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Abstract
We introduce MESAQA, a novel dataset fo-
cusing on multi-span contextual understand-
ing question answering (QA). Unlike tradi-
tional single-span QA systems, questions in
our dataset consider information from multiple
spans within the context document. MESAQA
supports evidence-grounded QA, demanding
the model’s capability of answer generation and
multi-evidence identification. Our automated
dataset creation method leverages the MASH-
QA dataset and large language models (LLMs)
to ensure that each Q/A pair requires consid-
ering all selected spans. Experimental results
show that current models struggle with multi-
span contextual QA, underscoring the need for
new approaches. Our dataset sets a benchmark
for this emerging QA paradigm, promoting re-
search in complex information retrieval and
synthesis.

1 Introduction

Question answering (QA) systems have made sig-
nificant strides with the advent of large language
models (LLMs) such as ChatGPT (OpenAI, 2023),
excelling at extracting answers from single spans
within context documents. However, real-world
scenarios often require synthesizing information
from multiple spans. On the other hand, evidence
retrieval is crucial for providing transparent and ver-
ifiable answers (Zhou et al., 2023; Yao et al., 2023).
Comparing with traditional QA models focusing
on extracting relevant spans, the approach identify-
ing and linking multiple pieces of evidence across
a document enhances the accuracy, interpretability,
and trustworthiness of the usage of LLM.

Existing datasets like SQuAD (Rajpurkar et al.,
2018) have been instrumental in advancing QA
capabilities, but they predominantly feature single-
span questions, not fully representing the complex-
ity of real-world information-seeking tasks.

To address this limitation, our MESAQA de-
signed to challenge QA models with tasks that

necessitate multi-span contextual understanding
and evidence-grounded reasoning. Each instance
is a triple (Q,A,C), where the question (Q) can
only be accurately answered by considering mul-
tiple segments of the context (C). To guarantee
the multi-span requirement, we propose a logi-
cally strict LLMs-based approach to create such
a dataset. This requirement challenges models to
perform sophisticated information retrieval and in-
tegration, providing a robust benchmark for devel-
oping and evaluating current QA capabilities in
multi-span contextual and evidence-grounded QA.

MESAQA1, Multi-Evidence-Span Abstractive
QA, introduces tasks demanding deeper compre-
hension and complex reasoning, such as in fields
like healthcare and law, where accurate and explain-
able answers are critical. Our work contributes
significantly in three ways. First, we present a chal-
lenging dataset based on MASH-QA (Zhu et al.,
2020), creating through a rigorous method to gener-
ate answers, which transcends traditional extractive
QA tasks by requiring multi-span information syn-
thesis within a document. Second, our dataset can
be utilized in various QA tasks, including natural
QA, extractive QA, and evidence-grounded QA, de-
pending on the user’s needs. This versatility makes
our dataset a valuable resource for a wide range of
research applications. Finally, experimental results
reveal that evidence retrieval prior to answer gener-
ation enhances LLM performance while providing
traceable response rationales, thereby augmenting
interpretability and trustworthiness of QA models.

2 Related Work

Question Answering Datasets In the early de-
velopment of QA datasets, research such as Triv-
iaQA (Joshi et al., 2017) and SearchQA (Dunn
et al., 2017), utilized a single span of text as the
answer, limiting the applicability for tasks that re-

1https://github.com/reiiwang/MESAQA.git

https://github.com/reiiwang/MESAQA.git
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Figure 1: The process of data construction. Example with context length n=33, and evidence length m=3.

quire multiple pieces of information. To address
this challenge, datasets like MS-MRC (Bajaj et al.,
2018), MultiSpanQA (Li et al., 2022), and MA-
MRC (Yue et al., 2023) were introduced, in which
the answer contains multiple spans from the context
to provide more comprehensive information. How-
ever, these datasets still rely on short spans, and
the semantics of the answers are usually not con-
tinuous, making them less suitable for real-world
scenarios. Recent researches on automated QA
dataset generation address the resource-intensive
nature of manual production. Notable frameworks
include LIQUID (Lee et al., 2023), which itera-
tively filters incorrect answers based on confidence
scores, operating at the entity level instead of the
passage level; FABRICATOR (Golde et al., 2023),
an open-source library for dataset generation; and
SciQAG (Wan et al., 2024), which employs LLMs
to generate and evaluate scientific QA pairs.

Evidence Retrieval Huo et al. (2023) integrated
retrieval and verification processes, using LLMs to
assess answer correctness based on retrieved con-
tent. Henning et al. (2023) introduced the WHERE
dataset with annotated evidence, utilizing LLM for
evidence retrieval and question answerability as-
sessment, but this dataset is not publicly available.
Our MESAQA dataset pushes the boundaries by re-
quiring the synthesis of information from multiple
spans, emphasizing evidence retrieval for accurate
and verifiable answers.

3 Dataset Construction

To create the MESAQA dataset, we propose a
novel approach by leveraging MASH-QA, a well-
known extraction-based QA dataset, as the foun-
dational material. In MASH-QA, each instance
comprises a triple (Q,C,E), where Q is a ques-
tion, C = {s1, s2, s3 . . . , sn} represents the con-
text document containing n sentences, and E is a

subset of C that forms the extractive-based answer
to Q. For our abstractive-based QA dataset, we
construct an abstraction answer A to Q for each
instance in MASH-QA and consider E as the evi-
dence extracted from C that supports the abstrac-
tive answer A.

As shown in Figure 1, for the question “What are
the risks of immunotherapy when treating cancer?”,
the original answer in MASH-QA comprises the
three sentences s18, s22, and s25 from C. In our
dataset, we aim to generate an abstractive answer
like “There are risks to immunotherapy, including
pain, swelling, and redness at the injection site.
These side effects usually go away after the first
treatment. Immunotherapy is not a quick fix and
may take time to work.” Formally, the created
answer A must satisfy two criteria:

• Comprehensive Integration of Evidence: A
should integrate essential information from all
three evidence sentences. Namely, the infor-
mation from s18, s22, and s25 is indispensable
to construct A to answer Q.

• Alignment with Evidence Content: Con-
versely, A must strictly adhere to the content
provided in the evidence (E). Every aspect of
A must find direct support within E, ensuring
coherence and relevance.

To achieve this goal, we propose a novel dataset
construction approach with the following steps:

1. Preprocessing: MASH-QA features answers
ranging from consecutive to non-consecutive
sentences and varies widely in context length
and number of answer spans. To ensure multi-
ple evidence spans, we exclude QA pairs with
single evidence sentences (|E| ≥ 2).

2. Candidate Question and Answer Genera-
tion: For each instance (Q,C,E) in MASH-
QA, we utilize a large language model (LLM)
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to generate an abstractive answer A to Q
based on E. This can be denoted as:

A← LLMQA(Q,E)

3. Validation for Multi-Span Necessity: To en-
sure that the question Q requires the consid-
eration of all spans in E for the correct an-
swer A, we create a modified set of spans
E′

i = E \ {si} by excluding one span (sen-
tence) si from E. We then ask the LLM to
answer Q given E′

i instead of E:

A′
i ← LLMQA(Q,E′

i)

We observed that some MASH-QA instances
exhibit high similarity within a set of ex-
tractive answers, which is not desirable for
our multi-span dataset. Therefore, We calcu-
lated the similarity between A′

i and A using
ROUGE score (Lin, 2004). If A′

i is found
to be similar to A, take it as correct. The
LLMs can still correctly answer to Q given
E′

i, i.e., A′
i ≈ A, we discard this instance, as

it indicates that Q can be answered without
considering all the information in E. In other
words, the information in si is redundant and
can be inferred from E′

i, the rest of evidence
spans. This step ensures that the remaining in-
stances in the dataset truly require multi-span
information for answering Q. Formally, we
keep the instance (Q,A,C) if and only if:

∀si ∈ S, LLMQA(Q,E \ {si}) ̸≈ A

4. Entailment Verification: We examine if A is
fully supported by E by identifying whether
A entails each sentence in E. If A includes
all information from every evidence span E
without adding extraneous information, A
maintains consistency with the original expert-
curated answers. As textual entailment (TE)
is a classical task of natural language infer-
ence (Williams et al., 2018), we instruct an
LLMTE to determine the entailment.

We instruct PaLM2 (Anil et al., 2023) as
LLMQA and Gemini-1.0-pro (Gemini Team, 2023)
as LLMTE . For semantic evaluation, we establish
criteria to ensure that generated answers entail the
original answer sentence spans by using Gemini-
1.0-pro. It will judge either "yes" or "no" to indicate
whether a PaLM2-generated answer is followed cri-
teria. This rigorous validation ensures the quality

Consec. Nonconsec.
Number of QA Pairs 4,479 1,704

Evidence # sentences 3.21±1.15 3.73±1.70
∆ sentences 2.21±1.15 16.03±10.42
∆ tokens 20.81±21.44 277.46±209.30

Answer # tokens 63.25±28.28 68.84±30.99

Table 1: Statistics of our MESAQA dataset.

of our dataset, setting a new standard for multi-span
and evidence-grounded QA tasks.

Our dataset comprises 6.1k instances, each com-
posed of quadruples (Q,C,A,E). The mean con-
text length is 809 tokens (41 sentences) per con-
text. Table 1 presents separate statistical analyses
for these types of evidences. ∆ in sentences and
∆ in tokens denote the mean sentence and token
count, respectively, between the first and last span
of E. For nonconsecutive evidence, LLMs must
extract evidence from a broad range of the context,
increasing the complexity of the retrieval process.
The distribution of evidence number is presented
in Appendix A.

To assess the feasibility of our dataset creation,
we conducted a human validation study involv-
ing three medical experts who analyzed 100 ran-
domly selected instances, each comprising a triplet
(Q,E,A) and four accompanying questions. In-
structions with clearly defined options were pro-
vided to ensure consistency. The results showed
high quality across multiple dimensions: 80% of
instances cover all essential information in E and
17.5% covering most of E, with only negligible
or overlapping spans excluded but judged as cor-
rect. On the other hand, 90% of instances demon-
strated direct support of every aspect of A by E,
with the remaining including minor additional in-
formation without altering the main concepts of
E. Furthermore, 95% of instances are fluent, and
92% of instances are judged entirely correct. These
findings affirm the effectiveness of our dataset cre-
ation methodology in producing comprehensive,
accurate, and well-supported instances. A detailed
description of the annotation procedure and results
is available in Appendix B.

4 Experiments and Analysis

4.1 Task Design
Task 1: Evidence Retrieval. Mirroring the ap-
proach used in MASH-QA, where an attention-
based model was employed, we instruct the LLMs
to extract evidence (E), which is a collection of
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Model Avg. EM Avg. Recall Avg. F1

Mixtral 8x7B 14.38% 63.63% 57.89%
Llama3 70B 17.75% 64.12% 61.16%
GPT-4o-mini 12.92% 58.53% 57.14%
Gemini-1.0-pro 19.18% 60.87% 59.42%
Gemini-1.5-flash 16.42% 66.23% 60.33%

Table 2: Experimental Results of Task 1 (Evidence
Retrieval)

sentences from the context (C) that addresses the
question (Q). The process utilizes a template com-
prising C and Q. C is segmented into sentences,
each assigned an index. LLMs are prompted to
return a list of these indices.

Task 2: Evidence-Grounded Question An-
swering. Similar to conventional natural QAs,
LLMs generate an answer text. The LLMs are
provided with a question-context pair (Q,C) and
instructed to extract pertinent evidence from C and
generate a free-form abstractive answer (A). We
explore if the sequence of evidence extraction and
answer generation influences performance by ex-
perimenting with two prompting orders: Answer-
first and Evidence-first.

4.2 Experimental Setup

To assess the performance of Mixtral-8x7B (Jiang
et al., 2024), Gemini-1.0-pro, Gemini-1.5-Flash
(Gemini Team, 2023), Llama3-70B (Meta, 2024),
and GPT-4o-mini (OpenAI, 2023), we proceed with
a zero-shot evaluation.

We sample 5 seeds of 1,000 data points each
and average the results. For evidence retrieval, we
report the average Exact Match (Avg. EM), average
Recall score (Avg. Recall), and average F1-score
(Avg. F1). For Task 2, we prompt Gemini-1.0-
pro, Gemini-1.5-flash, and GPT-4o-mini to output
a score evaluating the correctness and entailment
of the answers, which judge the performance of
abstractive answers (Zheng et al., 2023), we report
the average score of LLM’s output (LLM score).
Model version and detailed prompts used in the
experiments are presented in Appendix C.

4.3 Results

Table 2 presents the performance of various LLMs
on Task 1. The random baseline exhibits a high
Avg. Recall score of 48% and a poor Avg. F1
score of 13% due to the selection of numerous false
spans. Gemini-1.0-pro achieved the highest Avg.
EM score at 19.18%, Gemini-1.5-flash recorded
the highest Avg. Recall at 66.23%, and Llama3

70B attained the highest Avg. F1 score at 61.16%.
For Task 2, the LLMs were instructed to provide

both an answer and their supporting evidence spans
in two distinct orders: Answer-first, where the
model generates a free-form answer followed by
supporting evidence, and Evidence-first, where
the model selects relevant sentences as evidence
before generating an answer based on this evidence
set. The results are reported in Table 3.

In the Answer-first generation order, Llama3-
70B achieved the highest scores in Avg. EM
and Avg. F1, while the Avg. Recall was 0.2%
lower than Mixtral-8x7B. For the abstractive an-
swer, Mixtral-8x7B reached the highest score over
all model’s evaluation. Conversely, in the Evidence-
first generation order, Mixtral-8x7B achieved the
maximum Avg. Recall score of 64.79% and
Llama3-70B reach maximum Avg. F1 score of
61.50%. Evidence-first consistently outperforms
Answer-first across all models and metrics, with
particularly significant improvements in the per-
formance of abstractive answers. This highlights
the importance of grounding responses in retrieved
evidence.

Adhering to chain-of-thought reasoning (Wei
et al., 2023), providing evidence first is a more
rational approach for LLMs. This order ensures
grounds answers in factual evidence, mitigating po-
tential verification bias that could occur if answers
are generated first and then supported with selec-
tively chosen evidence. For users who seek natural
answers with evidence, this order enhances cred-
ibility and trust. It allows users to independently
assess the information quality, increasing the relia-
bility and transparency of the LLM’s output.

4.4 Discussion
We calculated the Spearman correlation coefficient
to understand the relationship between evidence
retrieval and answer quality. Spearman’s rank cor-
relation coefficient is a non-parametric measure
of correlation appropriate for continuous variables,
ranging from -1 for a perfect negative correlation
to 1 for a perfect positive correlation, with 0 indi-
cating no correlation. For evidence retrieval, we
used Recall as a representative metric and calcu-
lated its correlation coefficient with the score of the
abstractive answer. The average Spearman’s Rho
for Gemini-1.0-pro ranged from 0.52 to 0.55, while
for Llama3-70B, it ranged from 0.31 to 0.39, and
for Mixtral-8x7B, Gemini-1.5-flash, GPT-4o-mini,
it ranged from 0.4 to 0.5. All p-values were below
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Model Generation Avg. Avg. Avg. GPT-4o- Gemini-1.0- Gemini-1.5-
Order EM Recall F1 mini score pro score flash score

Mixtral 8x7B Answer first 13.08% 60.12% 55.92% 64.23% 51.78% 53.72%
Evidence first 13.18% 64.79% 57.35% 82.63% 62.91% 58.81%

Llama3 70B Answer first 16.68% 59.87% 59.87% 43.24% 42.56% 43.48%
Evidence first 18.16% 64.32% 61.50% 53.35% 47.07% 46.88%

GPT-4o-mini Answer first 13.00% 56.74% 56.42% 60.89% 50.09% 51.87%
Evidence first 13.76% 60.69% 57.53% 76.15% 58.83% 56.71%

Gemini-1.0-pro Answer first 14.94% 54.22% 56.16% 47.12% 48.81% 47.66%
Evidence first 18.23% 63.01% 59.82% 79.42% 61.49% 58.64%

Gemini-1.5-flash Answer first 16.43% 58.50% 58.68% 51.99% 44.67% 45.77%
Evidence first 18.22% 63.01% 59.82% 81.63% 61.49% 59.12%

Table 3: Experimental results of Task 2 (evidence-grounded QA). In the “Generation Order” column, “Answer first”
means the LLMs first generate an answer and then find supporting evidence. “Evidence first” means the LLMs first
find relevant evidence sentences and then generate answers based on those evidences.

0.001, indicating a statistically significant corre-
lation between evidence retrieval and abstractive
answer quality.

To investigate potential biases or impacts aris-
ing between evaluatees and evaluators, we ana-
lyzed the rankings of evaluatees under various
LLM evaluation metrics using the "Evidence First"
setting. Rankings derived from the Gemini-1.0-
pro score and GPT-4o-mini score exhibited a sim-
ilar order: Mixtral-8x7B (highest), followed by
Gemini-1.5-flash, Gemini-1.0-pro, GPT-4o-mini,
and Llama3-70B (lowest). A slight deviation in
ranking was observed with the Gemini-1.5-flash
score, where the top three evaluatees were ranked
as follows: Gemini-1.5-flash (highest), Mixtral-
8x7B, and Gemini-1.0-pro. This minor inconsis-
tency may be attributed to the comparable perfor-
mance of these evaluatees under different LLM
evaluators. Despite this variation, the overall rank-
ing trends remained consistent, suggesting that uti-
lizing LLMs as evaluators offers meaningful refer-
ence value. We also infer that the results were not
significantly influenced by model self-preference.

5 Conclusions

This work presents a novel dataset, MESAQA,
which not only challenges existing QA models but
also opens new avenues for research in multi-span
reasoning and evidence-grounded QA. By foster-
ing the development of models that can integrate
and reason over multiple pieces of evidence, we
move closer to creating AI systems that are both
accurate and trustworthy in their responses. Future
research can leverage advanced LLMs to further
enhance evidence retrieval and answer generation

capabilities, thereby improving the reliability and
effectiveness of QA systems.

6 Limitations

This paper presents a novel dataset constructed us-
ing a rigorous methodology. While the current
work provides a solid foundation, we acknowledge
several directions for future improvement. The
proposed dataset, MESAQA, leverages MASH-
QA as a raw material to expand the application
of the question-answering dataset. However, the
main field of MASH-QA is healthcare and medical-
related. Despite this domain-specific focus, the
method presented in MESAQA has the potential
for broader applications. The main concept is ensur-
ing that questions can only be correctly answered
when considering multiple evidence spans, which
can be generalizable beyond the healthcare domain.
While we trust the expert curation process men-
tioned in MASH-QA, we acknowledge that some
questions may raise concerns about the breadth or
inclusiveness of the provided evidence inherited
from MASH-QA. Furthermore, manually verifying
randomly selected samples suggests that halluci-
nations and the inner knowledge of a large lan-
guage model’s internal knowledge base influence
only a relatively small percentage of outputs. How-
ever, it is not completely guaranteed that the LLM-
generated answer will be flawless.
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A Distribution of Evidence Number

Table 4 shows the distribution of evidence spans
across instances, with most instances having 2 or 3
spans (1,944 and 1,945, respectively). The number
of instances decreases as spans increase, with 471
instances having 6 or more spans.

# span 2 3 4 5 6+

# instance 1,944 1,945 1,164 659 471

Table 4: Distribution of evidence span.

B Dataset Quality Annotation

B.1 Recruitment of Human Annotation

Given that most MASH-QA instances are
healthcare-related, we recruited three annotators
who are medical experts. One of these experts has
completed post-graduate year training.

B.2 Instructions Provided

Before the annotation, each expert is provided with
the guidelines below.

• Your task is to review samples from this
dataset. We consider the Evidence as the
ground truth for the Question, and the part
to be evaluated is the Answer. For each sam-
ple, we will investigate four aspects.

• Each question has four options. Please click
on "Option definition" below the options to
view the definition of each option, and choose
the most appropriate option after reading.

• The sample description does not include the
context. If you want to know more about the
context, you can click on "source context"
below.

During the annotation, they would need to an-
swer the four aspect questions below.

1. Question 1: Does the Answer integrate essen-
tial information from all evidence sentences?
(namely, does the answer cover all important
concepts in evidence?

2. Question 2: Does the Answer contain only
information mentioned in the Evidence? (In
other words, is there any information that goes
beyond the Evidence?)

3. Question 3: Is the expression of the Answer
fluent and coherent?

4. Question 4: Is the Answer correct?

Table 5 presents the average evaluation results of
three annotators for 100 samples. Each column
in the table represents the proportion of the 100
samples labeled as the corresponding option. We
label every option definition below every instance,
making sure they are clarified with the criteria of
each option. The option definitions of each ques-
tion are shown in Tables 6, 7, 8, and 9. Figure 2
shows the interface for Sample 27.

Option Q1 Q2 Q3 Q4

1 79.80 89.90 95.40 92.80
2 19.30 9.20 3.60 5.00
3 0.90 0.90 1.00 2.20
4 0.00 0.00 0.00 0.00

Table 5: Summary of average annotation results across
all questions (Q1–Q4) presented as percentages (%).

C Experimental Configurations

The models used in this paper includ-
ing Mixtral-8x7B (mixtral-8x7b-32768),
Gemini-1.0-pro (gemini-1.0-pro), Gemini-
1.5-Flash (gemini-1.5-flash), Llama3-
70B (llama3-70b-8192), and GPT-4o-mini
(gpt-4o-mini-2024-07-18). Prompt templates
for experiments and LLM evaluations are shown in
Figures 3, 4, and 5.

https://doi.org/10.18653/v1/2023.semeval-1.234
https://doi.org/10.18653/v1/2023.semeval-1.234
https://doi.org/10.18653/v1/2023.semeval-1.234
https://doi.org/10.18653/v1/2023.semeval-1.234
https://doi.org/10.18653/v1/2020.findings-emnlp.342
https://doi.org/10.18653/v1/2020.findings-emnlp.342
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Figure 2: The above example shows Sample 27 of the annotation interface. Within this interface, annotators can
interact with several key elements. They can click on option definitions to view the standards for each option. A
"Source Context" button is available to access the contextual document. Additionally, annotators can click on
"Guidelines" to review the annotation guidelines. These interactive elements are designed to assist annotators in
their tasks.
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Q1 Does the Answer integrate essential information from all evidence
sentences? (namely, does the answer cover all important concepts in
evidence?)

1 Fully covered The answer’s content encompasses every significant piece of informa-
tion mentioned in the evidence. This information may be rewritten,
condensed, or summarized in the answer, but the meaning remains un-
changed.

2 Mostly covered The answer’s content encompasses the important information from most
segments of the evidence, but some may be omitted. The omitted seg-
ments contain secondary or irrelevant information that can be disre-
garded.

3 Partially covered Only a portion of the important information is covered in the answer.
Most segments of the evidence are not mentioned in the answer, indicat-
ing that significant segments have been overlooked.

4 Not covered at all The answer does not cover any of the important information mentioned
in any sentence of the evidence.

Table 6: Question 1 and option definition.

Q2 Does the Answer contain only information mentioned in the Evi-
dence? (In other words, is there any information that goes beyond
the Evidence?)

1 Fully compliant The answer strictly adheres to the information provided in the evidence,
without any additional information beyond the evidence. In other words,
all information mentioned in the answer can be found in the evidence.
[Note: This includes answers that use different wording but are semanti-
cally equivalent, or phrases added to improve the fluency of the response,
which are not considered as going beyond the evidence]

2 Mostly compliant The answer largely follows the information in the evidence, but may in-
clude some supplementary information or explanations. These additions
do not alter the main meaning of the evidence, but may provide some
background or details, and these details are accurate.

3 Partially compliant The answer is only partially based on the information from the evidence.
A significant portion of the content consists of additional information
or explanations added by the LLM. These additions may be extensions
of the evidence or unrelated information, and the accuracy of these
extensions cannot be guaranteed.

4 Non-compliant The answer is not based on the information from the evidence at all. The
content consists entirely of additional information, erroneous information,
or content unrelated to the evidence.

Table 7: Question 2 and option definition.
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Q3 Is the expression of the answer (Answer) fluent and coherent?
1 Highly fluent The answer is expressed fluently and coherently.
2 Mostly fluent The answer is generally fluent, but may contain a few grammatical errors

or unnatural expressions, which do not affect overall comprehension.
3 Not very fluent The answer is not very fluent, with several grammatical errors or unnatu-

ral expressions that affect comprehension.
4 Not fluent at all The answer is not fluent, containing grammatical errors and unnatural

expressions, making it difficult to understand.

Table 8: Question 3 and option definition.

Q4 Is the Answer correct?
1 Completely correct Independent of other questions, assuming the Evidence is the Ground

truth, the information in the answer is correct and consistent with the
evidence or known facts. Or, based on your knowledge background, the
information in the answer is correct.

2 Mostly correct Independent of other questions, assuming the Evidence is the Ground
truth, most of the information in the answer is correct, but there may be
some minor errors or inaccuracies.

3 Partially correct Independent of other questions, assuming the Evidence is the Ground
truth, only a portion of the information in the answer is correct, with
most of the content being incorrect.

4 Completely incorrect Independent of other questions, assuming the Evidence is the Ground
truth, all information in the answer is incorrect, with no part being correct.

Table 9: Question 4 and option definition.

You are a helpful assistant who are good at answering healthcare question.

I want you to search for the answer and its support evidences to the question below.
First I will give you, context, which is the sentences split from the context with the format of "index:
sentence", followed by the question, then you need to reply me with two things:
1. the answer to the question
2. the index of evidence spans that can support your answer to the question.
(You have to find more than one evidence sentence.)

context: {context}
question: {question}

You should reply me with the following format:
Answer: <your answer>
Evidence sentences: [index1, index2, index3...]

Figure 3: Prompt template for tasking LLMs with generation prioritizes presenting the answer first (Answer first).
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You are a helpful assistant who are good at answering healthcare question.

I will give you, context, which is the sentences split from the context with the format of "index: sentence",
followed by the question, then you need to reply me with two things:
First, find the index of sentences that is the answer-related to the question, namely the evidence sentences.
(You have to find more than one evidence sentence.)
Second, base on the evidence sentences you chose, give me the abstractive answer to the question.

context: {context}
question: {question}

You should reply me with the following format:
Evidence sentences: [index1,index2,index3...]
Answer: <your answer>

Figure 4: Prompt template for tasking LLMs with generation prioritizes presenting the evidence first (Evidence
first).

Compare the following prediction to the real answer:

LLM’s answer: {LLM’s answer}
Real answer: {real answer}

### Evaluation Instructions:
- Carefully read both the LLM’s answer and the real answer.
- Assess the LLM’s answer based on two primary criteria:

1. Entailment: Does the LLM’s answer logically imply or entail the information in the real answer?
2. Correctness: Is the information in the LLM’s answer factually correct when compared to the real

answer?

### Scoring guidelines:
- 0: The LLM’s answer is empty, or contains information that directly contradicts the real answer.
- 1 - 25: The LLM’s answer has major factual errors or fails to entail any significant part of the real answer.
- 25 - 50: The LLM’s answer is partially correct and entails some aspects of the real answer, but has
significant omissions or inaccuracies.
- 50- 75: The LLM’s answer is mostly correct and entails a good portion of the real answer, with only
minor errors or omissions.
- 75 - 99: The LLM’s answer is highly accurate and entails nearly all of the real answer, with very minor
imperfections.
- 100: The LLM’s answer is entirely correct and fully entails the real answer.

### Important considerations:
- Prioritize logical entailment: The LLM’s answer should imply the information in the real answer, even if
it’s not stated in exactly the same way.
- A shorter LLM’s answer can still score high if it correctly entails the key information from the real
answer.
- However, if the LLM’s answer is so brief that it fails to entail significant portions of the real answer,
reduce the score accordingly.
- Any factually incorrect information should significantly lower the score, even if other parts are correct.
Reply with the following format:
Score: <score>

Figure 5: Template prompts for leveraging LLMs as judges.
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