488± .042 .651± .012 .677± .007 .761± .027 .872± .009 .888± .007

GraphFormers .611± .014 .669± .009 .677± .001 .373± .023 .500± .008 .567± .004 .730± .011 .807± .004 .832± .001

CTGL .668± .016 .727± .008 .748± .003 .583± .020 .668± .011 .698± .005 .861± .010 .907± .002 .921± .002

Table 1: Comparison of baselines and our proposed framework across three public datasets.

conditional probability of misclassification caused
by the target model f while the GNN (fG) gives
the right prediction and the same for the graph
bias while the language model (fL) gives the right
prediction. Eq (11) and Eq (12) can eliminate the
influence of the target model’s overall accuracy,
because conditional probability only counts the
accuracy of LM or GNN among the target model’s
misclassification cases.

Implementation Details. A computer with 48
cores of 2.4 GHz Intel Xeon Silver 4214R CPU,
376 GB of RAM, and six NVidia GeForce RTX
3090 GPUs were used for all of the trials. We use
the Adam optimizer with a learning rate equal to
0.001 and apply early stopping by observing the
accuracy of the validation set. The hyperparameters
λ and γ are tuned using a grid search and the best
hyperparameters are chosen for each dataset. For
fairness, all baselines follow the same design as
descriptions in their articles.

Baselines. As our study focuses on integrating
the corpus proceeding with the graph network,
we adopt various popular approaches in text-
embedding modules and GNN encoders. We
made a cross combination and all baselines
include GCN (Kipf and Welling, 2017), Graph-
SAGE (Hamilton et al., 2017), GATv2 (Brody
et al., 2022), BoW (Zhang et al., 2010),
MPAD (Nikolentzos et al., 2020), Language Model
(LM-fix) (Yasunaga et al., 2022), Fine-tuning a lan-
guage model (LM-tune), GLEM framework (Zhao
et al., 2023) and GraphFormers (Yang et al., 2021).

4.2 Main Result (Q1)
The comparison of prediction performance across
different proportions of labels on three datasets
between CTGL and other baseline methods is pre-
sented in Table 1. To evaluate the effectiveness of
CTGL, we conduct extensive experiments utiliz-
ing multiple text-embedding approaches and graph
neural networks. The best result for each baseline
group has been highlighted by underlying. It is
shown that CTGL surpasses all baselines in terms
of overall accuracy in classifying nodes across all
datasets. This achievement is credited to the utiliza-
tion of textual and graph learning. The shared aug-
mentations derived from the corpus and topological
structure collectively enhance the performance by
improving the unity of the framework.

4.3 Effectiveness of TCL and GCL (Q2)
Effectiveness of TCL. To assess the effectiveness
of the neighbor-based contrastive learning mecha-
nism in improving text representation quality, we
compare it with other methods such as bag-of-
words, MPAD, fixed LM, and fine-tuned LM. To
ensure fairness, we employ GATv2 as the graph
encoder for all methods to generate classification
results. As illustrated in Figure 3, TCL consistently
surpasses other word embeddings in performance
and efficiency. It is credited to our module aligning
the corpus with the characteristics of the graph
structure. Also, our data augmentation leverages
textual information from unlabeled nodes, and the
spatial relationship between documents mitigates
the effects of text bias.
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Effectiveness of GCL. We compare our GCL
module with four classical contrastive-learning-
based GNNs, namely COSTA (Zhang et al., 2022),
GRAND (Chamberlain et al., 2021), GCA (Zhu
et al., 2021), and DGI (Veličković et al., 2019). Tra-
ditional graph contrastive learning methods mostly
rely on data augmentation techniques such as fea-
ture shuffling and edge dropping, focusing on ei-
ther feature or structure perspective. In contrast,
our module specifically targets text attributes-based
augmentation, aiming to reduce graph bias result-
ing from node propagation. The results demon-
strate that GCL achieves the best performance,
highlighting the effectiveness of our tailored se-
mantic augmentation in enhancing message propa-
gation on graphs.

Figure 3: The effectiveness of TCL and GCL.

4.4 Text and Graph Bias Analysis (Q3)
As stated in Section 4.1, text bias refers to situa-
tions where the model fails to make accurate pre-
dictions while the GNN framework succeeds, and
vice versa for graph bias. As shown in Table 3,
we assess the performance of the GNN and LM in
comparison with our own framework. The statistics
reveal a significant inconsistency between the GNN
and LM. In particular, the ACM dataset exempli-
fies a high degree of graph bias, whereby nearly
half of the incorrect predictions made by the graph
encoder can be rectified by language models. Text
bias, although less severe, still exceeds 30%. In
contrast, the CTGL gives a remarkable reduction in
both text and graph bias. This conclusion is further
supported by the results obtained from the other
two datasets. In summary, the CTGL not only en-
hances overall accuracy but also effectively aligns
corpus and graph information.

4.5 Visualization of Embedding Space (Q4)
We have previously mentioned that Graph models
and Language models tend to map features into

Bias Type Model ACM Wiki Amazon

Graph Bias

GNN 0.512 0.488 0.625
CTGL 0.254 0.300 0.273

Improv. +50.4% +38.5% +56.3%

Text Bias

LM 0.311 0.320 0.570
CTGL 0.250 0.213 0.292

Improv. +19.6% +33.4% +48.8%

Table 3: Results of text and graph bias on three datasets.
A reduction in bias results in improved outcomes.

different vector spaces. Here, we attempt to visu-
ally observe the differences between them using
the T-SNE method. Figure 4 displays the distribu-
tions of embeddings generated by four methods:
Bag-of-words, Graph neural networks, language
models, and our CTGL framework. Due to its spar-
sity and high dimensionality, BOW embeddings do
not naturally provide good discrimination among
different classes. The GNN encoder maps them to
a lower and denser vector space, which helps alle-
viate some misclassification issues, although some
incorrect instances still occur. Language models
effectively distinguish texts of multiple categories;
however, the representation of points tends to be
closely clustered together, indicating that the em-
bedding space’s potential is not fully utilized. In
contrast, our model demonstrates a noticeable dis-
tinction between chunks, with clear distances be-
tween them. The categories of the clusters are
concentrated, showing our framework has learned
a superior representation space.

Figure 4: T-SNE visualization has demonstrated pat-
terns of the representation space in which different em-
bedding methods operate on the Amazon dataset.
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4.6 Ablation Study
Module effect. In our study, we evaluate the ef-
fectiveness of the proposed debiasing semantic and
network framework by comparing the performance
of our CTGL model with its two variants: the Text-
level and Graph-level Contrastive Learning mod-
ules. The weight of each component is controlled
by λ and γ respectively, making this ablation study
equivalent to testing the performance under dif-
ferent combinations of hyperparameters. Figure
5 presents comprehensive grid-search results, in-
dicating that setting both hyperparameters to zero
leads to relatively inferior accuracy. This suggests
that removing any component results in a notice-
able decrease in performance. The best result was
attained when λ was configured at 1.5 and γ was
set to 1. Furthermore, the presence of a flat plane at
the top, highlighted in red, reflects the robustness
of our model and indicates that the framework is
not excessively sensitive to hyperparameters.

TCL weight

0.0
0.5

1.0
1.5

2.0

GCL weight 0.0
0.5

1.0
1.5

2.0

Acc

0.570
0.575
0.580
0.585
0.590

Figure 5: Hyperparameters grid-search results on Wiki.

Augmentation Method. We studied the perfor-
mance of CTGL in four different scenarios, includ-
ing whether to use negative samples and whether
to use random sampling or distance normalization
sampling when building positive samples. We con-
ducted cross-experiments on these four scenarios,
and the results are shown in the following table:

Effectiveness of Augmentation Method

Sampling Positive Negative Accuracy

Random ✓ × .649
Random ✓ ✓ .657

Normalized ✓ × .663
Normalized ✓ ✓ .668

Table 4: Comparisons across different augmentation
methods. The accuracy is in % proportions.

5 Related Work

Text classification has long been a fundamental
problem in the field of natural language process-
ing. The common practice of utilizing a bag-of-
words approach allows for straightforward con-
struction based on word occurrence counts or Term
Frequency-Inverse Document Frequency (TF-IDF)
measures. Recent research findings suggest that ap-
propriate pre-processing techniques can profoundly
influence the final outcome (Zhou et al., 2023).
Text-based features are often represented as one-
hot vectors for node embeddings in many network
analysis tasks (HaCohen-Kerner et al., 2020). Be-
sides, alternative word embedding techniques have
been introduced such as GloVe (Pennington et al.,
2014). GPT (Brown et al., 2020; Dong et al., 2024a;
Chen et al., 2024) and LLMs (Zhou et al., 2024;
Dong et al., 2024b) are prominent models that lever-
age the Transformer architecture. There are some
attempts to improve the performance of GNNs by
utilizing large language models (Tan et al., 2023).
GLEM adopts an Expectation Maximization algo-
rithm to update two modules alternatively (Zhao
et al., 2023). To encode text attributes along edges,
the Edgeformers framework utilizes transformer
layers (Jin et al., 2023). Recent studies on con-
trastive learning in TAG scenarios include Grenade,
which leverages two self-supervised learning al-
gorithms (Li et al., 2023). ConGraT (Brannon
et al., 2023) aligns the representations of a lan-
guage model and a GNN model in a shared space.

6 Conclusion

Coupled Text-attributed Graph Learning (CTGL)
primarily addresses the problem of text-attributed
node classification. Adopting the large language
model leads to a better node representation than
currently widely-used approaches such as Bag-of-
words. To mitigate the impact of text and graph
bias, the coupled contrastive learning mechanism
builds a connection between these two domains, fa-
cilitating a more balanced interaction between text
and graph learning. CTGL effectively enhances
performance by jointly utilizing the graph struc-
ture and corpus information. Experiments on three
datasets demonstrate its superiority and practicabil-
ity in real-life tasks. Moreover, the ablation study
highlights the necessity of each module. Visual-
ization of different embedding spaces gives an in-
tuitive understanding and quantitative case studies
showcase the effectiveness of bias reduction.
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Limitations

One limitation of this paper is that incorporat-
ing augmentation components into the framework
inevitably requires additional computational re-
sources. Consequently, the execution time of our
framework is slightly longer compared to a direct
fine-tuning pipeline. However, according to our
experimental findings, the additional time required
is entirely reasonable; the sampling process takes
under 5 minutes for 100,000 nodes and can be per-
formed offline using a CPU. Moreover, the overall
training time for our framework can be finished
within thirty minutes for the current dataset. Given
the enhanced prediction accuracy, the associated
cost is acceptable.
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We all comply with the ACL Ethics Policy1 in this
study. We used one open-resource dataset that has
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A Appendix

A.1 Text Model
Traditional text models Traditional text classifi-
cation models utilize vectors to represent text and
classifiers to predict labels such as one-hot vectors,
bag-of-words, and word embeddings. Then clas-
sifiers like MLP and RNNs (Mikolov et al., 2010)
are used to tackle the embedding sequence to make
the prediction. Overall, the predicted label for node
v can be presented as:

ĥ(t)
v = fcls({xv,1, · · · ,xv,|sv |}), (13)

where ŷ
(t)
v is the prediction result of the the text

model, fcls denotes the classification layer and xv,n

denotes the representation of the n-th textual entity
in sv. |sv| denotes the length of the sentence sv.

Pre-trained language models In contrast to con-
ventional text models, BERT (Devlin et al., 2019b)
utilizes a pre-trained, large-scale language model
from extensive corpora. BERT comprises an em-
bedding function femb and a predictive MLP layer
f (t)cls. Subsequently, when presented with a text
classification task, BERT dynamically generates
the text’s embedding and classifies it using the pre-
diction layer. The complete prediction formula
for the pre-trained language model is defined as
follows,

hv = femb(sv), ŷ(t)
v = fcls(hv), (14)

where hv denotes the pre-trained embedding of the
text content sv. Despite achieving state-of-the-art
performance in text classification tasks, pre-trained
language models are unable to utilize or understand
the graph structure present in text-attributed graphs.

A.2 Graph Neural Network
Graph Neural Networks (Chen et al., 2018; Hamil-
ton et al., 2017) use recursive graph convolution
layers to enhance the root node by aggregating in-
formation from its neighbors. However, the compu-
tational complexity of these layers increases expo-
nentially (Zhang et al., 2023), so fixed embedding
vectors (e.g. word embeddings) are often employed
for modeling text content. The aggregation pro-
cess of a single graph convolution layer can be
expressed as:

g(l+1)
v = σ(FCθ(l)(w

(l)
v,v ·g(l)

v +
∑

u∈N (1)
v

w(l)
u,v ·g(l)

u )),

(15)

where FC(·) is the fully connect layer with param-
eter θ(l), w(l)

u,v is the aggregation weight computed
from neighbor u to root node v. Specifically, g(0)

v

is given by the input embedding vector.
Then the final prediction of the graph model can

be stated as:

ŷ(g)
v = f

(g)
cls (g

(L)
v ), (16)

where f
(g)
cls denotes the classification function for

the graph model, and L denotes the number of the
graph convolution layer.

To provide the augmented graph convolution
for positive views and negative views, we modify
Eq.(15) as follows,

g(l+1),+
v (17)

= σ(FCθ(l),−(w
(l),+(g(l),+

v , g(l),+
v ) · g(l),+

v

+
∑

u∈N (1)
v

w(l),+(g(l),+
v , g(l)

u ) · g(l)
u )),

g(l+1),−
v (18)

= σ(FCθ(l),−(w
(l),−(g(l),−

v , g(l),−
v ) · g(l),−

v

+
∑

u∈N (1)
v

w(l),−(g(l),−
v , g(l)

u ) · g(l)
u )),

where σ(·) is the nonlinear function, g(0),+
v = h+

v

and g
(0),−
v = h−

v . Specifically, using the positive
view as the example, the aggregation weight func-
tion w(l),+(·, ·) can be computed as follows,

r(l),+(g(l),+
v , g(l)

u ) (19)

= α(l),+⊤
σ(W (l),+ · [g(l),+

v ∥ g(l)
u ],

w(l),+(g(l),+
v , g(l)

u ) (20)

=
exp(r(l),+(g

(l),+
v , g

(l)
u ))∑

k∈N (1)
v

exp
(
r(l),+(g

(l),+
v , g

(l)
k )

) ,
where ∥ denotes the vector concatenation, α(l),+

and W (l),+ denote the weight vector and matrix for
the weight computation for positive augmentations.

A.3 Dataset
Wikipedia The raw data consists of UTF-8 en-
coded text from Wikipedia articles2. We extract the
main content of each article as document dv, which
includes hyperlinked words. A directed graph is
constructed using the hyperlink relationships be-
tween articles. The categories mentioned in the
list of reference tables are assigned as labels to the
nodes.

2http://www.mattmahoney.net/dc/textdata



10876

ACM This dataset uses 48,579 papers from the
Association for Computing Machinery (ACM) as
instances (Tang et al., 2008). The paper abstracts
serve as the document dv for the nodes, and a di-
rected graph is constructed using the citation links.
The instances are collected from nine distinct do-
mains, such as Artificial Intelligence, Data Mining,
and Machine Learning, which are employed as la-
bels.

Amazon The dataset comprises product reviews
and metadata from Amazon (He and McAuley,
2016). We construct the graph based on the brows-
ing history, with each node v representing the tex-
tual description of the products denoted as sv.

A.4 Baselines

Here are the introductions of each method:

• GCN (Kipf and Welling, 2017) aggregates
information from neighboring nodes by sum-
ming over neighbors’ representations.

• GraphSAGE (Hamilton et al., 2017) samples
and aggregates features from the neighbor-
hood for inductive graph learning.

• GATv2 (Brody et al., 2022) introduces a dy-
namic graph attention mechanism, leveraging
attention layers to learn the weights of neigh-
boring features.

• Bag of Words (BoW) (Zhang et al., 2010) de-
scribes the occurrence of words within a doc-
ument and its size can be flexibly decided by
the frequencies of different words.

• MPAD (Nikolentzos et al., 2020) repre-
sents corpus as networks based on word co-
occurrence and applies a message-passing
framework to draw the information from the
graph.

• Language Model (LM-fix) (Yasunaga et al.,
2022) is first trained on a large set of corpus
and it can be adopted in different downstream
tasks with fixed embeddings as text represen-
tations.

• Fine-tuning a language model (LM-tune) al-
lows for training on target texts to make the
model more adept at performing the specific
task.

• GLEM framework (Zhao et al., 2023) itera-
tively updates the language model and graph
neural network (GNN).


