@inproceedings{ghosh-rusert-2025-binaryselect,
title = "{B}inary{S}elect to Improve Accessibility of Black-Box Attack Research",
author = "Ghosh, Shatarupa and
Rusert, Jonathan",
editor = "Rambow, Owen and
Wanner, Leo and
Apidianaki, Marianna and
Al-Khalifa, Hend and
Eugenio, Barbara Di and
Schockaert, Steven",
booktitle = "Proceedings of the 31st International Conference on Computational Linguistics",
month = jan,
year = "2025",
address = "Abu Dhabi, UAE",
publisher = "Association for Computational Linguistics",
url = "https://aclanthology.org/2025.coling-main.728/",
pages = "10960--10976",
abstract = "Adversarial text attack research is useful for testing the robustness of NLP models, however, the rise of transformers has greatly increased the time required to test attacks. Especially when researchers do not have access to adequate resources (e.g. GPUs). This can hinder attack research, as modifying one example for an attack can require hundreds of queries to a model, especially for black-box attacks. Often these attacks remove one token at a time to find the ideal one to change, requiring n queries (the length of the text) right away. We propose a more efficient selection method called BinarySelect which combines binary search and attack selection methods to greatly reduce the number of queries needed to find a token. We find that BinarySelect only needs log{\_}2(n) * 2 queries to find the first token compared to n queries. We also test BinarySelect in an attack setting against 5 classifiers across 3 datasets and find a viable tradeoff between number of queries saved and attack effectiveness. For example, on the Yelp dataset, the number of queries is reduced by 32{\%} (72 less) with a drop in attack effectiveness of only 5 points. We believe that BinarySelect can help future researchers study adversarial attacks and black-box problems more efficiently and opens the door for researchers with access to less resources."
}
<?xml version="1.0" encoding="UTF-8"?>
<modsCollection xmlns="http://www.loc.gov/mods/v3">
<mods ID="ghosh-rusert-2025-binaryselect">
<titleInfo>
<title>BinarySelect to Improve Accessibility of Black-Box Attack Research</title>
</titleInfo>
<name type="personal">
<namePart type="given">Shatarupa</namePart>
<namePart type="family">Ghosh</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Jonathan</namePart>
<namePart type="family">Rusert</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<originInfo>
<dateIssued>2025-01</dateIssued>
</originInfo>
<typeOfResource>text</typeOfResource>
<relatedItem type="host">
<titleInfo>
<title>Proceedings of the 31st International Conference on Computational Linguistics</title>
</titleInfo>
<name type="personal">
<namePart type="given">Owen</namePart>
<namePart type="family">Rambow</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Leo</namePart>
<namePart type="family">Wanner</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Marianna</namePart>
<namePart type="family">Apidianaki</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Hend</namePart>
<namePart type="family">Al-Khalifa</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Barbara</namePart>
<namePart type="given">Di</namePart>
<namePart type="family">Eugenio</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Steven</namePart>
<namePart type="family">Schockaert</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<originInfo>
<publisher>Association for Computational Linguistics</publisher>
<place>
<placeTerm type="text">Abu Dhabi, UAE</placeTerm>
</place>
</originInfo>
<genre authority="marcgt">conference publication</genre>
</relatedItem>
<abstract>Adversarial text attack research is useful for testing the robustness of NLP models, however, the rise of transformers has greatly increased the time required to test attacks. Especially when researchers do not have access to adequate resources (e.g. GPUs). This can hinder attack research, as modifying one example for an attack can require hundreds of queries to a model, especially for black-box attacks. Often these attacks remove one token at a time to find the ideal one to change, requiring n queries (the length of the text) right away. We propose a more efficient selection method called BinarySelect which combines binary search and attack selection methods to greatly reduce the number of queries needed to find a token. We find that BinarySelect only needs log_2(n) * 2 queries to find the first token compared to n queries. We also test BinarySelect in an attack setting against 5 classifiers across 3 datasets and find a viable tradeoff between number of queries saved and attack effectiveness. For example, on the Yelp dataset, the number of queries is reduced by 32% (72 less) with a drop in attack effectiveness of only 5 points. We believe that BinarySelect can help future researchers study adversarial attacks and black-box problems more efficiently and opens the door for researchers with access to less resources.</abstract>
<identifier type="citekey">ghosh-rusert-2025-binaryselect</identifier>
<location>
<url>https://aclanthology.org/2025.coling-main.728/</url>
</location>
<part>
<date>2025-01</date>
<extent unit="page">
<start>10960</start>
<end>10976</end>
</extent>
</part>
</mods>
</modsCollection>
%0 Conference Proceedings
%T BinarySelect to Improve Accessibility of Black-Box Attack Research
%A Ghosh, Shatarupa
%A Rusert, Jonathan
%Y Rambow, Owen
%Y Wanner, Leo
%Y Apidianaki, Marianna
%Y Al-Khalifa, Hend
%Y Eugenio, Barbara Di
%Y Schockaert, Steven
%S Proceedings of the 31st International Conference on Computational Linguistics
%D 2025
%8 January
%I Association for Computational Linguistics
%C Abu Dhabi, UAE
%F ghosh-rusert-2025-binaryselect
%X Adversarial text attack research is useful for testing the robustness of NLP models, however, the rise of transformers has greatly increased the time required to test attacks. Especially when researchers do not have access to adequate resources (e.g. GPUs). This can hinder attack research, as modifying one example for an attack can require hundreds of queries to a model, especially for black-box attacks. Often these attacks remove one token at a time to find the ideal one to change, requiring n queries (the length of the text) right away. We propose a more efficient selection method called BinarySelect which combines binary search and attack selection methods to greatly reduce the number of queries needed to find a token. We find that BinarySelect only needs log_2(n) * 2 queries to find the first token compared to n queries. We also test BinarySelect in an attack setting against 5 classifiers across 3 datasets and find a viable tradeoff between number of queries saved and attack effectiveness. For example, on the Yelp dataset, the number of queries is reduced by 32% (72 less) with a drop in attack effectiveness of only 5 points. We believe that BinarySelect can help future researchers study adversarial attacks and black-box problems more efficiently and opens the door for researchers with access to less resources.
%U https://aclanthology.org/2025.coling-main.728/
%P 10960-10976
Markdown (Informal)
[BinarySelect to Improve Accessibility of Black-Box Attack Research](https://aclanthology.org/2025.coling-main.728/) (Ghosh & Rusert, COLING 2025)
ACL