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Abstract

Distantly-Supervised Named Entity Recogni-
tion (DS-NER) uses knowledge bases or dictio-
naries for annotations, reducing manual efforts
but rely on large human labeled validation set.
In this paper, we introduce a real-life DS-NER
dataset, QTL, where the training data is anno-
tated using domain dictionaries and the test data
is annotated by domain experts. This dataset
has a small validation set, reflecting real-life
scenarios. Existing DS-NER approaches fail
when applied to QTL, which motivate us to
re-examine existing DS-NER approaches. We
found that many of them rely on large valida-
tion sets and some used test set for tuning in-
appropriately. To solve this issue, we proposed
a new approach, token-level Curriculum-based
Positive-Unlabeled Learning (CuPUL), which
uses curriculum learning to order training sam-
ples from easy to hard. This method stabilizes
training, making it robust and effective on small
validation sets. CuPUL also addresses false
negative issues using the Positive-Unlabeled
learning paradigm, demonstrating improved
performance in real-life applications.1

1 Introduction

Distantly-Supervised Named Entity Recognition
(DS-NER) is a task to leverage existing knowledge
bases (KBs) or dictionaries to provide annotations
for named entity recognition tasks. This approach
significantly reduces the need for labor-intensive
manual annotations, but it faces challenges due to
issues in automated annotations, such as false posi-
tives and false negatives. To address the annotation
errors, various methods are proposed. Some studies
focus on false negative issues (Shang et al., 2018;
Peng et al., 2019; Zhou et al., 2022). Others pro-
pose to tackle general noisy annotations through
noise removal processes (Meng et al., 2021; Liang

1Our code and new QTL dataset are available at https:
//github.com/liyp0095/CuPUL.

et al., 2020; Hedderich and Klakow, 2018; Zhang
et al., 2021a; Liu et al., 2021).

To assess the effectiveness of existing DS-NER
approaches, we introduce a real-life DS-NER
dataset, QTL (Quantitative Trait Locus), which
is annotated for trait entities in the animal science
domain. Unlike previous datasets, QTL contains
a very small validation set of only 21 sentences,
avoiding the significant manual effort required to
obtain large validation sets in real-life scenarios. In
contrast to previous benchmark datasets where en-
tity mentions often comprise proper nouns, the trait
entities in the QTL dataset are descriptive terms,
such as “tail size” and “hoof color”.

While existing DS-NER methods perform well
on benchmark datasets such as CoNLL2003, of-
ten rivaling fully supervised approaches, they con-
sistently fail when applied to our QTL dataset.
This motivates us to re-examine existing DS-NER
approaches. We identify some issues: Some ap-
proaches (Liang et al., 2020; Zhang et al., 2021b;
Qu et al., 2023) deviate from the DS-NER frame-
work and directly use the test set for hyperpa-
rameter tuning, leading to unreliable performance.
Some approaches (Shang et al., 2018; Meng et al.,
2021) train their models with fixed hyperparame-
ters, yet fail to achieve consistent results across dif-
ferent datasets. The remaining approaches (Wang
et al., 2023a; Wu et al., 2023) employ a validation
set from fully supervised (FS) data for parameter
tuning. These approaches overlook the significant
manual labor required to obtain a validation set
for parameter tuning in real-life scenarios, affect-
ing the robustness of existing methodologies when
applied to real-life applications with a small vali-
dation set, thereby compromising the reliability of
these approaches.

To solve the issues mentioned above, we present
a simple yet effective approach inspired by Curricu-
lum learning and Positive-Unlabeled (PU) learn-
ing , named CuPUL. The motivation behind cur-

https://github.com/liyp0095/CuPUL
https://github.com/liyp0095/CuPUL
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riculum learning is that deep learning models are
non-convex and trained using batches of samples,
so the order of training data can significantly im-
pact model performance. Curriculum learning re-
arranges the batches of training samples such that
the model learns from easy to hard samples and
revisits easier samples more frequently. With this
new arrangement, models tend to converge to a
better local optimum. Furthermore, we design
a token-level curriculum arrangement to address
token-level noise in DS-NER tasks. We observe
that "easy samples" are usually cleaner, and learn-
ing from these first can initially avoid label noise,
making the model more robust. To tackle false
negative issues, we adopt the Positive-Unlabeled
learning paradigm.

In summary, our main contributions are:

• We present a real-life DS-NER dataset, QTL,
and test the performance of the existing state-
of-the-art methods. We observe that many
methods do not follow the practical DS-NER
setting and have unsatisfactory performance.

• We propose a simple method CuPUL to ad-
dress the noise issue in DS-NER. We em-
pirically demonstrate that CuPUL can sig-
nificantly outperform the state-of-the-art DS-
NER method on the QTL dataset and different
benchmark datasets.

2 QTL Benchmark

To reduce the cost of human-annotated training
data for NER tasks, DS-NER uses professional
dictionaries or knowledgebases for annotations.
Existing DS-NER benchmark datasets use NER
benchmark datasets to simulate the distant super-
vision setting by replacing the human annotations
on training datasets with knowledge base anno-
tations (Liang et al., 2020; Shang et al., 2018;
Zhou et al., 2022). Among these benchmarks, only
the BC5CDR (Shang et al., 2018; Li et al., 2016)
dataset comes from professional domains where
DS-NER tasks are in high demand.

We present Quantitative Trait Locus (QTL), a
real-life DS-NER application in the animal science
domain. The entity type to recognize is “trait”,
an important task in the construction of genotype-
phenotype databases for advancing livestock ge-
nomics research and breeding methodologies (ex-
amples in Table 1).

Compared to previous DS-NER benchmark
datasets, the QTL dataset presents two main distinc-

No. Trait Entity Example

1 Fatty acid composition of milk
2 Dwarf phenotype
3 Total number of piglets born per litter
4 Body mass index
5 The number of first to third births

Table 1: List of Trait Entities from Test Set of QTL.

Dataset Entity Type # Entity
Average Entity

Length
Proper Noun

Ratio

PER 1617 1.71 0.97
CoNLL03 LOC 1662 1.16 0.98

ORG 1656 1.51 0.92
MISC 693 1.32 0.60

QTL Trait 1219 1.98 0.24

Table 2: Statistics on Entity Types of CoNLL2003 and
QTL. The average entity length indicates the number
of words per entity, and the proper noun ratio reflects
the proportion of entities that contain at least one proper
noun.

tions: 1) The entities in QTL are generally longer in
length. 2) Unlike previous benchmarks, where enti-
ties are typically proper nouns, QTL entities are of-
ten descriptive expressions. To describe the distinct
characteristics of trait entities, we compare the Trait
type from the QTL test set with entity types (PER,
LOC, ORG, MISC) from the CoNLL03 (Tjong
Kim Sang and De Meulder, 2003) test set. Some
key statistics are presented in Table 2, revealing
that Trait entities have a longer entity length on
average and a lower proper noun ratio compared to
the benchmark dataset. These characteristics make
the QTL dataset unique and introduce additional
challenges in the DS-NER task.

To establish the QTL dataset, we collected a cor-
pus with 1,716 abstracts carefully selected from
PubMed2 by domain experts for QTL studies re-
lated to six species: cattle, pig, goat, sheep, chicken,
and rainbow trout. We randomly selected 1,609 ab-
stracts in this corpus to establish the training data.
The training data consists of 18,706 sentences with
514,176 tokens. For the distant annotation process,
the domain experts gathered a specialized dictio-
nary of 3,884 trait names from four established
domain ontologies3. After obtaining the dictionary,

2https://pubmed.ncbi.nlm.nih.gov/
3Vertebrate Trait (VT) Ontology, Livestock Product Trait

(LPT) Ontology, Livestock Breed Ontology (LBO), and
Clinical Measurement Ontology (CMO). Examples can be
found at https://www.animalgenome.org/QTLdb/export/
trait_mappings

https://pubmed.ncbi.nlm.nih.gov/
https://www.animalgenome.org/QTLdb/export/trait_mappings
https://www.animalgenome.org/QTLdb/export/trait_mappings
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string matching was used to distantly annotate the
training corpus. Then from the 1609 papers, we
randomly selected 21 sentences (with 952 tokens)
and had a well-trained domain curator provide man-
ual annotations to form a validation set.

This curator later provided annotations for the
remaining 107 abstracts to form a test set, which
covered all six species of interest. To assess an-
notation quality, we had a second domain curator
check the annotations on 10 randomly selected ab-
stracts. The two curators had a total agreement.
Therefore, we used the annotations as ground truth.
More annotation details are described in Appendix
E. The test set contains 1,044 sentences with 32,251
tokens and 1,219 entities.

Notably, the validation set is quite small in the
QTL dataset. This practice followed the motivation
of DS-NER tasks, where the human effort should
be minimized at the training stage. This limited
size of the validation set may impact the tuning of
hyperparameters during the model training process,
potentially affecting the model’s performance. This
issue reflects a realistic challenge encountered in
DS-NER applications, which requires the model to
be robust and not sensitive to hyperparameters.
Annotation Limitations: Due to the high cost, the
majority of the annotations are provided by a single
curator. One observation from the curators is that
there is a considerable amount of discontinued trait
entities. For example, in “milk protein, lactose,
and fat percentage”, there are three entities: milk
protein percentage, milk lactose percentage, and
milk fat percentage. Due to the annotation software
limitation, this example was annotated as “milk
protein”, “lactose”, and “fat percentage”.

3 Related Work Analysis

3.1 DS-NER methods

We collected DS-NER methods published in major
conferences in 2023 and their compared baselines.
We categorize the existing DS-NER methods in
three groups. 1) DS-NER with Self-training. To
improve model performance, many DS-NER meth-
ods often incorporate a self-training step, utilizing
mechanisms such as soft-label retraining and multi-
model teacher-student frameworks. This group in-
cludes BOND (Liang et al., 2020), RoSTER (Meng
et al., 2021), SCDL (Zhang et al., 2021b), ATSEN
(Qu et al., 2023) and DesERT (Wang et al., 2023a).
2) DS-NER without Self-training. This group
of methods focuses on addressing the model’s ef-

fectiveness in handling noise or false negatives in
DS-NER. While these methods can incorporate
self-training mechanisms, it is not the primary fo-
cus of these methods. This group include AutoNER
(Shang et al., 2018), Conf-MPU (Zhou et al., 2022),
MProto (Wu et al., 2023). 3) Span-based DS-
NER. The final group of methods differs from the
previous two, as it is based on span-based predic-
tion rather than sequence labeling. These methods
treat each span within a sentence as the predic-
tion target. Previous work (Li et al., 2023) has
shown that span-based NER models often outper-
form sequence-based NER methods in terms of ef-
fectiveness, albeit at the cost of increased algorith-
mic complexity. This group includes Top-Neg (Xu
et al., 2023), CLIM (Li et al., 2023) and SANTA
(Si et al., 2023). More details can be found in
Appendix D.

3.2 Method Analysis
We first analyze the feasibility of existing DS-NER
methods in real-life applications. For a method to
be considered feasible, it must provide runnable
code and instructions for hyperparameter tuning if
necessary. Table 3 presents our feasibility analysis
results base on the manuscripts and code reposi-
tories (accessed in April 2024). We find that 1)
MProto and SANTA do not provide hyperparame-
ter tuning instructions; 2) CLIM and Top-Neg do
not provide runnable code; and 3) BOND, SCDL,
and ATSEN selected their inference model based
on performance on the test set according to their
released repositories. Thus in our empirical studies,
for a fair comparison, we only re-examine feasi-
ble methods and update some methods to select
the inference model based on performance on the
validation set only.

The motivation of DS-NER methods is that the
manual annotations are too costly to obtain. There-
fore, to reduce the amount of manual annotation,
the annotations in the training set come from knowl-
edge bases or dictionaries, and the manual labeled
validation set should not be large either. Existing
methods focus on the first setting while neglecting
the importance of the second setting. We analyzed
the feasible methods in Table 3 based on these DS-
NER settings and have the following observations.
First, AutoNER and RoSTER use fixed hyperpa-
rameters. These approaches do not require hyper-
parameter tuning, thereby avoiding the need for a
validation set. Second, Conf-MPU provides a strat-
egy for pre-selecting hyperparameters, so it does
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Method Code Provided Code Runable Hyperparameter Tuning required Tuning Instruction Inference model Feasible
DS-NER without Self-training
AutoNER ✓ ✓ Fixed ✗ - Model at Final Epoch ✓

Conf-MPU ✓ ✓ Not Fixed ✗ - Model at Final Epoch ✓

MProto ✓ ✓ Not Fixed ✓ ✗ Model at Final Epoch ✗

DS-NER with Self-training
BOND ✓ ✓ Not Fixed ✓ ✓ Best Model on Test ✓

RoSTER ✓ ✓ Fixed ✗ - Model at Final Epoch ✓

SCDL ✓ ✓ Not Fixed ✓ ✓ Best Model on Test ✓

ATSEN ✓ ✓ Not Fixed ✓ ✓ Best Model on Test ✓

DesERT ✓ ✓ Not Fixed ✓ ✓ First Student Model ✓

Span-based DS-NER models
SANTA ✓ ✓ Not Fixed ✓ ✗ Model at Final Epoch ✗

Top-Neg ✓ ✗ - - - - ✗

CLIM ✗ - - - - - ✗

Table 3: Feasibility Analysis of Exist Methods for DS-NER tasks.

Figure 1: Overview of CuPUL

not require a validation set either. However, the
remaining methods (BOND, SCDL, ATSEN, and
DesSERT) need a validation set for hyperparameter
tuning. The size of the validation set may affect
their performance. We present a detailed analysis
of this impact in Section 5.

We do not consider the few-shot NER setting in
this paper. The recent SOTA performance of few-
shot NER is achieved by LLMs with in-context
learning (ICL), but it is unsatisfactory, particularly
in specific professional domains (Munnangi et al.,
2024; Hu et al., 2024; Monajatipoor et al., 2024).
Moreover, the high cost of LLMs makes it less
feasible for large-scale annotation tasks. BERT-
based DS-NER methods are easy to deploy and can
achieve high performance with low cost. Therefore,
we focus on the DS-NER setting using the BERT-
based model.

4 Methodology

In this section, we introduce a simple DS-NER
method that combines the advantages of curricu-
lum learning and PU learning. Figure 1 shows
the overview of the proposed method CuPUL. The

method starts by training several voters using the
distantly annotated data to calculate token difficulty
scores. Then CuPUL trains a NER classifier fol-
lowing the curriculum scheduler using confidence-
based positive-unlabeled learning risk estimation.

Problem Formulation: We denote an input sen-
tence with M tokens as x = [x1, x2, · · · , xM ]
and denote corresponding annotations as y =
[y1, y2, · · · , yM ], yi ∈ {0, 1, · · · , k}, where 0 de-
notes the unlabeled type and 1, · · · , k denote k en-
tity types. For the models, a pre-trained language
model such as RoBERTa is used to encode token
representations and followed by a softmax function
to forward the prediction of entity labels for each
token in the sentence.

4.1 Difficulty Estimation

Curriculum learning has two main steps: difficulty
estimation and curriculum scheduler (Kocmi and
Bojar, 2017). More details and related work of
curriculum learning are discussed in Appendix A.

Motivated by the token-level noises in DS-NER
tasks, we design the difficulty estimator and the
curriculum scheduler at the token level as well. It
allows the model to learn from one sentence by
ignoring the noisy tokens. For example, in the sen-
tence “Peter(PER) lives(O) in(O) America(ORG)”,
“Peter”, “lives”, and “in” are clean samples, and
“America” is a noisy sample. The model can learn
from “Peter lives in X” by ignoring the noise in
the sentence. The token’s difficulty score should
reflect its inherent learnability. These scores are
estimated using the disagreements between basic
NER models or voters.

4.1.1 Voters
For training the voters, a neural network for NER
classification is used. The design of the voters de-
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mands simplicity and variability. Thus, the voters
are trained using a regular multi-class classifica-
tion risk function. The training process follows
the Positive-Negative setting, where 0 represents
non-entity type. Label imbalance in NER tasks
is mitigated by sampling negative samples. Note
that the performance of the voter itself does not
affect the final outcomes of CuPUL, which we will
introduce in the section 4.2.

4.1.2 Difficulty Scores
After training V voters, each token x receives V
predicted class probabilities f(x,θ1), ..., f(x,θV ),
where θ1...θV are the voters’ parameters. The pre-
diction f(x,θi) is a vector that represents the class
distribution of each token x denoted as Pri(x).
The difficulty of the token is assessed based on the
disagreement among these distributions. Specifi-
cally, we use Kullback-Leibler (KL) divergence, a
measurement for dissimilarities of two distributions
Pri(x) and Prj(x), to calculate the disagreement
level of two voters. Mathematically, it is:

Hij =
1

2
{DKL(Pri(x)||Prj(x)))+

DKL(Prj(x))||Pri(x))}, (1)

where DKL(·) denotes the KL divergence. KL
divergence is asymmetric. By taking the average
of Hij and Hji, we derive a symmetric difficulty
score H{ij}.

Given that there are V voters, the final difficulty
score for each token x is defined as the average of
the non-identical pairs among all voters:

H =

∑V
i=1

∑V
j=i+1H{ij}

V · (V − 1)/2
. (2)

Eq.(2) defines the token difficulty scores as an arith-
metic mean of disagreements between pair-wise
voters. Consequently, a token’s difficulty score is
low when all voters agree, and it increases with
greater disagreement.

4.2 Curriculum Design
To avoid overfitting negative samples, we adopt
Positive-Unlabeled (PU) learning based risk esti-
mation, treating data labeled with 0 as unlabeled
rather than non-entity. PU learning assumes the
unlabeled data represents the entire dataset’s dis-
tribution (Zhou et al., 2022, 2023). To meet this
assumption, we include all unlabeled data in the
first curriculum, scheduling only the labeled posi-
tive data.

Our curriculum is based on token difficulty
scores H , which follow a long-tail distribution,
making most tokens “easy” (Figure 2). Previous
research (Platanios et al., 2019; Gnana Sheela and
Deepa, 2013) indicates that a uniform difficulty
range may render curriculum learning ineffective.
Therefore, we propose a power-law selector for a
more effective curriculum scheduler.

To build the curricula, we first arrange all Tu

unlabeled tokens followed by Tp positive-labeled
tokens sorted by their difficulty scores in ascend-
ing order. The first curriculum consists of all un-
labeled tokens and the first τTp labeled positive
tokens, where τ (0 < τ < 1) is a selective factor.
The second curriculum consists of the first τ2T
tokens from the remaining (1− τ)Tp tokens. This
selection process continues until the penultimate
curriculum. The remaining tokens are placed in
the final curriculum. These curricula are denoted
as C1, C2, ..., Cη. For example, suppose Tp = 20,
Tu = 80, τ = 0.5, and η = 3. Then, C1 consists of
tokens indexed from 1 to 90 (80 unlabeled tokens
and the 10 easiest positive tokens), C2 consists of
tokens indexed from 91 to 95, and C3 consists of
tokens indexed from 96 to 100.

4.3 Curriculum-based PU Learning
We train the NER classifier across η curricula us-
ing the “Baby Step” training schedule (Spitkovsky
et al., 2010; Cirik et al., 2017). Starting with C1, we
add each subsequent curriculum after a fixed num-
ber of epochs, training through all curricula until
completion. The training stages ({Si, 1 < i ≤ η})
correspond to the number of curricula, with the
model trained over multiple epochs in each stage.
Each stage is treated as an independent training seg-
ment, with earlier curricula being reviewed more
frequently, enhancing learning under PU assump-
tions and resulting in a robust curriculum learning
framework.

Specifically, we adopt the Conf-MPU loss func-
tion, proposed by Zhou et al. (2022), as the back-
bone PU loss function in the curriculum-based
training.

Details of Conf-MPU can be found in Appendix
B. Instead of having entity confidence score λ(x)
estimated by another binary PU model, the only
difference we make is to reuse the voters trained in
Section 4.1 to ensemble the confidence score for
each token x. We use the soft-label ensemble as

Pr(x) =

∑V
j=1 f(x,θj)

V
, (3)



10945

where Pr(x) is the ensemble probability distribu-
tion over all classes. The confidence score of a
token x being an entity token is then calculated as

λ(x) =
k∑

j=1

Prj(x). (4)

For the neural network of the NER classifier, we
choose the structure described at the beginning of
Section 4.

4.4 Self-Training

Several studies (Liang et al., 2020; Peng et al.,
2019; Meng et al., 2021) have shown that self-
training can effectively upgrade the performance
of a trained DS-NER model. We apply the self-
training method in Meng et al. (2021), which uses
soft labels to conduct self-training and a masked
language model to conduct contextual data augmen-
tation simultaneously. Self-training is used directly
after CuPUL, and we call the classifier with self-
training “CuPUL+ST”.

5 Experimental Studies

5.1 Baseline Methods

We use feasible methods mentioned in Section 3
as baseline methods. First, we report distant su-
pervision results as KB-Matching. We classify
feasible DS-NER methods into two groups. 1)
DS-NER without Self-training consists of Au-
toNER (Shang et al., 2018) and Conf-MPU (Zhou
et al., 2022). CuPUL is directly comparable with
these methods. We also include an ablation version
of CuPUL (CuPUL-curr), which removes Curricu-
lum Learning, as a baseline. 2) DS-NER with
Self-training includes BOND (Liang et al., 2020),
RoSTER (Meng et al., 2021), SCDL (Zhang et al.,
2021b) and ATSEN (Qu et al., 2023) and DesERT
(Wang et al., 2023a). These methods apply teach-
student or training augmentation steps to further
boost the DS-NER performance. CuPUL+ST is
directly comparable with these methods.

To ensure a fair comparison, we made some nec-
essary code modifications to the baseline methods.
For Conf-MPU, we updated the encoding model
to RoBERTa. For BOND, SCDL, ATSEN, and
DesSERT, we modified the hyperparameter tuning
process to use the validation set instead of the test
set. Early stopping is used to select the inference
model. RoSTER uses fixed parameters, but the
max_seq_length did not meet the requirements

Method QTL-strict QTL-relax
DS-NER without Self-training
KB-Matching 37.15 (82.95/23.93) 41.86 (93.46/26.97)

AutoNER 41.67 (69.07/29.83) 55.49 (83.17/41.64)
Conf-MPU 52.07 (76.30/45.37) 60.58 (91.15/51.28)

CuPUL-curr 54.75 (75.40/42.99) 62.94 (86.76/49.38)
CuPUL 56.84 (73.03/46.51) 66.18 (85.31/54.06)

DS-NER with Self-training
BOND 53.08 (60.89/47.04) 65.57 (77.97/56.57)

RoSTER 47.80 (73.12/35.51) 55.43 (91.35/39.79)
SCDL 43.62 (79.57/30.05) 50.18 (89.85/34.81)

ATSEN 46.23 (66.98/35.30) 51.64 (86.21/36.86)
DesERT 54.41 (69.20/44.83) 64.23 (82.41/51.50)

CuPUL+ST 58.87 (58.28/59.47) 73.57 (73.07/74.08)

Table 4: Performance on QTL dataset: F1 Score (Preci-
sion/Recall) (in %). The best results are in bold.

for some datasets, so we adjusted it accordingly.
Specific parameters details are in Appendix F.

5.2 QTL Experiments
Evaluation Metrics: Due to the annotation limita-
tion and the fact that none of the DS-NER methods
can handle discontinued spans, we include relaxed
Precision, Recall, and F1 scores to evaluate the
performance on the QTL dataset, in addition to the
strict span-level Precision, Recall, and F1 scores
used in previous studies. For relaxed metrics, it
deems a predicted span correct if there is at least
one overlapping word with the ground truth anno-
tation. According to the curator’s feedback, the
relaxed metrics can meet the practical need as iden-
tifying potential entities is more important than
identifying precise boundaries.

Table 4 presents the results for all methods on
the QTL dataset. Note that CuPUL without curricu-
lum learning (CuPUL-curr) is essentially equiva-
lent to Conf-MPU when there is one entity type.
KB matching reveals that QTL annotations suffer
from low recall but have relatively high precision.
We observe that DS-NER baselines without self-
training have limited recall improvement, result-
ing in weak performance. DS-NER baselines with
self-training improve recall compared to AutoNER,
but still generally under-perform compared to PU-
based methods. CuPUL+ST can further boost the
recall compared to CuPUL, significantly outper-
forming all baseline methods. Specifically, strict
F1 and relaxed F1 of CuPUL+ST outperform the
runner-up by 5.79% and 8.00%, respectively.

5.3 Benchmark Experiments
We also re-examine all methods on existing bench-
mark datasets.
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Method CoNLL03 Twitter OntoNotes5.0 Wikigold Webpage BC5CDR
DS-NER Without Self-training
KB-Matching ∗ 71.40 35.83 59.51 47.76 52.45 64.32

AutoNER ∗ 67.00 26.10 67.18 47.54 51.39 79.99
Conf-MPU † 82.39 43.21 66.04 66.58 63.32 80.06

CuPUL-curr 83.18 50.12 67.76 66.43 65.15 79.29
CuPUL 85.09 54.34 68.06 70.53 73.10 80.19

DS-NER With Self-training
RoSTER 85.40∗ 43.91† 69.10† 58.34∗ 56.80† 79.78†

BOND
† 79.89 45.98 66.86 57.81 48.76 76.91
∗ 81.15 48.01 68.35 60.07 65.74 -

SCDL
† 82.47 44.76 68.50 47.62 41.29 77.72
∗ 83.69 51.10 68.61 64.13 68.47 -

ATSEN
† 79.39 49.38 68.22 60.72 43.03 79.95
∗ 85.59 52.46 68.95 - 70.55 -

DesERT
† 80.57 48.21 67.94 60.32 62.88 78.21
∗ 86.95 52.26 69.17 65.99 72.73 -

CuPUL+ST 86.64 54.78 68.20 70.19 74.48 80.87

Table 5: Performance on benchmark datasets with small validation sets: F1 Score (in %). ∗ marks the results
reported from the original papers, and † marks the results we run. The best results are in bold. Data in gray font are
NOT used for comparative analysis as they were tuned using either the test set or an large validation set. We include
these only to contrast our re-run results with previous works.

Dataset Train Valid Test Types

CoNLL03
Sentence 14041 20 3453

4
Token 203621 475 46435

Twitter
Sentence 2393 50 3844

10
Token 44076 719 58064

OntoNotes5.0
Sentence 115812 50 12217

18
Token 2200865 1090 230118

Wikigold
Sentence 1142 20 274

4
Token 25819 579 6538

Webpage
Sentence 385 20 135

4
Token 5293 120 1131

BC5CDR
Sentence 4560 20 4797

2
Token 118170 533 124750

QTL
Sentence 18706 21 1044

1
Token 514176 952 32251

Table 6: The statistics of involved DS-NER datasets,
the valid set comprises a small subset from the original
dataset, whereas the train set and test set utilize the
entire original dataset.

5.3.1 Datasets and Metrics

Datasets: We conduct experiments on six ex-
isting benchmark datasets including CoNLL03
(Liang et al., 2020), Twitter (Liang et al., 2020),
OntoNotes5.0 (Liang et al., 2020), Wikigold (Liang
et al., 2020), Webpage (Liang et al., 2020), and
BC5CDR (Shang et al., 2018). The first five are
open-domain datasets, and BC5CDR is the bio-
medical domain. More details and the statistics
of these datasets are summarized in Appendix E.
The statistics of the baseline datasets are shown in
Table 6.

Metrics: We use span-level Precision (P), Recall
(R), and F1 scores as the evaluation metrics for all
the datasets. These metrics require exact matches
between predicted and actual entities. A continuous
span with the same label is considered a single
entity during inference.
Settings: For the benchmark dataset, we use small
subsets of the validation set to tune the hyperpa-
rameters including learning rate, epochs, etc, to
simulate the real-life DS-NER application scenar-
ios. Detailed settings and statistics of the validation
set can be found in Appendix F.

5.3.2 Results on Benchmark Datasets
Table 5 presents the overall span-level F1 scores for
all feasible and proposed methods on benchmark
datasets. Note that RoSTER was tested on a dif-
ferent version of the OntoNotes5.0 dataset (Meng
et al., 2021). Therefore, we re-run the code on
OntoNotes5.0, too. We also add the results re-
ported from previous papers for methods BOND,
SCDL, ATSEN, and DesERT as a reference to the
re-run results. We have the following observations.

DS-NER Without Self-training. From Table
5, it is obvious that KB-Matching generally ex-
hibits low recall and, on four of the benchmark
datasets, low precision as well. In contrast, noise-
aware DS-NER models significantly outperform
KB-Matching. Furthermore, CuPUL achieves the
best F1 scores on all datasets compared to all DS-
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NER models without self-training. The results
of CuPUL-curr are very similar to those of Conf-
MPU, except for the Twitter dataset. This differ-
ence is due to CuPUL using a different loss func-
tion to train the model that obtains the confidence
score for each token. For NER tasks with more
than 10 entity types (Twitter and OntoNotes5.0),
we opted for cross-entropy instead of MAE as the
loss function, which has proven to be effective. A
detailed discussion can be found in Appendix C.

DS-NER With Self-training. The results for
CuPUL+ST shown in Table 5 further indicate that
adding a self-training phase can enhance the per-
formance of the CuPUL model in general. When
compared with baseline DS-NER models that in-
corporate self-training, CuPUL+ST demonstrates
superior performance on five out of six datasets. On
the OntoNotes5.0 dataset, almost all noise-aware
DS-NER models have similar performances, im-
plying that distant annotations may contain biases
difficult for the models to address.

When comparing the results of BOND, SCDL,
ATSEN, and DesSERT from their original papers
with our re-run results, we can observe a significant
decline, especially on Twitter, Wikigold, and Web-
page datasets. Because these datasets are relatively
small, using small validation sets may lead to more
instability in the training process and higher diffi-
culty in selecting an appropriate inference model.
The results indicate that these methods may not
be robust in real-life applications. However, cur-
riculum learning, which progresses from “easy” to
“hard” samples, could stabilize the training process,
making it more robust and less parameter-sensitive.

5.4 Further Analysis

5.4.1 Robustness of CuPUL

To validate the robustness of CuPUL facing a small
validation set, we re-selected small validation sets
with the same number of sentences to train CuPUL
again across CoNLL03, Twitter, Ontonotes5.0,
Wikigold, Webpage, and BC5CDR datasets. We
named the new validation sets as valid2 and the
original sets as valid1, and Table 7 presents the
results. The results show a slight decrease in per-
formance on the CoNLL03, Twitter, Webpage,
and Wikigold datasets and a slight increase on
Ontonotes5.0 and BC5CDR datasets. Despite these
fluctuations, CuPUL still outperforms all the DS-
NER Without Self-training baseline methods on all
datasets and DS-NER With Self-training baseline

methods on most datasets compared to results in
Table 5, confirming the robustness of CuPUL with
small validation sets.

5.4.2 Effectiveness
To further validate the effectiveness of CuPUL,
we conduct additional analyses using benchmark
datasets.

One important assumption we adopt for the de-
sign of curricula is that the difficulty scores follow
a long-tail distribution. We illustrate the distribu-
tion of difficulty scores estimated on the Wikigold
and Twitter datasets in Figure 2 (a)(b). It clearly
demonstrates the long-tail phenomenon, with most
tokens having low difficulty scores.

Another important assumption adopted in
CuPUL is that difficulty scores can reflect the qual-
ity of distant supervision, where “easier” tokens
have “cleaner” labels. To validate this assumption
and evaluate the quality of the difficulty score es-
timation, we examine the correlation between the
difficulty scores and the quality of distant labels.
We use Wikigold and Twitter as the testbed, and
the results are illustrated in Figure 2 (c)(d).

For each training curriculum, we compute the
token-level positive error rate (positive errors in-
clude false positives and positive type errors), and
plot the rate using the left y-axis. We also com-
pute the average difficulty scores for tokens in each
curriculum shown with the right y-axis. It is clear
to see that both the average token difficulty scores
and positive error rate have a clear increase with
respect to the order of curricula. The figure also il-
lustrates a strong correlation between between error
rate (red) and mean difficulty (blue). This indicates
that “easy” data (data from earlier stages) have
lower error rates in distant labels, meaning they are
cleaner, while “hard” data (data from later stages)
have higher error rates in distant labels, indicating
they are noisier. The clean data can initialize the
model with a better starting point and improve the
model’s robustness to noise in the latter curricula.

5.4.3 Ablation Study
To evaluate the effectiveness of curriculum learn-
ing in CuPUL, we compare it with two variations
shown in Table 8. First, we use a voter ensemble,
averaging predictions from five voters trained on
positive and sampled negative examples. Second,
we include CuPUL-curr, which is CuPUL with-
out curriculum learning described in Table 5, as
another variation. To assess the impact of Conf-
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Figure 2: CuPUL Analysis: (a)(b) are the Difficulty Scores Distribution of Wikigold and Twitter, (c)(d) are the
Token Level Positive Error Rate and Mean Difficulty Scores for Each Curriculum Stage on Wikigold and Twitter.

CoNLL03 Twitter OntoNotes5.0 Wikigold Webpage BC5CDR
CuPUL on Valid1 85.09 54.34 68.06 70.53 73.10 80.19
CuPUL on Valid2 84.55 54.13 68.25 68.69 71.48 80.84

Table 7: Performance on benchmark datasets with different small validation sets: F1 Score (in %).

Method Wikigold Twitter
Precision Recall F1 Precision Recall F1

CuPUL 67.06 74.39 70.53 54.47 54.20 54.34
w/o Curriculum Learning

voter ensemble 56.88 74.88 64.65 35.52 49.52 41.37
CuPUL-curr 58.89 76.18 66.43 47.48 53.07 50.12

w/o Conf-MPU 59.31 75.86 66.57 58.91 47.04 52.53

Table 8: Ablation study on Wikigold and Twitter datasets.
CuPUL is compared with variations without Curriculum
Learning (voter ensemble only and Conf-MPU only) and with-
out Conf-MPU loss in Curriculum Learning.

MPU loss estimation, we compare it with a reg-
ular loss estimation (denoted as w/o Conf-MPU
in Table 8), where unlabeled tokens are treated
as non-entity tokens. Our analysis shows that re-
moving any component significantly lowers the F1
score. CuPUL-curr consistently achieves higher
recall than w/o Conf-MPU, due to Conf-MPU ad-
dressing false negatives and partial false positives,
which results in more tokens being predicted as en-
tities. Conversely, w/o Conf-MPU achieves higher
precision by addressing both false positives and
positive type errors, with a more notable improve-
ment in precision. We also observed an interesting
synergistic effect on the Wikigold dataset: CuPUL
achieves significantly higher precision than both
w/o Conf-MPU and CuPUL-curr, as shown in Table
8. The Appendix H provides a detailed explanation
and more ablation studies. The Parameter Study is
discussed in Appendix I.

6 Conclusion and Future Work

In this paper, we introduce a real-life DS-NER
dataset, named QTL, from the animal science do-
main application. We reveal the limitations of

current DS-NER methods in practical DS-NER
settings on the QTL dataset. To solve this is-
sue, we propose a simple yet effective token-level
curriculum-based PU learning (CuPUL) method,
which strategically orders the training data from
easy to hard. Our experiments show that CuPUL
not only mitigates the adverse effects of noisy la-
bels but also achieves state-of-the-art DS-NER on
many datasets. Through CuPUL, we demonstrate
the effectiveness of curriculum learning in improv-
ing the performance of DS-NER systems.
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Limitations

The limitations of the new benchmark dataset, QTL,
are discussed in Section 2.

The "Baby Step" strategy in curriculum learning
involves multiple repetitions of the first curriculum.
Coupled with our power-law selector and curricu-
lum scheduler, which tends to choose a larger initial
curriculum, this may negatively impact efficiency
if many curricula are established since the larger
curriculum is repeatedly trained.
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Appendix

Within this supplementary material, we elaborate
on the following aspects:

1. Additional Methodological Details

• A Curriculum Learning
• B Conf-MPU Risk Estimation
• C Discussion of Loss Function

2. Additional Experimental Details, and

• D Baselines
• E Datasets
• F Hyperparameters and Experiment Set-

tings
• G Re-Examine Baselines on QTL

3. Supplementary Experiments

• H Ablation Study
• I Parameter Study
• J Efficiency Analysis

A Curriculum Learning

Curriculum learning was first proposed by Ben-
gio et al. (2009) under the assumption that learning
with reordering from “easy” samples to “hard” sam-
ples would boost performance. It has been applied
in various applications, including neural machine
translation (Zhou et al., 2020; Platanios et al., 2019;
Zhou et al., 2020; Wang et al., 2018), relation ex-
traction (Huang and Du, 2019; Wang et al., 2023b),
reading comprehension (Tay et al., 2019), natu-
ral language understanding (Xu et al., 2020) and
named entity recognition (Jafarpour et al., 2021;
Lobov et al., 2022; Wenjing et al., 2021).

Several studies aim to adopt curriculum learning
philosophy for textual data and propose various
difficulty-scoring functions and curriculum sched-
ulers. Some methods measure sample difficulty
with features derived from lexical statistics, e.g.,
sentence length and word rarity (Platanios et al.,
2019; Jafarpour et al., 2021), where longer sen-
tences and rarer words are considered “hard”. Oth-
ers use features from pre-trained language models
(Zhou et al., 2020; Wang et al., 2018; Liu et al.,
2020). Most schedulers select samples with dif-
ficulty scores lower than a threshold (Platanios
et al., 2019). While Zhou et al. (2020) design a
sample selecting function based on model uncer-
tainty. Our approach, unique in applying token-
level curriculum learning to DS-NER tasks, di-
verges from common sentence-level methods by

utilizing Transformer-based models like BERT for
context-aware token-specific predictions and gradi-
ent learning.

B Conf-MPU Risk Estimation

Conf-MPU loss function has been shown to be
more robust to PU assumption violation in practice.
Conf-MPU estimates the risk as

R(f) =

k∑
i=1

πi

(
R+

Pi
(f) + R−

P̃i
(f)− R−

Pi
(f)

)
+R−

Ũ
(f),

(5)
For stage S∗, the number of token selected for class
i is TS∗

i . For simplification, we denote it as T ∗
i . The

empirical estimator of Eq.(5) is
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, (6)

with a non-negative constraint inspired by Kiryo
et al. (2017) ensuring the risk on the negative class.
We follow Zhou et al. (2022) and set ϵ to 0.5 by
default.

C Discussion of Loss Function

Two loss functions are popularly used for the DS-
NER tasks. The first loss function is cross entropy
(CE) loss:

ℓCE = log fi,yi(x;θ), (7)

where fi,yi(x;θ) is the prediction of token xi on
class j.

Another commonly used loss function is mean
absolute error (MAE):

ℓMAE = |yi − fi,yi(x;θ)|, (8)

where | · | is L-1 norm of the vector and yi denotes
the one hot vector of yi.

Comparing the two loss functions, ℓCE is un-
bounded, and it grants better model convergence
when trained with clean data (i.e., y are ground truth
labels) because more emphasis is put on difficult to-
kens. However, when the labels are noisy, training
with the cross-entropy loss can cause overfitting to
the wrongly labeled tokens. ℓMAE is more noise-
robust than ℓCE. It is bounded and treats every
token more equally for gradient update, allowing
the learning process to be dominated by the correct
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majority in distant labels. However, using ℓMAE for
training deep neural models generally worsens the
convergence efficiency and effectiveness due to the
inability to adjust for challenging training samples.

Considering the different characteristics of these
two loss functions, in practice, we suggest using
ℓCE loss for tasks with more entity types and using
ℓMAE loss for tasks with fewer number of entity
types.

D Baselines

Here, we give a short description of all the baseline
methods: KB-Matching distantly labels the test sets
using distant supervision, serving as a reference to
illustrate the performance improvements given by
other advanced DS-NER methods.

AutoNER (Shang et al., 2018) trains the neural
model with a “Tie or Break” tagging scheme for
entity boundary detection and then predicts entity
type for each candidate.

Conf-MPU (Zhou et al., 2022) treats the NER task
as a Positive-Unlabeled learning problem and uti-
lizes the pre-learned confidence scores to enhance
the model’s performance.

CLIM (Li et al., 2023) addresses the imbal-
ance problem in the high-performance and low-
performance classes by improving the candidate
selection and label generation.

SANTA (Si et al., 2023) dealing with inaccurate
and incomplete annotation noise in DS-NER by
utilizing separate strategies.

Top-Neg (Xu et al., 2023) selectively uses neg-
ative samples with high similarity to positives of
the same entity type, improving performance by
effectively distinguishing false negatives.

BOND (Liang et al., 2020) trains a RoBERTa
model on distantly labeled data with early stop-
ping and then uses a teacher-student framework to
iteratively self-train the model.

RoSTER (Meng et al., 2021) employs a noise-
robust loss function and a self-training process with
contextual augmentation to train a NER model.

SCDL (Zhang et al., 2021b) conducts self-
collaborative denoising with teacher-student frame-
work. It trains two teacher-student networks, and
the final reports come from the best model (teacher
or student).

ATSEN (Qu et al., 2023) develops a teacher-
student framework with adaptive teacher learning
and fine-grained student ensembling.

MProto (Wu et al., 2023) represents each entity

type with multiple prototypes to characterize the
intra-class variance among entity representations
and propose a noise-robust prototype network.

DesERT (Wang et al., 2023a) propose a novel
self-training framework which augments the NER
predicative pathway to solve innate distributional-
bias in DS-NER.

E Datasets

To annotate the QTL dataset, domain experts use
an online tool named TeamTat4. The screenshot of
the tool is shown in Figure 3.

Here, we give a short description of the six
benchmark datasets as follows:

• CoNLL03 (Tjong Kim Sang and De Meulder,
2003) is built from 1393 English news arti-
cles and consists of four entity types: person,
location, organization, and miscellaneous.

• Twitter (Godin et al., 2015) is from the WNUT
2016 NER shared task and consists of 10 en-
tity types.

• OntoNotes5.0 (Weischedel et al., 2013) is
built from documents of multiple domains
like broadcast conversations, web data, etc.
It consists of 18 entity types.

• Wikigold (Balasuriya et al., 2009) is built from
a set of Wikipedia articles (40k tokens). They
are randomly selected from a 2008 English
dump and manually annotated with four entity
types same as CoNLL03.

• Webpage (Ratinov and Roth, 2009) comprises
personal, academic, and computer science
conference web pages. It consists of 20 web
pages that cover 783 entities with four entity
types same as CoNLL03 too.

• BC5CDR (Li et al., 2016) comes from the
biomedical domain. It consists of 1,500 arti-
cles, containing 15,935 Chemical and 12,852
Disease mentions.

Distant labels for benchmark datasets come from
previous papers Liang et al. (2020) and Shang et al.
(2018).

For CoNLL03, Twitter, OntoNotes5.0, Wikigold
and Webpage, the distant labels for training come
from Liang et al. (2020). Specifically, the authors
first identify potential entities through POS tag-
ging using tools such as NLTK. They then match

4https://www.teamtat.org/

https://www.teamtat.org/
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these potential entities by using the Wikidata query
service. They use SPARQL to query the parent
categories of an entity in the knowledge tree. They
continue querying to the upper levels until a cate-
gory corresponding to a type is found. For ambigu-
ous entities (e.g., those associated with multiple
parent categories), they are discarded during the
matching process, and they are assigned type O.

For BC5CDR, the distant labels come from
Shang et al. (2018). Specifically, the authors of
the paper collect a dictionary for the biomedical
dataset. The dictionary is a combination of both the
MeSH database and the CTD Chemical and Dis-
ease vocabularies. The dictionary contains 322,882
chemical and disease entity surfaces. Entity labels
are generated by exact string matching, and any
conflicting matches are resolved by maximizing
the total number of matched tokens.

F Hyperparameters and Experiment
Settings

Detailed hyper-parameter settings for each dataset
are shown in Table 9. We tune hyperparameters
with Grid-Search over the small validation sets
shown in Table 6. Specifically, we first tune voter
hyperparameters with one voter. The learning rates
are set as 1e-5 for all datasets. Voter drop negative
ratios are chosen from {0.1, 0.3, 0.5}, voter training
epochs from {1, 5, 10, 15}, γ from {10, 20}. Then
we tune curriculum learning hyperparameters. The
stage epochs are chosen from {1, 2, 3} and learning
rates are chosen from {1e-5, 3e-5, 5e-5, 7e-5, 9e-
5}. Other hyperparameters are set without tuning
accordingly. For example, for datasets CoNLL03,
OntoNotes5.0, Webpage, Twitter, Wikigold, QTL
and BC5CDR, the maximum sequence length is set
as 150, 230, 120, 160, 120, 180, 280 respectively,
to ensure the algorithm works correctly. For all
the datasets, we train them with a batch size of 32
sentences and apply Adam optimizer (Kingma and
Ba, 2014). The number of voters K and the num-
ber of curricula C are set as 5 and 5, respectively.
The curriculum selective factor τ is set to 0.5 and
random seed to 42. We apply cross-entropy loss
to OntoNotes5.0 and Twitter since they have more
entity types and apply MAE loss to other datasets.

We use the pre-trained RoBERTa as the back-
bone model for both the Voter and NER classifier5.
For all datasets, we use roberta-base6. We report

5We will release code upon paper acceptance.
6https://huggingface.co/roberta-base

single-run results for the model performance and
the random seed is set to 42. We employ PyTorch7

and conduct all experiments on a server with a
Tesla A100 GPU (32G).

G Re-Examine Baselines on QTL

We have explored various DS-NRE methods for
QTL dataset. Our first attempt is AutoNER, which
requires not only a dictionary for entity annota-
tion but also a larger dictionary, called full-dict,
for marking unknown labels, which leads to in-
creased manual effort. To address this, we gath-
ered a comprehensive dictionary of 26,620 poten-
tial trait entities. Unlike traditional machine learn-
ing approaches, AutoNER uses both a validation
set and a test set during training and eliminates the
need for hyperparameter tuning. In our exploration
of RoBERTa-ES and BOND, we encountered the
practice of using the test set for hyperparameter
tuning during training. To rectify this, we mod-
ified the code to perform hyperparameter tuning
on the validation set and conducted tests on the
test set, focusing on hyperparameter tuning of early
stop criteria and self-training period. For SCDL
and ASTEN, we applied the hyperparameter tuning
strategies outlined in the paper. Note that CuPUL
without curriculum learning is essentially equiva-
lent to Conf-MPU when there is one entity type.
Therefore, Conf-MPU is not presented in the re-
sults.

H Ablation Study

Curriculum Learning. To evaluate the effectiveness
of curriculum learning in CuPUL, we compare it
with two variations of itself. First, we use the five
voters trained using positive and sampled negative
examples and take the average of their soft label
predictions as the result. The results are shown as
voter ensemble in Table 8. Second, we include the
result of CuPUL-curr from Table 10 since it is an-
other variation. To evaluate the effectiveness of the
Conf-MPU loss estimation for curriculum learn-
ing in CuPUL, we use the regular loss estimation,
which considers unlabeled tokens as non-entity to-
kens, denoted as w/o Conf-MPU in Table 8.

Our analysis reveals the critical role of each com-
ponent, as removing any of them results in a signif-
icant drop in the F1 score. Compared CuPUL-curr
with w/o Conf-MPU, we find that CuPUL-curr con-
sistently achieves higher recall. This is attributed

7https://pytorch.org/

https://huggingface.co/roberta-base
https://pytorch.org/
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Figure 3: Screenshot for online annotation tool TeamTat.

hyper-parameter CoNLL03 Twitter OntoNotes5.0 Wikigold Webpage BC5CDR QTL
train set sentence # 14041 2393 115812 1142 385 4560 18706
voter drop negative 0.3 0.1 0.3 0.1 0.1 0.3 0.3
voter learning rate 1e-5 1e-5 1e-5 1e-5 1e-5 1e-5 1e-5

voter learning epochs 1 5 1 10 15 5 1
Conf-MPU γ 20 10 20 10 10 20 20

curriculum learning stage epochs 1 2 1 2 2 1 1
curriculum learning learning rate 1e-5 7e-5 3e-5 1e-5 5e-5 1e-5 5e-5

Table 9: The hyper-parameters used in CuPUL

to Conf-MPU primarily addressing false negatives
(Zhou et al., 2022) and partial false positives (see
the following discussions), leading to more tokens
being predicted as entities, thereby enhancing re-
call. Conversely, w/o Conf-MPU exhibits higher
precision since it tackles both false positives and
positive type errors. Addressing positive type er-
rors benefits both precision and recall, but the in-
crease in precision is more pronounced compared
to CuPUL-curr.

We observed an interesting synergistic effect on
the Wikigold dataset: CuPUL has much higher pre-
cision than w/o Conf-MPU and CuPUL-curr, as
shown in Table 8. To investigate this phenomenon
further, we examined the loss function of Conf-
MPU. For clarity, we denote the four terms in
Eq.(6) as follows.

A = ℓ(f(x
T∗
i

j ,θ), i)

B = 1
λ̂(x

T∗
i

j )>ϵ
ℓ(f(x

T∗
i

j ,θ), 0)
1

λ̂(x
T∗
i

j )

C = ℓ(f(x
T∗
i

j ,θ), 0)

D = 1
λ̂(x

T∗
0

j )≤ϵ
ℓ(f(x

T∗
0

j ,θ), 0) (9)

If a sample is annotated as an entity of a certain

type, the Conf-MPU loss on this token is A+B−C.
If the confidence score for this token is lower than ϵ,
then B = 0 and the Conf-MPU loss on this token is
A− C. While using regular non-PU-based loss, the
loss of this sample is A. For a false positive sample,
if Conf-MPU also has a low confidence score, and
the loss on this sample A−C is smaller than A (the
regular loss). Consequently, Conf-MPU can avoid
overfitting to false positive errors for such cases.
Conf-MPU cannot handle samples with positive
type errors. For those samples, Conf-MPU may
still have high confidence scores that they are en-
tities (close to 1), leading to B − C close to 0, and
thus the loss is A, same with regular loss. So, in
summary, Conf-MPU can be robust to false posi-
tives (non-entity samples labeled as entities) and
false negatives (entity samples mistakenly labeled
as non-entity) but not to positive type errors (e.g., a
sample of type PER is labeled as ORG). In (Zhou
et al., 2022), since they assume all positive annota-
tions are correct, only the impact of false negatives
was discussed.

Curriculum learning, on the other hand, handles
false positives and positive type errors by learning
from cleaner samples earlier and with more epochs.
We also noticed that the three error types may be of
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Method CoNLL03 Twitter OntoNotes5.0 Wikigold Webpage BC5CDR
Fully Supervised

RoBERTa# 90.11 (89.14/91.10) 52.19 (51.76/52.63) 86.20 (84.59/87.88) 86.43 (85.33/87.66) 72.39 (66.29/79.73) 90.99 (-/-)†

Span-based DS-NER models
SANTA3 86.59 (86.25/86.95) - 69.72 (69.24/70.21) - 71.79 (78.40/66.72) 79.23 (81.74/76.88)
Top-Neg3 80.55 (81.07/80.23) 52.86 (52.30/53.55) - - - 80.39 (82.09/78.90)

CLIM3 85.4 (-/-) 53.8 (-/-) 69.6 (-/-) 70 (-/-) 67.9 (-/-) -
DS-NER without Self-training
KB-Matching# 71.40 (81.13/63.75) 35.83 (40.34/32.22) 59.51 (63.86/55.71) 47.76 (47.90/47.63) 52.45 (62.59/45.14) 64.32 (86.39/51.24)†

AutoNER# 67.00 (75.21/60.40) 26.10 (43.26/18.69) 67.18 (64.63/69.95) 47.54 (43.54/52.35) 51.39 (48.82/54.23) 79.99 (82.63/77.52)†

RoBERTa-ES# 75.61 (83.76/68.90) 46.61 (53.11/41.52) 68.11 (66.71/69.56) 51.55 (49.17/54.50) 59.11 (60.14/58.11) 73.66 (80.43/67.94)†

Conf-MPU† 79.16 (78.58/79.75) - - - - 77.22 (69.79/86.42)†

CuPUL-curr 83.18 (83.69/82.68) 50.12 (47.48/53.07) 67.76 (65.66/70.00) 66.43 (58.89/76.18) 65.15 (62.89/67.57) 79.91 (75.07/85.43 )
CuPUL 85.09 (84.64/85.53) 54.34 (54.47/54.20) 68.06 (66.31/69.91) 70.53 (67.06/74.39) 73.10 (74.65/71.62) 80.19 (74.91/86.28)

DS-NER with Self-training
BOND# 81.15 (82.00/80.92) 48.01 (53.16/43.76) 68.35 (67.14/69.61) 60.07 (53.44/68.58) 65.74 (67.37/64.19) -

RoSTER¶ 85.40 (85.90/84.90) - - 67.80 (64.90/71.00) - -
SCDL‡ 83.69 (87.96/79.82) 51.10 (59.87/44.57) 68.61 (67.49/69.77) 64.13 (62.25/66.12) 68.47 (68.71/68.24) -

ATSEN‡ 85.59 (86.14/85.05) 52.46 (62.32/45.30) 68.95 (66.97/71.05) - 70.55 (71.08/70.03) -
desERT‡ 86.95 (86.41/87.49) 52.26 (57.65/47.80) 69.17 (66.63/71.92) 65.99 (62.87/69.42) 72.73 (72.48/72.97) -

CuPUL+ST 86.64 (86.02/87.27) 54.78 (57.32/52.46) 68.20 (66.57/69.11) 70.19 (66.96/73.74) 74.48 (76.06/72.97) 80.92 (75.45/87.26)

Table 10: Performance on benchmark datasets: F1 Score (Precision/Recall) (in %). # marks the row of results
reported by Liang et al. (2020). ¶ marks the row of results reported by Meng et al. (2021), where results for Twitter,
OntoNote5.0 and Webpage are not reported in Meng et al. (2021). ‡ marks the row of results reported by Zhang
et al. (2021b). 3 marks the row of results from the method proposed paper respectively. † marks the results from
Zhou et al. (2022). The best results are in bold, second best results are in underline.

different difficulty scores in our curriculum sched-
uler. Some false positive entities in Wikigold, such
as “The” and “Welcome”, have relatively low diffi-
culty scores because voters agreed that they are not
entities. This type of noise was introduced in the
2nd and 3rd curriculum, resulting in a bigger im-
pact than noise introduced in later curricula. When
Curriculum learning and Conf-MPU are combined
together, the false positive noises introduced in
early curricula, which had low λ, can be success-
fully addressed by the Conf-MPU loss function.
This significantly improves model precision and
creates a synergistic effect on the Wikigold dataset.
Twitter, on the other hand, is dominated by false
negatives (60.41%). Curriculum learning without
Conf-MPU suffered from the false negatives more,
resulting in low recall. The Conf-MPU loss in
CuPUL addressed this error issue and, therefore,
improved recall.

Distant Labels. In previous methods, a moder-
ately well-trained model is often used to detect
label noise, and the confidently predicted soft la-
bels from the moderately well-trained model are
often used to replace the noisy distant labels. Based
on our previous experiments, the ensembled voters
can be viewed as a moderately well-trained model,
and the earlier curricula are formed with data that
the moderately well-trained model can confidently
predict. We study which labels should be used for
curriculum learning in CuPUL, the voters’ ensem-
bled soft labels or the noisy distant labels. Note that

the ensembled labels used here are the soft labels
of the voters’ ensemble. We use KL-divergence
as the loss function in curriculum learning to learn
from soft labels.

Figure 4 plots the results regarding F1 scores
on test data with respect to incremental curriculum
stages. We can see that CuPUL learns in almost all
stages of the curricula, and the F1 value is steadily
improving until the second last curriculum. How-
ever, using ensembled soft labels, the model has a
good start but reaches the upper bound quickly. We
have the following insights from this experiment.
1) A model that only learns from the confidently
predicted labels and ignores the potential noisy data
may converge faster but can be impacted by the per-
formance bottleneck of the initial model. 2) the last
curricula may contain high label noise, so training
on the last curricula may degrade the performance
slightly. However, thanks to the curriculum learn-
ing schedule, the model is overall robust to noise
in the last curricula.

I Parameter Study

Here, we perform parameter studies. Due to the
simplicity of CuPUL, we mainly study two param-
eters: the number of voters V and the number of
curricula η. To ensure comparability of experimen-
tal results, we keep all other parameters fixed and
only change the corresponding parameter (V or η)
to demonstrate their impact. The experiments are
carried out on Wikigold.
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Index 1 2 3 4 5 6 7 8 9
Token the regiment was attached to Howe ’s Brigade of · · ·

Ground Truth O O O O O ORG ORG ORG O
Distant Label O O O O O ORG ORG ORG ORG
Curriculum # 0 0 0 0 0 2 3 2 4

Index 10 11 12 13 14 15 16 17 18
Token the IV Corps of the Army of the Potomac

Ground Truth O ORG ORG O O ORG ORG ORG ORG
Distant Label O ORG ORG ORG O ORG ORG O O
Curriculum # 0 2 2 2 0 2 2 0 0

Table 11: Case study on Wikigold. The selected sentence is "After burying the dead on the field of Second Battle of
Bull Run, the regiment was attached to Howe ’s Brigade of Couch ’s Division of the IV Corps of the Army of the
Potomac where it replaced De Trobriand ’s 55th New York, Gardes Lafayette regiment on September 11, 1862."
This table shows two pieces of this sentence.

Figure 4: F1 scores of CuPUL on test data of Wikigold
trained with Distant Labels (red) and Ensembled Labels from
voters (blue) after each curriculum training stage.

Figure 5: Span Level Precision, Recall, and F1 scores
of CuPUL with respect to Number of Voters V .

I.1 Number of Voters V

Figure 5 shows the effect of the number of voters
V to CuPUL performance. From the figure, we
can see that when there are only two voters, the
performance of CuPUL is poor. This is understand-
able because, with too few voters, the difficulty
scores estimated are unreliable, which leads to a
low-quality curriculum scheduler. As the number
of voters increases, the performance of CuPUL also
rapidly improves. When the number of voters is 4,
it reaches a local maximum. Then, as the number
of voters increases, the new voters can no longer

Figure 6: Span Level Precision, Recall, and F1 scores
of CuPUL with respect to Number of Curricula η.

provide new information for difficulty estimation,
and the results of CuPUL are stabilized around 0.7.
Therefore, with the consideration of computation
efficiency, a moderate number greater than or equal
to 4 can be chosen for the number of voters.

I.2 Number of Curricula η

Figure 6 shows the effect of the number of curricula
to CuPUL performance. Like the number of voters,
when the number of curricula is small, the perfor-
mance of CuPUL is poor. Too few curricula can
reduce the ability to distinguish between easy and
difficult tokens, leading to ineffective curriculum
learning. With the increase of η, the performance
of CuPUL also improves and reaches the best per-
formance at η = 5. After that, as the number of
curricula increases, the performance of CuPUL is
relatively stable. The performance of CuPUL be-
gins to decline after η > 8. The decline may be
caused by the data having been trained too many
rounds, and the model starts to overfit to noisy la-
bels.
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BOND RoSTER SCDL Conf-MPU CuPUL CuPUL-ST

Run Time
978s 2397s 4319s 732s 819s 1733s

16m18s 39m57s 71m59s 12m12s 13m39s 28m53s

Table 12: Efficiency analysis on CoNLL03, m means
minute, s means second

J Efficiency Analysis

In order to evaluate the efficiency of CuPUL, we un-
dertook performance timing of the principal meth-
ods on CoNLL03, with the results displayed in
Table 12. All tests were performed on an identi-
cal computing infrastructure. The training epochs
for BOND and SCDL were preset to 5, while
the parameter configurations for RoSTER adhered
strictly to those detailed in their respective paper.
The data in the table reveals that Conf-MPU had
the least time requirement. Our approach, CuPUL,
demonstrated competitive performance in this re-
gard. Even when the self-training procedure was
incorporated into CuPUL-ST, it maintained a sub-
stantial efficiency advantage relative to both RoS-
TER and SCDL.

K Case Study

To gain an intuitive understanding of how the cur-
riculum helps CuPUL, we selected a sentence from
the Wikigold corpus to show how CuPUL learns.
As shown in Table 11, we give the tokens, ground
truth labels, the distant labels, and the Number of
Curricula for each token in the sentence. We assign
each token an index for ease of discussion. We
display a sentence in two lines and omit some re-
peated parts. As can be seen from Table 11, the
two “of” (token 9 and token 16) are learned in dif-
ferent curricula. The one with the false positive
label (token 9) is arranged in the fourth curricu-
lum, whereas the one with the correct label (token
16) is learned early (the second curriculum). This
shows that the pre-trained language model has the
capability of providing prediction results for each
token while retaining context information, and thus,
the difficulty scores can be determined at the token
level.
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