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Abstract

Large Language Models (LLMs) have been
found to memorize and recite some of the tex-
tual sequences from their training set verba-
tim, raising broad concerns about privacy and
copyright issues. This Textual Sequence Mem-
orization (TSM) phenomenon leads to a high
demand to regulate LLM output to prevent gen-
erating certain memorized text that a user wants
to be forgotten. However, our empirical study
reveals that existing methods for TSM erasure
fail to unlearn large numbers of memorized
samples without substantially jeopardizing the
model utility. To achieve a better trade-off be-
tween the effectiveness of TSM erasure and
model utility in LLMs, our paper proposes
a new method, named Entropy Maximization
with Selective Optimization (EMSO), where
the model parameters are updated sparsely
based on novel optimization and selection crite-
ria, in a manner that does not require additional
models or data other than that in the forget
set. More specifically, we propose an entropy-
based loss that is shown to lead to more stable
optimization and better preserves model utility
than existing methods. In addition, we propose
a contrastive gradient metric that takes both the
gradient magnitude and direction into consid-
eration, so as to localize model parameters to
update in a sparse model updating scehme. Ex-
tensive experiments across three model scales
demonstrate that our method excels in handling
large-scale forgetting requests while preserv-
ing model ability in language generation and
understanding.

1 Introduction

Large Language Models (LLMs) are a series of
transformers-based models pre-trained on an enor-
mous corpus with trillions of tokens, achieving
human-level performance on language abilities.
(Vaswani et al., 2017; Brown et al., 2020; Touvron
et al., 2023; Achiam et al., 2023). While the utility

*Zhaohan Zhang is the corresponding author.

Prefix:

Original LLM:

About Me\n\n One of global Catholicism\'s 
most prominent chroniclers,

R     P     has held court…

the the the… R     P    , is a 
Catholic priest…

Pope Francis, has 
been a member of…

Privacy
Utility 

✅
❌

Privacy
Utility ✅

❌ Privacy
Utility ✅

✅

GA DI EMSO (ours)

Utility

Privacy

EMSO

Increasing 
Erasure 
Strength

DI
GA

Original 
LLM

Performance
Board

Privacy Eval
MA

Utility Eval
MAUVE

EMSO

DI

GA

0.592 0.610

0.716 0.554
0 0.013

Figure 1: Illustration of erasure-utility trade-off with
the example of three methods: Gradient Ascent (GA)
(Jang et al., 2023), Deliberate Imagaination (DI) (Dong
et al., 2024) and our EMSO. The top figure shows the
exemplary erasure-utility trade-off with different cases.
The bottom figure demonstrates the quantitative erasure-
utility trade-off with the correlation between the TSM
metric (Memorization Accuracy, MA) and the genera-
tion quality metric (MAUVE). We redact the accurate
privacy information used in the examples.

of LLMs greatly benefits from scaling laws (Ka-
plan et al., 2020), recent studies reveal that LLMs
have Textual Sequence Memorization (TSM), i.e.,
memorizing and emitting training samples verba-
tim, including Personally Identifiable Information
(PII) and copyrighted content (Carlini et al., 2021;
Huang et al., 2022; Jagielski et al., 2022). This phe-
nomenon raises serious concerns about violating
the regulation of the right to be forgotten (RTBF)
(Mantelero, 2013; Graves et al., 2021). Hence, eras-
ing TSM from LLMs is in great demand to protect
PII and intellectual property.

There are two major types of memorization era-
sure for LLMs in existing literature. 1) Knowl-
edge erasure focuses on the removal or modifica-
tion of abstract knowledge, such as factual associ-
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ations (Wang et al., 2024b; Meng et al., 2023) or
hazardous knowledge (Li et al., 2024; Liu et al.,
2024) within LLMs. These works use classification
tasks (e.g., question-answering) to assess the model
acquisition of unwanted knowledge. For exam-
ple, Weapons of Mass Destruction Proxy (WMDP)
benchmark (Li et al., 2024) constructs a dataset
of multiple-choice questions to serve as a proxy
measurement of hazardous knowledge and evaluate
the efficacy of knowledge erasure with classifica-
tion accuracy drop. 2) Textual sequence memoriza-
tion erasure prevents the model from generating
sequences with high verbatim similarity with train-
ing data (Carlini et al., 2021, 2022; Barbulescu and
Triantafillou, 2024). Compared with knowledge
memorization in classification tasks, TSM has a
closer relationship with current privacy and copy-
right challenges in LLMs given the fact that the
most popular LLMs are generative models. Thus,
recent works within the scope of TSM erasure are
commonly evaluated on open-end generation tasks
(i.e., continuation based on given prefix) (Jang
et al., 2023; Kassem et al., 2023; Yao et al., 2023).

This work focuses on erasing the TSM of user-
designated data from LLMs. Memorized data is
deeply tied to general language modeling (Huang
et al., 2024), making it hard to remove without
reducing model utility. As shown in Fig.1, current
methods often either erase TSM or maintain model
utility, creating an erasure-utility trade-off dilemma.
Existing erasure methods rely on references such
as memorized models (Ilharco et al., 2022; Li et al.,
2023; Eldan and Russinovich, 2023) and retain
data (Liu et al., 2022; Wang et al., 2023) to manage
model utility. Furthermore, Maini et al. (2024)
observed instances of model collapse when they
attempted to erase large amounts of memorized
data in a single operation.

Recognizing the limitations of previous work
mentioned above, we aim to improve the TSM
erasure while preserving model utility with three
desired properties: (i) erasing without involving
a memorized model to avoid privacy issues; (ii)
erasing with only access to forget set without a
retain set; (iii) erasing with a large-scale forget set
to accommodate large-scale erasure requests. To
tackle these challenges, we design a novel frame-
work for TSM erasure, entropy maximization with
selective optimization (EMSO). The proposed ob-
jective function is to increase the entropy of the
predictive distribution on a forget set to encourage
more diverse output instead of penalizing the gen-

eration of memorized tokens. Moreover, to keep
the original model utility, we apply a minimally
invasive surgery to the model by only updating the
most significant weights for entropy maximization.
To be specific, we design a novel reference-free
metric that takes both gradient magnitude and direc-
tion into consideration. This metric helps identify
weights that positively contribute to entropy max-
imization while negatively impacting token mem-
orization. Extensive experiments show that our
method achieves a better erasure-utility trade-off
when processing massive erasure requests com-
pared with recent baselines. Our contribution is
summarized as follows:

• We introduce a reference-free optimization
objective to enhance forgetting of large-scale
memorized data in LLMs. This objective
aims to increase predictive distribution en-
tropy, which proves to be a more stable opti-
mization target compared to commonly used
gradient ascent and label smoothing methods,
supported by both theoretical analysis and em-
pirical findings.

• We propose a selective optimization approach
that updates only the salient weights identified
by a contrastive gradient metric to improve the
erasure-utility trade-off. This metric favors
weights that are important for entropy maxi-
mization but not for memorization, based on
both gradient magnitude and direction.

• Our empirical study demonstrates that our
EMSO method for TSM erasing achieves
the best trade-off between information leak-
age and model utility on a large-scale for-
get dataset across various metrics and model
sizes.

2 Related Works

Knowledge Unlearning for LLMs. Machine un-
learning aims to remove model memorization of
sensitive data. In contrast to traditional unlearn-
ing approaches in classification tasks (Bourtoule
et al., 2021; Chundawat et al., 2023; Jia et al.,
2023), the concept of machine unlearning in gen-
erative LLMs shifts focus to the characteristics
of model output. Specifically, it focuses on mit-
igating harmful or biased information in gener-
ated content. Abstract harmful knowledge is one
of the targets for LLM unlearning, which bears
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Figure 2: EMSO: We select weights to be updated when gradients with respect to Negative LogLikelihood∇θNLL

and Entropy Maximization ∇θEM point to opposite directions and the magnitude of the latter is large. We then
update the weights with respect to Entropy Maximization.

similarities with safety alignment but primarily
uses negative samples (Li et al., 2024; Liu et al.,
2024; Yao et al., 2023). Question-answering-based
benchmarks such as TOFU (Maini et al., 2024)
and WMDP (Li et al., 2024) are established for
evaluating model acquisition of the knowledge.
Given the objective and testbase, rejection-based
methods such as Direct Preference Optimization
(DPO) (Rafailov et al., 2024) are suitable for en-
couraging the model to answer malicious questions.
The evaluation metrics for quantifying hazardous
knowledge in LLMs include accuracy on malicious
multiple-choice questions (Li et al., 2024) and GPT-
as-a-Judge score (Liu et al., 2024).

TSM Erasure in LLMs TSM refers to LLMs’
ability to memorize and emit training samples
verbatim, which is an undesired attribute to be
erased/unlearned (Carlini et al., 2021, 2022). Dif-
ferent from undesired knowledge, TSM is defined
over certain training data points. For evaluation,
the updated model is asked to generate continuation
based on the prefix of memorized data. Training
Data Extraction Challenge 1 serves as a persua-
sive benchmark for probing TSM in the GPT-Neo
model family. Concurrent work MUSE (Shi et al.,
2024b) provides news and books corpus for evalu-
ating verbatim memorization. The extent of mem-
orization is calculated by the similarity between
the output (before or after decoding) of the orig-
inal model and updated model (Jang et al., 2023;
Barbulescu and Triantafillou, 2024; Wang et al.,
2024a). Gradient ascent (Jang et al., 2023) is a
straightforward approach for erasing TSM by max-
imizing the probability of wrong prediction for
samples in the forget set. Other objectives such

1https://github.com/google-research/lm-extraction-
benchmark

as Deliberate Imagination (Dong et al., 2024) and
Negative Preference Optimization (Zhang et al.,
2024) are proposed to avoid model collapse during
model updation. Recent works have also tried to
localize the specific model units where the TSM
is stored. For example, Wu et al. localizes privacy
neurons with gradient integration and deactivates
the identified neurons to protect private informa-
tion. Jia et al. (2023); Fan et al. (2024) indicate
weight saliency is informative for locating model
units that are beneficial to unlearning. Our work,
as a localization-informed method for TSM era-
sure, differs from the above-mentioned works in
(i) proposing a new stabler objective for TSM era-
sure; (ii) taking gradient direction into consider-
ation without retain data for localizing important
weights.

3 Methodology

EMSO reference-freely removes TSM by selecting
weights to be updated by contrastive gradient met-
ric and optimizing towards entropy maximization
objective. The workflow of EMSO is shown in
Figure 2.

3.1 Problem Definition

Let xi = (x1, ..., xp, ..., xp+q) be a textual se-
quence where x1:p is the prefix and xp+1:q is the
original continuation. Given a forget set Df ∈ D,
where D is the pre-training dataset for an LLM
θo, the objective of TSM erasure is to obtain an up-
dated model θu which performs exactly the same as
a model only trained on D\Df , i.e., dataset which
is obtained by deleting Df from D. This goal im-
plies that the updated model θu should keep its
utility on D\Df as same as the original model θo
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while showing "unmemorization" effect2 on Df .
Ideally, the updated model θu can be obtained
by pre-training an LLM from scratch with D\Df .
However, due to the prohibitive computational cost
it requires (Yao et al., 2023), such a solution is com-
monly recognized as unrealistic (Liu et al., 2024;
Wang et al., 2023; Jang et al., 2023). In this work,
we aim to directly update θo with access only to
forget set Df to approximate the performance of
θu on both Df and D\Df .
3.2 Entropy Maximization
Entropy is the measurement of the uncertainty of a
probability distribution P . In the context of LLM
generation, a larger entropy on the next token prob-
ability Pθ(xi|x<i) indicates that the model is un-
certain about its decision on the current decoding
token, leading to a higher probability to select other
reasonable tokens and output more diverse content.
Importantly, this diversity helps prevent the model
from memorizing specific sequences. Thus, we
propose to maximize the entropy of Pθ(xi|x<i) on
Df by minimizing the following loss function

LEM =
1

q

q∑
i=1

∑
y∈|V|

P i
θ,ylogP i

θ,y, (1)

p̂ij = P (x(p+i) = j|x<(p+i−1); θ), (2)
where p, q are the lengths of the prefix and contin-
uation, respectively. p̂ij denotes the probability of
predicting the i-th token to be j, V is the vocabu-
lary and |V| is its cardinality. Compared with com-
monly used objectives, we theoretically prove that
the entropy maximization objective helps stabilize
the model updation process during TSM erasure in
the following section.
Comparison to Label Smoothing Loss and Gra-
dient Ascent Loss. Label smoothing loss (Müller
et al., 2019; Dong et al., 2024) and gradient ascent
loss (Liu et al., 2022; Jang et al., 2023; Wang et al.,
2023) have emerged as two popular objectives for
TSM erasure. As a new learning objective, our EM
loss is more stable during the optimization. The
gradient analysis shows that the minimizer of the la-
bel smoothing loss is identical to the maximizer of
the EM loss. For each token i, the label smoothing
loss is as follows,

Lls = −γ
|V|∑
j=1

log p̂ij , (3)

where γ is the hyperparameter of the label smooth-
ing loss. As p̂ij is the output of the softmax func-

2The unmemorization effect refers to model’s disability to
recite the text sequence in Df verbatim.

tion with hij as the input, we take the derivative of
the loss function with respect to the input hij ,

∂Lls

∂hik
= −γ

|V|∑
j=1

1

p̂ij

∂p̂ij
∂hik

= −γ(1− |V|p̂ik) (4)

It is trivial to get that the minimizer of the func-
tion is ∀k, p̂ik = 1/|V|, which is equivalent to the
optimum of the maximum entropy loss.

We next derive the gradient of LEM with respect
to the logits,

∂LEM

∂hik
=

|V|∑
j=1

(log p̂ij + 1)
∂p̂ij
∂hik

. (5)

Comparing the gradient 4 with the gradient 5,
the only difference is the first term. As p̂ij ∈ [0, 1],
the scale and gradient of log p̂ij is much smaller
than that of −1/p̂ij , we provide an illustration in
Appendix A for reference. Note that the gradient
scale analysis result is also applicable to gradient
ascent loss (details are in Appendix A), indicating
that the gradient ascent loss also has the risk of
unstable optimization. In summary, our entropy
maximization loss has the same optimization ob-
jective but much more stable gradients compared
with the label smoothing loss and gradient ascent.
In Section 4.2, our experiment results corroborate
the gradient analysis.

3.3 Weight Selection with Contrastive
Gradient

To achieve a better trade-off between erasure effec-
tiveness and model utility, we propose to only fine-
tune weights that are salient to forgetting and keep
other weights the same as the original to preserve
model utility. Instead of pointwise localization-
informed methods such as SalUn (Fan et al., 2024),
we select weights from all attention heads and
the multi-layer perceptron (MLP) block in every
layer l because they are components of the "resid-
ual block" which acts as communication channels
in transformers-based architectures (Elhage et al.,
2021). We also compare our method with pointwise
updation in section 4.3. Inspired by the gradient-
based input salient maps (Adebayo et al., 2018;
Yona and Greenfeld, 2021), we use weight saliency
∇θEM ∈ RL×C×D with respect to LEM as a met-
ric for selecting influential weights3:

∇θEM =
∂LEM

∂θ
(6)

3L is the number of layers, C is the number of candidate
blocks, i.e., attention heads and MLP blocks, D denotes the
dimension of weight vector. Please note that for simplicity
of notation, the denotation assumes that D is the same across
layers and components.
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However, maximizing the entropy of output distri-
bution updates θo towards a more diverse output
but not precise "unmemorization". Thus, we design
a contrastive gradient strategy to select weights
that are both salient with respect to LEM and
contributive to unmemorization. Taking inspira-
tion from previous works (Zhang et al., 2023; El-
dan and Russinovich, 2023) which train a mem-
orization model on the forget set by minimizing
LNLL = −1

q

∑q
i=1 log(P i

θ,xp+i
), we consider the

gradient direction with respect to LNLL minimiza-
tion as "memorization direction". Thus, we pro-
pose an updated metric M ∈ RL×C taking both
direction and magnitude into consideration:

M = cos(∇θNLL,∇θEM )
|∇θEM |√

D
,

∇θNLL =
∂LNLL

∂θ
,

(7)

where cos( · ) is cosine similarity and | · | is l1 norm
function. We scale the l1 norm by 1√

D
to elimi-

nate the effect of various dimensions of different
model components. The cosine similarity measures
the disagreement of optimization direction between
LEM and LNLL. |∇θEM | measures the parameter
saliency to the optimization of LEM . Note that
the direction of ∇θNLL represents memorization
and the direction of ∇θEM is the updation direc-
tion. If the cosine similarity has a positive value,
it means this weight is optimized towards memo-
rization, which is not desirable for a good trade-
off. If the cosine similarity has a negative value,
this weight is updated towards forgetting. There-
fore, the selected weight should have large negative
value in matrix M to be optimized towards "forget
direction" and be salient to LEM , see Figure 2 for
the illustration. Thus, we obtain the block-wise
weight mask m according to M :

m = 1(topk(−M)), (8)
where 1(topk(g)) is an element-wise indicator
which labels 1 for the top-k element in g. In prac-
tice, we empirically observe that setting k to 2
yields sufficiently effective performance. We show
the influence of different k in Appendix B. The
updating process of the original model θo can be
expressed as:

θu ← θo − αm⊙∇θEM , (9)
where ⊙ denotes element-wise product and α is
learning rate. Our experiment selects one batch
randomly as input to calculate m.

4 Experiments

4.1 Experiment Setup
We describe the models, data, baselines and evalua-
tion metrics of our experiment in this section. Note
that we require the updating process to complete
at least one epoch to guarantee all forget requests
are processed. Detailed experiment setup is in Ap-
pendix C.

4.1.1 Test Model and Forget Set
Model. We use the GPT-Neo model family (with
125M, 1.3B, 2.7B parameters) for evaluation be-
cause (i) they are proven to memorize and emit
training sample verbatim and (ii) they are widely
used in previous works (Jang et al., 2023; Dong
et al., 2024; Barbulescu and Triantafillou, 2024) to
evaluate TSM.
Data. We use the dataset from Training Data Ex-
traction Challenge as the forget set, which is a sub-
set of Pile Corpora (Gao et al., 2020) and demon-
strated to be easy to extract from pretrained GPT-
Neo model family. This dataset consists of 15,000
text sequences with a length of 200 tokens, which
is ideal for evaluating TSM erasure with large for-
getting requests. Recent knowledge unlearning
benchmark TOFU (Maini et al., 2024) and WMDP
(Li et al., 2024) are not used in this work because
they are not designed for TSM erasure task.

4.1.2 Comparison Methods
We compare our method with seven state-of-the-art
methods to reveal its effectiveness and model util-
ity after model updating. We divided the methods
into three categories: (i) Updating with Memorized
Model (w/ MM), which trains a model overfitting
on forget set to act as a reference for forgetting, in-
cluding Task Arithmetic (TA) (Ilharco et al., 2022)
and Contrastive Decoding (CD) (Li et al., 2023)
(ii) Updating with Retain Data (w/ RD), which as-
sumes the existence of Dr ∈ D\Df to maintain
the model utility, including Gradient Difference
(GD) (Liu et al., 2022) and KL Divergence (KL)
(Wang et al., 2023). (iii) Updating without Ref-
erence (w/o REF), which is a challenging setting
that only requires the forget set and original model
to complete the updation process, including Gra-
dient Ascent (GA) (Jang et al., 2023), Negative
Preference Optimization (NPO) (Zhang et al.,
2024), and Deliberate Imagination (DI) (Dong
et al., 2024), a method based on label smoothing.
Our method lies in the w/o REF category. The
detailed description for comparison methods is in
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Memorization Language Generation Ability Ranking

Method EL3 ↓ MA ↓ SS ↓ Perplexity ↓ Rep2 ↓ Div3 ↑ Coherence ↑ MAUVE ↑ Erasure Generation Avg.

G
PT

-N
eo

-1
25

M

Original 0.212 0.789 0.587 27.69 0.123 0.923 0.566 0.702 N/A N/A N/A

w/ MM
TA 0.117 0.677 0.500 26.48 0.346 0.737 0.554 0.276 4 4 4
CD 0.105 0.621 0.419 48.26 0.17 0.861 0.570 0.445 2 3 =2

w/ RD
GD 0 0 0.021 5.30 0.956 0.037 0.092 0.023 N/A N/A N/A
KL 0 0.007 0.023 1.91 0.990 0.010 0.032 0.038 N/A N/A N/A

w/o REF

GA 0 0 0.012 2.36 0.990 0.010 0.051 0.011 N/A N/A N/A
NPO 0.060 0.269 0.037 239.56 0.059 0.915 0.018 0.077 N/A N/A N/A
DI 0.109 0.744 0.485 47.64 0.060 0.965 0.555 0.568 3 2 =2

EMSO (ours) 0.065 0.615 0.459 27.33 0.105 0.940 0.572 0.610 1 1 1

G
PT

-N
eo

-1
.3

B

Original 0.371 0.953 0.688 16.99 0.090 0.94 0.597 0.762 N/A N/A N/A

w/ MM
TA 0.151 0.682 0.467 18.98 0.377 0.733 0.552 0.328 3 3 3
CD 0.263 0.788 0.494 52.43 0.376 0.644 0.527 0.286 4 4 4

w/ RD
GD 0 0.002 0.006 535.82 0.038 0.922 0.011 0.020 N/A N/A N/A
KL 0 0 0 5.71 0.944 0.051 0.034 0.010 N/A N/A N/A

w/o REF

GA 0 0 0.061 3.49 0.984 0.023 0.066 0.015 N/A N/A N/A
NPO 0 0.128 0.048 9.69 0.915 0.027 0.039 0.065 N/A N/A N/A
DI 0.138 0.751 0.457 64.27 0.057 0.967 0.527 0.591 2 2 2

EMSO (ours) 0.135 0.623 0.431 21.92 0.090 0.900 0.598 0.694 1 1 1

G
PT

-N
eo

-2
.7

B

Original 0.377 0.966 0.744 13.83 0.083 0.953 0.599 0.790 N/A N/A N/A

w/ MM
TA 0.059 0.441 0.037 11.91 0.611 0.474 0.532 0.137 N/A N/A N/A
CD 0.287 0.858 0.493 36.12 0.348 0.686 0.476 0.371 3 3 3

w/ RD
GD 0 0 0.061 477.89 0.019 0.759 0.061 0.028 N/A N/A N/A
KL 0 0 0.006 2.51 0.938 0.065 0.030 0.035 N/A N/A N/A

w/o REF
GA 0 0 0.033 2.07 0.992 0.012 0.032 0.010 N/A N/A N/A

NPO 0 0.125 0.043 10.26 0.928 0.051 0.054 0.069 N/A N/A N/A
DI 0.225 0.792 0.525 22.78 0.059 0.952 0.583 0.692 2 2 2

EMSO (ours) 0.242 0.701 0.415 19.06 0.095 0.947 0.608 0.713 1 1 1

Table 1: Experiment result of different TSM erasure methods on models with various scales. The best and the
second-best results are highlighted in bold and underline respectively. We rank the erasure and generation ability
of an updated model by the times they achieve best/second best in corresponding metrics. We mark the collapse
models with red and do not count collapse models in the ranking.

Appendix D. Furthermore, we conduct experiments
in a preference-based setting in Appendix E. And
we show how different forget set size affect TSM
erasure in Appendix F.

4.1.3 Evaluation Metrics
Evaluation Metrics for Memorization. We use
three different metrics to comprehensively evaluate
the effectiveness of TSM erasure from exact mem-
orization (Tirumala et al., 2022) and approximate
memorization (Ippolito et al., 2022) perspectives:

(i) Extraction Likelihood (EL) (Jang et al., 2023)
compares n-grams overlap between generation
from an updated model and the original contin-
uation. The definition for EL is:

ELn(x) =
∑p+q−n

i=1 Overlapn(fθ(x1:i), xi:p+q)

p+ q − n
,

Overlapn(a, b) =
|n-gram(a) ∩ n-gram(b)|

|n-gram(a)| ,

where fθ(x1:i) is the generation from model θ
given prefix x1:i and n-gram(·) is a list of n-grams
for given sequence. We use EL3 instead of com-
monly used EL10 in our experiment because EL3

is a stricter metric that reveals larger performance

differences.
(ii) Memorization Accuracy (MA) (Tirumala

et al., 2022) for quantifying the model memoriza-
tion of given sequence x:

MA(x) =
∑p+q−1

i=p+1 1(argmax(Pθ,i) = xi)

q − 1
.

(iii) Semantic Similarity (SS) for evaluating the
semantic-level resemblance between model gen-
eration fθ(x1:p) and original continuation xp+1:q.
We extract semantic embedding from text sequence
with MiniLM (Wang et al., 2020) and compute the
cosine similarity between the embeddings. We in-
troduce the metrics and datasets for model utility
evaluation in Appendix G.

4.2 Experiment Results

We show experiment results in Table 1 together
with the erasure-utility trade-off curve in Figure 4
and language understanding ability evaluation in
Figure 3. We unveil the following five key insights:
1) Best performer. Our method shows the best
erasure-utility tradeoff among all competitors with
erasure and utility all ranking first among 125M,
1.3B, and 2.7B models. Moreover, Figure 4 shows
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Figure 3: Experiment results for language understanding ability evaluation with GPT-Neo-125M (left), 1.3B
(middle), and 2.7B (right) as target model. We report the average accuracy of the updated model on all six tasks in
the legend. Our EMSO achieves the best performance on all three models compared with baselines.

Figure 4: Illustration of erasure-utility trade-off for dif-
ferent methods on GPT-Neo-125M. We vary the era-
sure strength for different methods. The one with high
MAUVE and low Perplexity while low on MA and EL3

is considered better (i.e., closer to the lower-right corner
for MAUVE-MA and MAUVE-EL3 figures and to the
lower-left corner for Perplexity-MA and Perplexity-EL3

figures). We do not plot the trade-off line for GD, KL,
and GA here because they collapse before completing a
single training epoch.

that our EMSO achieves comparable erasure ef-
fectiveness while sacrificing MAUVE by less than
0.1 and keeping Perplexity at the same level. In
contrast, CD, TA, and DI all compromise either
MAUVE (TA, CD) or Perplexity (DI, CD) greatly
to get satisfactory erasure performance. 2) Model
collapse. All methods based on LNLL and NPO
i.e., GD, KL, GA, NPO, completely collapse. We
categorize such collapse into two classes: text de-
generation and gibberish generation. Text degen-
eration means the model starts to repeat the same
token, indicated by extremely low perplexity, high
repetition and low MAUVE. Gibberish generation
means that the model outputs nonsense content, re-
flected by high perplexity and low MAUVE. We
observe that GD for the 1.3B and 2.7B models and
NPO for 125M model fall into gibberish generation
while other LNLL-based methods show text degen-
eration. The unsatisfied performance of methods

based on LNLL and NPO demonstrates that opti-
mizingLNLL and NPO fails to keep the utility after
erasure when processing massive requests even if
the retain data is available. 3) Less affected lan-
guage understanding ability. As shown in Figure
3, compared with the significant deterioration in
language generation ability after updation, the lan-
guage understanding ability of the updated model
appears to be more stable. Our EMSO still stands
out among all competitors with average accuracy
on six tasks dropping by 0.33% and 1.05% on 1.3B
and 2.7B models and increasing by 0.78% on 125M
models. The fluctuation of the understanding abil-
ity of the updated model is within 3% except for
collapsed models. It demonstrates that in LLMs,
generation and understanding ability are orthogonal
to some extent and TSM erasure tends to destroy
model capability in generation rather than under-
standing. A similar phenomenon is also observed
by Barbulescu and Triantafillou (2024). 4) TSM
erasure is difficult to scale up. As model parame-
ters scale from 125M to 2.7B, model memorization
is stronger and harder to erase. When we scale
the original model from 125M to 2.7B, EL3, MA
and SS increase by 0.165, 0.177, and 0.157 respec-
tively. Moreover, with the same erasure strength,
all erasure methods are less effective when applied
to larger models. For example, the 2.7B model
achieves 0.792 in MA updated by DI, which is
even higher than that in the smaller original 125M
model. 5) Evaluation bias. There exists a bias
in different memorization metrics. In the case of
DI, it always performs better in EL3 but weak in
MA. For instance, when updating the 2.7B model,
DI excels our method by 0.017 in EL3 but falls far
behind in MA by 0.091. Thus, it is necessary to use
diverse metrics to evaluate erasure effectiveness
comprehensively to avoid possible bias.
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4.3 Ablation Study
To validate the necessity of every component in our
proposed method, we conduct ablation studies with
the following settings. 1) Select & NLL erases
TSM of forget set data by updating top-2 salient
blocks with LNLL. 2) Pointwise updates the most
salient weight with respect to LNLL pointwisely,
which follows the methods of SalUn (Fan et al.,
2024). 3) Random & EM randomly selects blocks
and finetunes them with LEM . 4) w/o Dir selects
top-k blocks with the largest |∇θEM | to update
with LEM . 5) Full & EM updates the whole model
with LEM .

The experiment results are reported in Table 2.
Unsurprisingly, fine-tuning a model with LNLL

again leads to model collapse even if we only up-
date the most salient weight. Randomly picking
weights brings little change to the model as all met-
rics stay close to the original model. Moreover,
our EMSO reduces MA by 0.017 and improves
MAUVE by 0.073 compared with w/o Dir, demon-
strating that taking the direction into consideration
helps accurately locate blocks that are influential
in updation and boost the erasure-utility trade-off.
Fine-tuning the whole model with LEM jeopar-
dizes the model utility substantially to achieve sim-
ilar erasure effectiveness of our method. These
results corroborate the function of each component
of our proposed EMSO for improving erasure ef-
fectiveness while preserving model utility.

Method EL3↓ MA↓ Perplexity↓ MAUVE↑

Select & NLL 0.012 0.008 5.218 0.006
Pointwise (Fan et al., 2024) 0 0.005 4.726 0.011

Random & EM 0.201 0.785 29.695 0.701
w/o Dir 0.080 0.590 28.112 0.529

Full & EM 0.074 0.598 37.423 0.387
Ours 0.070 0.573 26.831 0.602

Table 2: Ablation study results using different variants.
The best and the second-best result is highlighted in
bold and underlined text respectively. The collapsed
model is marked with red and is not included when
comparing results.

4.4 Discussion

Analysis on Entropy Maximization Loss. We
study different objectives’ effectiveness on mem-
orized and non-memorized data to better under-
stand the reason why entropy maximization loss
helps achieve a better trade-off between TSM era-
sure and model utility. We sample 20 memorized
data and 100 non-memorized data from the mem-

Figure 5: Illustration of the output change for memo-
rized data and non-memorized data. We calculate the
exact match between the original model and the updated
model output given prefix from the forget set.

nonmem split of the Pile dataset4. This dataset
quantifies model memorization with exact match
(EMatch) (Nasr et al., 2023) which counts the num-
ber of matches between greedy-decoded tokens and
ground truth tokens given the same prefix until the
first mismatch. Since the length of continuation
in this dataset is 50, EMatch = 50 is the maxi-
mum value and means the model repeats the text
sequence verbatim.

We update the model to forget the samples with
LEM and LNLL, respectively, and calculate the
EMatch between outputs from the original model
and the updated model given the prefix of requests.
As shown in Fig. 5, LEM and LNLL have similar
effects on forgetting memorized data. However,
EMSO preserves non-memorized samples better
while the NLL-updated model changes completely
on its generation on the non-memorized set. We
hypothesize that it is because NLL is a targeted
objective for penalizing the probability of gener-
ating tokens while EMSO works in an untargeted
fashion thus preserving the model’s original ability
on non-memorized data. Moreover, we discuss the
attention pattern of most selected blocks and the
improvement in membership information protec-
tion (Shi et al., 2024a) brought by TSM erasure in
Appendix H and Appendix I, respectively.

5 Conclusion

This paper presents EMSO, a framework for TSM
erasure and a better erasure-utility trade-off for
LLMs when processing massive requests for ver-
batim memorization erasure. We demonstrate that
entropy maximization outperforms NLL and la-

4https://github.com/googleinterns/localizing-paragraph-
memorization/tree/main/paragraphs/gpt-neo-125M/preds
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bel smoothing loss for TSM erasure. Our theo-
retical analysis reveals that entropy maximization
yields more stable gradients, enhances stability,
and prevents model collapse. Additionally, our ap-
proach minimally impacts the model by updating
only blocks identified through a contrastive gradi-
ent metric, optimizing the erasure-utility trade-off.
Our experiment results demonstrate the efficacy
of our method compared with six baselines. The
discussion on erasure effectiveness for memorized
and non-memorized data and the pattern of selected
blocks also sheds light on studying TSM from data
and model structure perspectives in LLMs.

Limitations

In this work, we step forward to achieving a better
erasure-utility trade-off when erasing model TSM
about massive data. However, several limitations
still exist in our proposed method EMSO. First,
although EMSO performs best among all baseline
methods in terms of TSM erasure, there is still a
portion of requests that are not erased completely.
Second, despite the effectiveness of our contrastive
gradient metric, it needs more memory to store both
∇LEM and ∇LNLL in the training stage, which
limits its application on larger models. Due to
the limitation of computing resources, we cannot
conduct experiments on larger models. We will
validate our methods on larger models when more
powerful computing resources are available. Third,
our methods greatly change the meaning of data
in the forget set. Future work will focus on au-
tomatically detecting and editing only the privacy
information in textual sequences while preserving
the overall semantics of requests.

Ethics Statement

The goal of our work is to protect user privacy from
leaking by LLMs. We redact the accurate privacy
information used in the examples. All the datasets
used in this work are public. We use the datasets
consistent with their intended use.

References
Josh Achiam, Steven Adler, Sandhini Agarwal, Lama

Ahmad, Ilge Akkaya, Florencia Leoni Aleman,
Diogo Almeida, Janko Altenschmidt, Sam Altman,
Shyamal Anadkat, et al. 2023. Gpt-4 technical report.
arXiv preprint arXiv:2303.08774.

Julius Adebayo, Justin Gilmer, Michael Muelly, Ian
Goodfellow, Moritz Hardt, and Been Kim. 2018. San-

ity checks for saliency maps. In Proceedings of the
32nd International Conference on Neural Informa-
tion Processing Systems, pages 9525–9536.

George-Octavian Barbulescu and Peter Triantafillou.
2024. To each (textual sequence) its own: Improving
memorized-data unlearning in large language models.
arXiv preprint arXiv:2405.03097.

Yonatan Bisk, Rowan Zellers, Jianfeng Gao, Yejin Choi,
et al. 2020. Piqa: Reasoning about physical com-
monsense in natural language. In Proceedings of the
AAAI conference on artificial intelligence, volume 34,
pages 7432–7439.

Lucas Bourtoule, Varun Chandrasekaran, Christopher A
Choquette-Choo, Hengrui Jia, Adelin Travers, Baiwu
Zhang, David Lie, and Nicolas Papernot. 2021. Ma-
chine unlearning. In 2021 IEEE Symposium on Secu-
rity and Privacy (SP), pages 141–159. IEEE.

Tom Brown, Benjamin Mann, Nick Ryder, Melanie
Subbiah, Jared D Kaplan, Prafulla Dhariwal, Arvind
Neelakantan, Pranav Shyam, Girish Sastry, Amanda
Askell, et al. 2020. Language models are few-shot
learners. Advances in neural information processing
systems, 33:1877–1901.

Nicholas Carlini, Daphne Ippolito, Matthew Jagielski,
Katherine Lee, Florian Tramer, and Chiyuan Zhang.
2022. Quantifying memorization across neural lan-
guage models. In The Eleventh International Confer-
ence on Learning Representations.

Nicholas Carlini, Florian Tramer, Eric Wallace,
Matthew Jagielski, Ariel Herbert-Voss, Katherine
Lee, Adam Roberts, Tom Brown, Dawn Song, Ulfar
Erlingsson, et al. 2021. Extracting training data from
large language models. In 30th USENIX Security
Symposium (USENIX Security 21), pages 2633–2650.

Vikram S Chundawat, Ayush K Tarun, Murari Man-
dal, and Mohan Kankanhalli. 2023. Can bad teach-
ing induce forgetting? unlearning in deep networks
using an incompetent teacher. In Proceedings of
the AAAI Conference on Artificial Intelligence, vol-
ume 37, pages 7210–7217.

Peter Clark, Isaac Cowhey, Oren Etzioni, Tushar Khot,
Ashish Sabharwal, Carissa Schoenick, and Oyvind
Tafjord. 2018. Think you have solved question an-
swering? try arc, the ai2 reasoning challenge. arXiv
preprint arXiv:1803.05457.

Yijiang River Dong, Hongzhou Lin, Mikhail Belkin,
Ramon Huerta, and Ivan Vulić. 2024. Un-
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A Difference in Minimizer for Label
Smoothing Loss and Entropy
Maximization Loss
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Figure 6: Illustration of minimizer scale and gradient
difference between label smoothing loss and entropy
maximization loss. The scale and gradient of entropy
maximization loss are much smaller than those of label
smoothing loss, indicating entropy maximization pro-
vides a more stable updating process.

Following the notion in Section 3.2. The gra-
dient ascent loss aims to maximize the following
objective:

LNLL = − log p̂ij , (10)
As p̂ij is the output of the softmax function with hij
as input, we take the derivative of the loss function
with respect to the input hij .

∂LNLL

∂hik
= − 1

p̂ij

∂p̂ij
∂hik

(11)

Comparing Equation 11 and Equation 4, they share
the same minimizer − 1

p̂ij
, indicating gradient ac-

send loss also have greater gradient which deterio-
rates stable optimization.

B Influence of the number of selected
blocks

In this section, we study how the number of se-
lected blocks would affect the erasure-utility trade-
off. The experiment results are shown in Table 3.
Fine-tuning 2 blocks with entropy maximization

Num. Blocks EL3 MA Perplexity MAUVE

1 0.131 0.720 26.86 0.694
2 0.065 0.615 27.33 0.701
3 0.078 0.641 25.01 0.657
4 0.094 0.666 26.38 0.612

Table 3: Experiment Results on different numbers of
selected blocks

objective leads to the best erasure-utility trade-off
with the lowest EL3 and MA, and highest MAUVE.

Only updating one block leads to more informa-
tion leakage as EL3 and MA increase by 0.066 and
0.105, respectively. Interestingly, selecting more
updating blocks not only does not help erase TSM
but also impairs model utility indicated by drop-
ping on MAUVE.

C Inplementation Details

We report all hyperparameter settings and hard-
ware information in our experiments. For updat-
ing GPT-Neo-125M, 1.3B, and 2.7B models, we
set the batch size to 64, 16, and 8, respectively,
and set gradient accumulation to 1, 4, 8 for sim-
ulating the same updation steps. To make a fair
comparison, we set the learning rate as 1e−5 for
all methods with AdamW as optimizer (Loshchilov
and Hutter, 2018). We set early stop criteria for
the updating process to be perplexity increased
by 3% on the WikiText-103 validation set. We
require the updating process to complete at least
one epoch to make sure all forgetting requests are
processed. We use 10,000 textual sequences ran-
domly sampled from CC News (Hamborg et al.,
2017) as retain data for GD and KL. For w/ MM
methods, we train the memorized model for 10
epochs on the forget set. For methods that re-
quire erasure strength γ setting, i.e., TA, CD, DI,
we set γ to 0.05, 0.3, 3, respectively for results
in Table 1. For the experiment result in Figure
4, we take γ from range [0.04, 0.05, 0.08, 0.1],
[0.5, 0.6, 0.7, 0.8], [3, 5, 8, 10] for TA, CD, DI, re-
spectively and report EMSO results after epochs
from 1 to 7 since training epoch is the key parame-
ter for controlling erasure strength in EMSO. We
conduct all our experiments on a single NVIDIA
Tesla A100 80GB GPU.

D Detailed Description of Comparison
Methods

We introduce the details about comparison methods
which can be categorized as w/ MM, w/ RD, and
w/o REF:
1. The w/ MM methods are as follows:

Task Arithmetic (TA) (Ilharco et al., 2022), which
erases TSM by subtracting the memorization model
weight from the original model and the process can
be formularized as:

θTA = θo − γ · θMemo. (12)
where θTA, θo, θMemo are the parameters of the
updated model, original model, and memorized
model, respectively. γ controls the erasure strength,
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Figure 7: KQ attention pattern analysis across all attention head in layer 2. We especially pay attention to head 11
because it is the most frequently selected head during weight selection process in EMSO.

larger γ indicates model memorization about the
forget set is removed more completely at the cost
of more severe utility destruction.

Contrastive Decoding (CD) (Li et al., 2023),
which steers original model output away from the
memorized model with the following operation:
Pθ(xi|x < i) = softmax(zt−γ·RELU(zmemo

t −zt)),
(13)

where Pθ(xi|x < i) is the next token prediction
probability distribution of the updated model. zt,
zmemo
t are the logits from the original model and the

memorized model. RELU is the activation function.
γ controls erasure strength.
2. The w/ RD methods are as follows:

Gradient Difference (GD) (Liu et al., 2022),
which increases NLL on forget set while decreasing
it on retain set.

KL Divergence (KL) (Wang et al., 2023),
which preserves model utility by restraining KL-
divergence between the output distribution of the
updated model and the original model on the retain
set.
3. The w/o REF methods are as follows:

Gradient Ascent (GA) (Jang et al., 2023), which
penalizes each label token from text sequences in
the forget set.

Negative Preference Optimization (NPO) (Zhang
et al., 2024), which is an alignment-based method
with only negative samples. The objective of NPO
is:

LNPO =
2

β
E[log(1 + (

fθ(y|x)
fo(y|x)

)β)], (14)

where fθ is the model for updating and fo is the
original model. β > 0 is the inverse temperature
and is set to 0.1 in the experiments.

Deliberate Imagination (DI) (Dong et al., 2024),

which uses a label-smoothing loss to increase the
sampling possibility on all tokens in the vocabulary
other than memorized ones and can be formulated
as:

L =

T∑
t=1

LCE(zt + γ1i,t, zs), (15)

where LCE is cross entropy, 1i,t is all-ones vector
except for ground truth ones, and zt, zs are logits
from teacher model and student model. γ is erasure
strength.

E Comparison to preference-based
methods

Preference-based methods encourage the model
to reject answering certain questions (e.g., ques-
tions that contain harmful knowledge). To make
a comprehensive comparison, we adapt rejection-
based methods in TSM erasure settings to evaluate
if rewarding the model for denying to continue on
prefixes is beneficial to TSM erasure. We construct
an “I don’t know” dataset in which we replace the
continuation of textual sequence in the forget set
with preference strings such as “I apologize, I don’t
know that”. Then, we use Direct Preference Op-
timization (DPO) (Rafailov et al., 2024) to align
model responses to the prefixes in the forget set
with “I don’t know” dataset to encourage the model
to reject to continue the prefix in the forget set. The
training objective of DPO is as follows:

LDPO = − 1

β
E[βlog

fθ(yp|x)
fo(yp|x)

− βlog
fθ(yo|x)
fo(yo|x)

],

(16)
where yp is the preferred continuation and yo is the
original continuation. β is the inverse temperature
and is set to 0.1 in the experiment.

The experiment results are shown in Tabel 4.
We find model updated by DPO also collapses.
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Method EL3↓ MA↓ Perplexity↓ MAUVE↑

GPT-Neo-125M
DPO 0 0 430.62 0.037

EMSO 0.065 0.615 27.33 0.610

GPT-Neo-1.3B
DPO 0 0.004 276.28 0.026

EMSO 0.135 0.623 21.92 0.694

GPT-Neo-2.7B
DPO 0 0 5.83 0.022

EMSO 0.242 0.701 19.06 0.713

Table 4: Experiment results with preference-based meth-
ods. The collapsed model is marked with red .

We infer that the “I don’t know” dataset is prefer-
able to question-answering setting instead of open-
generation setting as we used in our work because
the concatenated preference strings are not natu-
ral continuation for given prefix. Thus, aligning
the model output with these incoherent texts cause
greater harm to model utility.

F The Effect of Forget Set Size

We conduct experiment on erasing TSM with dif-
ferent forget set size (150 and 1500 samples) to
reveal the effect brought by the number of forget-
ting requests. We use GPT-Neo 125M as the orig-
inal model. The result is shown in Table 5. We
find that our EMSO performs best when forget-
ting 1500 samples and achieves comparable per-
formance with GA when unlearning 150 samples.
Generally speaking, the methods that finetune the
original model (e.g., GA, DI, EMSO) perform rela-
tively better for smaller forget sets as they achieve
similar effects on erasing TSM with less sacrifice
on utility.

Forget set size Method EL3↓ MA↓ Perplexity↓ MAUVE↑

150

GA 0.153 0.607 18.71 0.642
TA 0.139 0.683 23.59 0.458
CD 0.168 0.708 10.96 0.233
DI 0.128 0.716 35.49 0.623

EMSO 0.130 0.657 20.92 0.675

1500

GA 0 0 5.28 0.005
TA 0.119 0.708 23.61 0.449
CD 0.146 0.685 28.57 0.328
DI 0.126 0.728 38.34 0.604

EMSO 0.103 0.621 25.59 0.636

Table 5: Experiment results for the effect of the forget
set size. The collapsed model is marked with red .

G Utility Evaluation Metrics and Datasets

We test the language generation ability and under-
standing ability of the updated model since they
are the two most important functions of LLMs.

(i) For language generation ability evaluation,
we randomly sample 5,000 text sequences from
Wikitext-103 dataset (Merity et al., 2016) and take
the first 32 tokens as input to the language model

for open generation. Following Su et al. (2022),
we use perplexity, diversity, repetition, MAUVE,
Semantic Coherence for evaluating the generation
quality. We calculate perplexity with GPT-J-6B
(Wang, 2021) and calculate semantic coherence
with SimCSE (Gao et al., 2021).

(ii) For language understanding ability evalua-
tion, we use a suite of popular natural language
understanding (NLU) tasks, namely Piqa (Bisk
et al., 2020), ARC-Easy (Clark et al., 2018), COPA
(Roemmele et al., 2011), PubmedQA (Jin et al.,
2019), Winogrande (Sakaguchi et al., 2021) and
Hellaswag (Zellers et al., 2019) for comprehensive
evaluation.

H KQ Pattern Analysis on Most
Frequently Selected Blocks

Block Name Frequency
L2WvH11 7
L11Cproj 3
L3WoH2 2
L3WvH11 1
L1WoH8 1

Table 6: The frequency of updating blocks selection.

We count the selection frequency of fine-tuning
blocks and report the result in Table 6. The se-
lection process is conducted seven times before
early stopping thus the max frequency should be
seven. EMSO tends to select blocks at shallow lay-
ers (i.e., layer 1, 2, and 3) with a total frequency
of 11 out of 14, indicating that memorization is
affected largely by shallow layers. In addition,
Wv in shallow layers are most frequently selected,
e.g., the L2WvH11

5 is selected in every round, sug-
gesting the value matrix is most significant among
the K, Q, V in the attention mechanism of LLMs
regarding memorization. This observation is con-
sistent with He et al. (2024). Moreover, we study
the forward attention patterns of L2H11 to interpret
its role in model memorization.

As shown in Figure 7, the value matrix of layer
2, attention head 11 is selected in every weight se-
lection round. To better understand the mechanism
of how this particular block affects memorization,
we conduct analysis on its attention pattern at the

5We name the blocks according to their position and func-
tion in the model with the format L{layer number}{Wk, Wq ,
Wv , Wo, Cfc, Cproj}H{attention head number}, where Wk,
Wq , Wv , Wo represent the linear transformation matrix for
K,Q,V and output in attention mechanism and Cfc, Cproj

represent up projection and down projection matrix in MLP.
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inference stage. To be specific, we study which pre-
vious tokens the attention head 11 in layer 2 pays
attention to when decoding at the current step by
calculating the normalized inner product of "keys"
k and queries q in forward pass activations of at-
tention block when provided certain memorized
samples. As shown in Figure 7, L2H11 pays the
most attention to "promotional" and "journalism"
in the given prefix. Compared with other tokens
such as "sign" and "you", L2H11 apparently con-
centrates on rare tokens with complex semantics
in the input text sequence at the inference stage,
indicating rare tokens might be functional in LLM
memorization.

I Defense against Membership Inference
Test

Membership Inference Attack (MIA) aims to re-
veal if a given sample was used in model training,
which exposes user privacy. To evaluate if TSM
erasure also contributes to protecting membership
information leakage, we employ four membership
inference test methods: Loss Attack (Loss) (Yeom
et al., 2018), Comparing to lowercase (Lower) (Car-
lini et al., 2021), Comparing to Zlib Compression
(Zlib) (Carlini et al., 2021), and Min-K% (Shi et al.,
2024a) on the updated GPT-Neo-125M model. We
randomly sample 10,000 data from the validation
set of Pile corpus as holdout data and use all 15,000
data from the Training Data Extraction Challenge
as forget data. If membership inference test meth-
ods fail to correctly identify the membership of
forget data, it demonstrates the membership infor-
mation is protected. We report the AUC score for
MIA following the experiment settings in Shi et al.
(2024a).

Method Loss Lower Zlib Min-K%

Original 0.989 0.868 0.943 0.987
GA 0.152 0.334 0.655 0.168
TA 0.916 0.793 0.867 0.908
DI 0.947 0.849 0.921 0.968

EMSO 0.831 0.724 0.828 0.845

Table 7: AUC score for different membership inference
test methods

The experiment results are shown in Table 7. The
model updated with GA shows good performance
in protecting membership information. However,
as we stated in Section 4.2, the model is already
collapsed and lost utility. Among other methods,

our EMSO achieves the best defense performance,
decreasing AUC score by 15.8%, 14.4%, 11.5%,
14.2% for Loss, Lower, Zlib, Min-K% attacks, re-
spectively. The result shows that EMSO benefits
the protection of membership information leakage,
even though it is not the initial motivation of this
work.
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