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Abstract

When carefully optimized by human experts,
naive prompts can significantly enhance the
task performance of large language models
(LLMs). However, such expert-driven prompt
optimizations are resource-intensive. To ad-
dress this, some studies have proposed Auto-
matic Prompt Optimization (APO), which re-
fines naive prompts according to task outputs
from in-box testing models, utilizing advanced
LLMs (e.g., GPT-4) in an ad-hoc way. Al-
though effective, current approaches face chal-
lenges in generalization and privacy risks. To
overcome these limitations, we have developed
the first large-scale Prompt Optimization Pref-
erence (POP) dataset, fine-tuned offline local
LLM-based optimizers, and conducted fairly
evaluations across various downstream mod-
els. Our method, named Free-from Instruction-
oriented Prompt Optimization (FIPO), allows
precise optimization of the core task instruc-
tions in naive prompts in a model-agnostic man-
ner. FIPO uses a modular APO template that
dynamically incorporates the naive task instruc-
tions, optional instruction responses, and op-
tional ground truth to produce refined prompts.
The POP dataset is meticulously constructed
using advanced LLMs, undergoing rigorous
cross-validation by human experts and ana-
lytical models. By leveraging insights from
this dataset, along with Tulu2 models and di-
verse fine-tuning strategies, we validate the effi-
cacy of the FIPO framework across five public
benchmarks and six testing models.1

1 Introduction

Large Language Models (LLMs) have demon-
strated impressive capabilities (Zhao et al., 2023a;
Yang et al., 2023c; Achiam et al., 2023) across
various benchmarks (Cobbe et al., 2021; Suzgun
et al., 2023; Bisk et al., 2020; Huang et al., 2019;

1Our dataset and codes are available at: https://github.
com/LuJunru/FIPO_Project.

Hendrycks et al., 2021). However, their task per-
formance is highly dependent on the quality of the
given task prompt. While LLMs may struggle to
produce correct answers when working with naive
task prompts, they can excel on the same tasks
when guided by carefully optimized, high-quality
prompts crafted by human experts (Wei et al., 2022;
Kojima et al., 2022; Yang et al., 2023b).

Obviously, expert-based prompt optimization
is costly. Therefore, in recent years, Automatic
Prompt Optimization (APO) has emerged as a
prominent area of research. Discrete APO is one
of the popular strategies, focusing on identifying
optimal combinations of discrete tokens to serve as
optimized prompts (van de Kar et al., 2022; Yuan
et al., 2021; Jiang et al., 2020; Pryzant et al., 2023).
Particularly, there has been significant interest in
LLM-based discrete APO (Zhou et al., 2023; Do
et al., 2023; Wang et al., 2023a), which introduce
ad-hoc strategies leveraging leading API-accessible
LLMs (e.g., GPT-4 (Achiam et al., 2023)).

These APO approaches typically involve itera-
tive optimization between an in-box testing gen-
erator Mg−in and an advanced optimizer Mo−api.
As illustrated in the upper half of Figure 1, the gen-
erator Mg−in first responds to a naive prompt xn

such as: “Calculate the average value of the list”,
and then the optimizer Mo−api provides rational
feedback and suggests several upgraded prompt
candidates {xo}. This iterative process continues
until a high-quality optimized prompt xo is gen-
erated. This final prompt is tailored to the in-box
generator Mg−in, ensuring it produces the desired
response, e.g., “The answer value is 44.25”.

Despite their effectiveness, several drawbacks
remain: (1) Privacy Risk. The entire online opti-
mization process relies on external LLM services,
exposing sensitive information to third-party sys-
tems; (2) Poor Generalization. Ad-hoc optimiza-
tion is highly model-specific, as it depends on im-
mediate testing responses from the in-box gener-

https://github.com/LuJunru/FIPO_Project
https://github.com/LuJunru/FIPO_Project
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Figure 1: Online Ad-hoc APO vs. our Local End-to-End FIPO: Although both approaches leverage advanced
LLMs (e.g., GPT-4), FIPO introduces a a locally trained pipeline that eliminates any dependence on in-box model
generators, ensuring a fully self-contained and end-to-end optimization process.

ator Mg−in, leading to performance degradation
when tested with out-of-box generators Mg−out.
For instance, the out-of-box generator Mg−out

might produce an incorrect response like “44.1”.
To address the above limitations, we introduce

Free-form Instruction-oriented Prompt Optimiza-
tion (FIPO). The bottom half of Figure 1 illustrates
the FIPO framework. Unlike the online ad-hoc
APO approach, FIPO directly fine-tunes a general
local optimizer Mlocal, and applies it across any
testing generator Mg. In specific, we first design
a meta-template for universal APO (Figure 2), en-
abling the collection of 30,000 prompt optimization
preference examples using an advanced optimizer
Mo−api (§ 2.3). We demonstrate the reliability
of this dataset through multiple cross-validation
methods (Table 1). Building on this foundation, we
employ mainstream end-to-end fine-tuning strate-
gies to create an effective local optimizer Mo−local

(Figure 3). For example, in Figure 1, the local op-
timizer Mlocal generates an optimized prompt xo,
providing clear, stepwise guidance: “calculate the
average value by finding the sum of all elements
and dividing it by the total number of elements
in the list”. Such stepwise guidance significantly
enhances the answer quality across any testing gen-
erator Mg. Our contributions are as follows:

(1) We highlight the drawbacks of previous on-

line ad-hoc APO, and introduce FIPO, a lo-
cal free-form instruction-oriented prompt op-
timization. FIFO employs a generic APO tem-
plate that allows the optimizer to operate in-
dependently of pre-built testing generators, a
limitation of former methods.

(2) Leveraging the APO template, we com-
pile a large-scale Prompt Optimization Pref-
erence dataset (POP) with 30,000 exam-
ples. We explore several mainstream fine-
tuning strategies, including Supervised Fine-
tuning (SFT), Direct Preference Optimization
(DPO) (Rafailov et al., 2023), and Identity
Preference Optimization (IPO) (Azar et al.,
2023), while also developing an Iterative Pref-
erence Learning (IPL) pipeline for enhanced
preference optimization.

(3) We evaluate the efficacy and adaptability of
the fine-tuned FIPO optimizer across five
downstream benchmarks and three diverse
generators, and obtain superior results com-
pared to existing online ad-hoc APO methods.

2 Methodology

In this section, we start with task formulation
(§ 2.1), then introduce our meta-template for uni-
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Figure 2: Step 1 and 2 of FIPO: (1) Design a meta-template for universal APO; (2) Collect 30,000 large-scale
prompt optimization preference exemples using a suboptimal LLM (GPT-3.5-turbo) and an optimal LLM (GPT-4).

versal APO (§ 2.2), the collected POP data (§ 2.3)
and the training strategies employed (§ 2.4).

2.1 Task Formulation
We denote FIPO as end-to-end text generation.
In the training phase, a local optimizer model
Mo−local is supervisedly fine-tuned to generate an
optimized prompt x̂o:

x̂o = argmax
Mo−local

p(x̂o|xn, [ŷn], [yn]) (1)

based on the naive prompt xn, optional naive re-
sponse ŷn, and optional ground truth yn. In addi-
tion, pairwise chosen optimized prompt xo+ and
rejected optimized prompt xo− are provided as la-
bels in training. The optional naive response ŷn is
generated for the naive prompt xn using one neural
generator model Mg∗:

ŷn = argmax
Mg∗

p(ŷn|xn) (2)

While in the testing phase, our ultimate target is to
obtain a more superior optimized testing response
ŷo
t than the naive testing response ŷn

t , when ap-
plying any testing generator Mg to the optimized
testing prompt x̂o

t and the naive testing prompt xn
t ,

respectively:
ŷo
t ≻ ŷn

t (3)

ŷo
t = argmax

Mg

p(ŷo
t |x̂o

t ), ŷ
n
t = argmax

Mg

p(ŷn
t |x̂n

t ) (4)

where Mg could be either same as or different from
Mg∗. And specifically, x̂o

t is enhanced from xn
t by

the fine-tuned optimizer Mo−local:

x̂o
t = argmax

Mo

p(x̂o
t |xn

t ) (5)

In contrast, former ad-hoc APO has no training
phase but only the iterative online testing pipeline
with mandatory in-box testing response ŷoi

t :

x̂
oi+1
t = argmax

Mo−api

p(x̂
oi+1
t |xoi

t , ŷoi
t ), xo1

t = xn
t (6)

ŷoi
t = argmax

Mg−in

p(ŷoi
t |xoi

t ), ŷo1
t = ŷn

t (7)

where Mg−in is a prior in-box generator.

2.2 Modular Template
As aforementioned in section 2.1, we first design
a modular template that ensures flexibility in con-
tent management. Figure 2 illustrates our template,
shown in the middle, taking mandatory naive task
instruction xn, optional naive response ŷn and op-
tional ground truth response yn as inputs. Addi-
tional description is then appended for clarity, in
which we directly claim the optionality of ŷn and
yn: “The optional sliver response ··· based on the
sliver prompt ··· optional golden response ···”.

We use this modular template for all sections in
FIPO, including the dataset collection, fine-tuning
the local optimizer Mo−local, and testing various
downstream generators {Mg}. The key difference
between these sections is we accordingly adjust
the optional responses, thus addressing potential
exposure bias between the training and the infer-
ence phases (Eq. 1 vs. Eq. 5): (1) Keep both in
data collection. We introduce the collection of our
POP data in section 2.3; (2) Diversely keep partial
responses in training. We present this strategy in
section 2.4; (3) Remove all responses in testing.
We report testing results in section 3.2.
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Figure 3: Step 3 of FIPO: transitional dataset diversification and several mainstream fine-tuning strategies.

2.3 Prompt Optimization Preference Data
We decide to distill the refined prompt optimization
capabilities from prominent yet proprietary LLMs,
instead of directly integrating them in an ad-hoc
way. Thus, we collect the Prompt Optimization
Preference (POP) data. Shown in Figure 2, to en-
sure the most directional optimization, we send
naive prompt xn, naive response ŷn, and ground
truth response yn to one suboptiomal LLM GPT-
3.5-turbo and one optimal LLM GPT-42, to col-
lect contrastive POP data (xo+, xo−). The naive
prompt xn is sampled from the Alpaca dataset,
which contains 52K diverse instructions and cor-
responding responses ŷn generated by the Text-
davinci-003 model (Taori et al., 2023). We also
collect another GPT4-generated response for the
Alpaca dataset from public literature (Ghosal et al.,
2023). There are no official ground truth responses
(e.g., from human experts) for the Alpaca data, we
therefore consider GPT-4 responses as the ground
truth response yn, given its demonstrated analyti-
cal capabilities comparable to humans (Pan et al.,
2023a). As shown at the bottom of Figure 2, GPT-4
offers a more pedagogical step-by-step optimized
prompt compared to GPT-3.5-turbo. We report
complete collection template in Table 10.

We finally narrow down our dataset to 30k sam-
ples and report the quality post-checking in Ta-
ble 1. We adopt cross-validation using three differ-
ent methods: critiques from an external alignment

2https://platform.openai.com/docs/models

GPT-4 Win Rate (%)
Response Prompt Scale

UltraRM 13B (Cui et al., 2023) 91.49 82.13 30k

GPT4 Self-check 80.56 92.29 3k

Human Expert 88.29 95.21 1k

Average 86.78 89.88 N/A

Table 1: Quality cross-validation on our dataset.

model UltraRM (Cui et al., 2023), self-judgement
from the GPT-4, and manual checking by human
experts. The “Response” and “Prompt” columns
refer to the proportions that GPT-4-generated re-
sponse and GPT-4-optimized prompt is better than
the others, respectively. The average win rates for
both categories exceed 85%, ensuring the quality.

2.4 Fine-tuning Strategies

We introduce our fine-tuning strategies in Figure 3,
consisting of an initial step of transitional dataset
diversification followed by strategic fine-tuning.
Dataset Diversification. In the left hand of Fig-
ure 3, we evenly split the 30k samples as eight types
depending on the existence of naive response ŷn

and ground truth response yn, as well as a format
condition “generation” or “multi-choice”. Direc-
tionally fine-tuning optimizer has to relay on pre-
generated responses, while no any response will be
exposed during inference. Hence, the dataset diver-
sification is necessary to help reduce the exposure
gap between training and testing, and generalize

https://platform.openai.com/docs/models
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the original “generation” instruction format to an-
other common “multi-choice” instruction format.
The left bottom corner in Figure 3 takes an example
of Type 6. The responses ŷn and yn are modified
as candidates adhere to the naive prompt xn. We
then set “A” and “B” as new naive response ŷn and
ground truth response yn3.
Strategic Fine-tuning. The right side of Figure 3
introduces several end-to-end fine-tuning strategies
that we explored in this work. The right top is the
most well-known Supervised Fine-tuning (SFT),
which only takes the optimal optimized prompt
xo+ as the supervision signal:

LSFT (Mo) = −E(xn,ŷn,yn,xo+)∼D[x̂o − xo+]2 (8)

where D stands for the training set.
On the other hand, the right middle shows a con-

trastive fine-tuning methodology: Preference Opti-
mization, such as Direct Preference Optimization
(DPO) (Rafailov et al., 2023) and Identity Prefer-
ence Optimization (IPO) (Azar et al., 2023). Pref-
erence Optimization takes pairwise rejected label
xo− and chosen label xo+ as supervision. One of
the core differences from Preference Optimization
and SFT is the former one not only encourage the
generation of optimal preference, but also dampen
the generation of suboptimal preference:

LDPO(Mo) = −E(xn,ŷn,yn,xo+,xo−)∼D[log σ(β ·∆)] (9)

LIPO(Mo) = −E(xn,ŷn,yn,xo+,xo−)∼D[∆− 1

2β
]2 (10)

∆ = log
Mo(x

o+|xr, ŷr, yr)

Mref (xo+|xr, ŷr, yr)
−log

Mo(x
o−|xr, ŷr, yr)

Mref (xo−|xr, ŷr, yr)
(11)

where β is a hyperparameter factor. Mref refers
to the reference model, which is a frozen copy of
initial weights of Mo. The equations indicate that
IPO is a regularized version of DPO as it limits the
optimization range with squares.

Additionally, inspired by self-updating align-
ment (Lee et al., 2023; Anthropic, 2022; Yuan et al.,
2024), we develop a Iterative Preference Learning
(IPL) strategy for self-rewarding prompt optimiza-
tion. After each iteration of prompt optimization,
we ask the optimizer itself to determine if it success-
fully generate a superior prompt xn+ with a better
response ŷn+, and if so, to automatically replace
the previous inferior prompt xn and response ŷn,
leading to more rigorous training in next iteration:

LIPL(Mo) = −E(xn+,ŷn+,yn,xo+,xo−)∼DG(∆) (12)

3More details of data diversification are in Appendix A.

xn+ = Mo(x
n), ŷn+ = Mo(x

n+) (13)

xn+ =

{
xn+, Mo(x

n+, yn) ≻ Mo(x
n, yn)

xn, otherwise (14)

where G(∗) denotes as either IPO or DPO loss4.

3 Experiments

The ultimate target of FIPO lies in the general per-
formance enhancement with downstream genera-
tors Mg (Eq. 3). Herein, in the evaluation, we first
use fine-tuned optimizer Mo to produce optimized
testing prompts x̂o

t , then obtain optimized testing
response ŷo

t and naive testing response ŷn
t for an-

swer quality checking, as shown in the bottom right
corner of Figure 3. We begin with our experimental
settings (§ 3.1), efficacy presentation and compar-
isons against online ad-hoc APO methods (§ 3.2.1),
then follow with analysis of different fine-tuning
strategies (§ 3.2.2), and case analysis (§ 3.2.3)5.

3.1 Experimental Settings
3.1.1 Baselines
We compare FIPO with two SOTA APO methods:
APE (Zhou et al., 2023) and PromptAgent (Wang
et al., 2023a). APE, stands for Automatic Prompt
Engineer, is a template-based strategy that ask
one LLM to generate a pool of candidate prompts
based on the templates, then select one accord-
ing to the evaluation scores. PromptAgent elim-
inates templates and replaces with Monte Carlo
Tree Search (Abramson, 2014) for using a evalua-
tor model to guide the generator. Both APE and
PromptAgent are training-free, aiming to model-
oriented APO in an ad-hoc manner, while we real-
ize completely offline training. Following former
works, we use GPT-3.5-turbo as the in-box genera-
tor and GPT-4 as the optimizer in both baselines.

We use Tulu2 models as our bases, which is
a fine-tuned version of Llama2 (Touvron et al.,
2023) trained on a mix of publicly available
datasets (Ivison et al., 2023). We fine-tuning lo-
cal optimizer with Tulu2-13B and Tulu2-70B.

3.1.2 Evaluation Benchmarks
We include five benchmarks across two most com-
mon formats: (1) GSM8k (Cobbe et al., 2021), a
generative dataset contains 1.3k primary level math
questions; (2) BigBenchHard (BBH) (Suzgun et al.,
2023), which involves 23 challenging reasoning
tasks. BBH has 6.4k testing samples, and asks for

4Algorithmic details of IPL lie in Appendix A and C.
5Hyperparameters and training cost are in Appendix B.
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Generation Multi-choice
Generator Prompt Source GSM8K (3) BBH (3) PiQA (3) CosmosQA (5) MMLU (5) Weighted Avg.

Llama2-7B Naive Prompt 8.89 31.21 62.78 43.09 46.58 41.73
(Touvron et al., 2023) FIPO Optimizer 11.70 33.50 69.37 52.11 54.56 48.10

Tulu2-13B Naive Prompt 39.06 36.49 76.62 55.13 57.43 52.53
(Ivison et al., 2023) FIPO Optimizer 40.17 40.26 78.58 57.68 59.10 54.79

Baichuan2-13B Naive Prompt 46.81 37.95 68.56 51.88 57.46 52.36
(Yang et al., 2023a) FIPO Optimizer 48.12 39.95 74.77 56.88 58.32 54.35

Table 2: Evaluation results of various downstream generator LLMs, using the best local optimizer from Table 3.

Figure 4: The FIPO-optimized prompts help various downstream testing LLMs (X-axis) gain more promising
improvements, compared with other prompt optimization approaches (shown by the bars). We specifically annotate
the improvements of FIPO against naive prompts from the original dataset (↑). More details: Appendix G and C.

generative answering; (3) PiQA (Bisk et al., 2020),
in which 1.8k common physical knowledge ques-
tions are proposed, alongside with multiple candi-
date choices; (4) CosmosQA (Huang et al., 2019).
There are around 3k commonsense-based multi-
choice questions in CosmosQA, equipped with four
candidate options; (5) MMLU (Hendrycks et al.,
2021), which is one of the largest multi-choice
benchmarks. MMLU covers 14k questions. For
our FIPO experiments, we report results on all five
benchmarks. While differently, since both APE and
PromptAgent only provide evaluations on 6 tasks
of BBH, we report the comparison results aligned
with their settings. As for the result metrics, either
“generation” or “multi-choice” benchmarks takes
few-shot format with strict answering templates
(e.g., “The answer is X”). Herein, we are able to
report the accuracy score for all benchmarks.

3.2 Experimental Results
3.2.1 Efficacy of FIPO

General improvements of FIPO. It can be con-
cluded that FIPO-optimized prompts have general
gains on different downstream generators across

five public benchmarks, shown in Table 2. The op-
timized prompts help Llama2-7B, Tulu2-13B and
Baichuan2-13B models gain 6.37%, 2.26% and
1.99% performance growth on average.

Comparable optimization capability against
online ad-hoc APO, even better. We would like
to compare the local FIPO optimizer with previ-
ous methods and direct prompt optimization using
GPT-4. Figure 4 reports experimental results on
six BBH tasks, following the experimental settings
in PromptAgent work (Wang et al., 2023a). Our
FIPO method takes the lead in all downstream tests,
except for the in-box tester GPT-3.5-turbo, which
is ad-hocly included during the iterative prompt
optimization in APE and PromptAgent. In specific,
the final average improvements on two open-source
70B models are around 3% to 5%, compared with
more than 10% gains on two open-source 7B mod-
els. We can notice that as the tested open-soruce
model grows larger and stronger, the effectiveness
of all prompt optimization methods significantly
decreases, which may be due to the firmness of the
larger model’s inherent knowledge. As for propri-
etary GPT-3.5 and GPT-4, we found that prompt
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Generation Multi-choice
FIPO Prompt Optimizer GSM8K (3) BBH (3) PiQA (3) CosmosQA (5) MMLU (5) Weighted Avg.

Naive Prompt 24.77 36.21 73.35 51.17 51.22 47.79

Best 13B Optimizer 18.42 33.55 72.03 49.14 48.20 44.93

SFT-70B 21.43 32.92 74.39 49.97 51.55 46.96
DPO-70B 27.74 35.56 74.17 54.93 52.73 49.07
IPO-70B 25.00 39.21 76.84 56.01 54.29 50.94

IPL-DPO-70B 25.13 35.25 74.95 50.46 52.12 48.10
IPL-IPO-70B 26.67 39.60 77.11 56.71 56.02 52.13

IPO-70B-gen 22.72 41.91 74.53 53.60 52.74 50.23
IPO-70B-partial 23.08 40.03 76.22 54.29 51.99 49.59

Table 3: Evaluation results of FIPO optimizer fine-tuned with different strategies, tested with same Tulu2-7B model.
The number attached with the benchmark is the number of in-context examples (e.g., BBH (3) means 3-shot testing
on BBH). FIPO only optimizes the last task instruction, leaving in-context examples remained.

optimization seems to be more beneficial to them.
Prompts optimized by our FIPO can help GPT3.5
improve the final average effect up to 22%, and
maintain an effect of about 8% on GPT4o.

3.2.2 Fine-tuning Analysis

We fine-tune Tulu2-13B and -70B models as our
local optimizer through different strategies as men-
tioned above. We use downstream performance of
Tulu2-7B for analyzing the effectiveness of differ-
ent fine-tuning strategies. Our findings are here:

Small optimizer fails. “Small” Tulu2-13B are
not up to the difficult prompt optimization task (the
4th line of Table 3). The average testing scores of
using optimized prompts even worse than using the
naive prompts written by human.

SFT vs. DPO/IPO vs. IPL. When simply pro-
vide a best optimized prompt as the supervision
label, indicated by SFT-70B results, the end-to-end
prompt optimization is still a hard task. While
when contrastive preference supervisions are pro-
vided, there are promising improvements obtains,
ranging from marginal 0.31% to significant 4.34%.
In terms of different preference fine-tuning meth-
ods, IPO beats DPO in either solely fine-tuning,
or joint integration in our proposed IPL pipeline,
which may due to its regularized design in Eq. 10.
We analyze more fine-tuning details and the self-
rewarding benefits of IPL in Appendix D.

Dataset diversification is necessary. In the
bottom of Table 3, we present ablation studies of
preprocessing dataset diversification, mentioned in
section 2.4. In specific, IPO-70B-gen stands for
not diversifying half of the training set into multi-
choice format, which is introduced as type 5,6,7

and 8 in Figure 3. As for IPO-70B-partial, we only
use type 3,4,7 and 8 in Figure 3 as pairwise diversi-
fication templates. The ablated optimizer weakens
all benchmarks, except BBH, which is due to its
unique symbolic reasoning pattern (Appendix F).

3.2.3 Case Analysis.
In Table 4, we present several examples from the
downstream testing benchmarks, discussing the ef-
ficacy and shortcomings of FIPO. Particularly, we
smear (key optimized content with blue), and over-
whelmed (cheating notes with underlines). The
1st optimized prompt of BBH case explicitly men-
tions that ”2000 is a leap year”, which is a key
detail for calculating dates in February. The 2nd
optimized prompt of MMLU question capitalizes
“NOT” to draw attention to the negative aspect, en-
suring the model focuses on identifying the incor-
rect option. It also explicitly instructs the model to
provide the letter of the incorrect option, reducing
ambiguity. And the 3rd optimized prompt of Cos-
mosQA case provides definitions for “miss” and
“hit” according to Signal Detection Theory, making
it easier for the model to understand the correct
term. While in the last GSM8K case, FIPO breaks
down the calculation into clear, step-by-step in-
structions, ensuring the model understands the pro-
cess of finding the average. However, it provides
overwhelmed cheating notes of the final answer6.

4 Related Work

Automatic Prompt Optimization (APO) is an
simple yet effective technique for grabbing poten-

6This issue mostly occurs in GSM8K and BBH’s math
calculation questions, happening <10%, in Appendix H.
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Naive Testing Prompt I xn
t1 from BBH:

Jane was born on the last day of February in 2000. Today is her 16-year-old birthday. What is the date a month ago in
MM/DD/YYYY?
Optimized Testing Prompt I xo

t1 by FIPO
As today marks Jane’s 16th birthday, determine the date from exactly one month prior. Jane was born on the last day of February
in the year 2000, a leap year. Ensure your response is in the format MM/DD/YYYY.

Naive Testing Prompt II xn
t2 from MMLU:

Three of the following are classic security properties; which one is not? A. Confidentiality, B. Availability, C. Correctness, D.
Integrity.
Optimized Testing Prompt II xo

t2 by FIPO
Which of the following is NOT one of the core security principles? A. Confidentiality, B. Availability, C. Correctness, D.
Integrity. Provide the letter corresponding to the incorrect option.

Naive Testing Prompt III xn
t3 from CosmosQA:

A team of engineers constructing signal lights for airplanes that they can use to guide them to runways are attempting to
determine the brightness needed for the pilot to be able to detect the tower at 1 mile away. They set the light to a test brightness
and establish communication with an inbound pilot. When the pilot is 1 mile away from the tower, he says he cannot see the
light. In terms of Signal Detection Theory, what would this be called?
Optimized Testing Prompt III xo

t3 by FIPO
According to Signal Detection Theory, when a pilot cannot detect a signal at a set brightness level, it is called a ’miss’. In
contrast, it is called a ’hit’. A team of engineers is testing the brightness of signal lights for airplanes to guide them to runways.
They establish communication with an inbound pilot and set the light to a test brightness. When the pilot is one mile away from
the tower, he reports that he cannot see the light. What term from Signal Detection Theory describes this situation?

Naive Testing Prompt IV xn
t4 from GSM8K:

Lily has a list of numbers: [12, 34, 56, 75]. Calculate the average value of the list.
Optimized Testing Prompt IV xo

t4 by FIPO
To find the average of the given list of numbers, first, you need to add all the numbers in the list, which are: 12, 34, 56, and 75.
Add them up, and you will get a sum of 177. Then, divide the sum by the total number of items in the list, which is 4. So,
177 divided by 4 equals 44.25. Therefore, the average of the list [12, 34, 56, 75] is 44.25.

Table 4: Examples from testing benchmarks.

tials of LLMs in various downstream scenarios.
Most APO methodologies can be categorized into
two types: discrete APO and continuous APO (Liu
et al., 2023). Discrete APO searches optimized
prompts with optimal combinations of discrete to-
kens (Wallace et al., 2019; Shin et al., 2020; Ben-
David et al., 2022; Davison et al., 2019; Deng
et al., 2022; Zhang et al., 2023; Xu et al., 2022).
For instance, (van de Kar et al., 2022) employed
text mining for searching candidate prompts from
knowledge triplets. While (Yuan et al., 2021),
(Haviv et al., 2021) and (Gao et al., 2021) utilized
Bart (Lewis et al., 2019), Bert (Devlin et al., 2018)
and T5 (Raffel et al., 2019) for optimizing prompts
in an paraphrasing manner, respectively.

In contrast, continuous APO proposes to search
better prompts in continuous embedding space
rather than limited to human-understandable dis-
crete tokens (Tsimpoukelli et al., 2021; Zhong et al.,
2021; Qin and Eisner, 2021; Hambardzumyan et al.,
2021; Wang et al., 2023b). Prefix Tuning (Li and
Liang, 2021) and Prompt Tuning (Lester et al.,
2021) are two well-known continuous APO meth-
ods that insert prefix vectors in front of the task
sequence, and then update their corresponding pa-
rameters. There are also hybrid works to insert

continuous embedding into discrete templates (Liu
et al., 2021; Han et al., 2021).
Preference Optimization for LLMs allows LLMs
to align with human minds in a more nuanced
way (Pan et al., 2023b), compared to SFT. Prox-
imal Policy Optimization (PPO) is one of the well-
known preference optimization approach to first
train a reward model with pairwise human prefer-
ence data, then align LLMs with the reward model
via reinforcement learning (Ouyang et al., 2022;
Bai et al., 2022). Despite its efficacy, PPO is often
blamed for its training instability and expensive
costs. To this end, Direct Preference Optimization
(DPO) have been proposed, aiming to align LLMs
through implicit modeling, thereby eliminating the
flaws associated with the explicit use of reward
models (Rafailov et al., 2023). Following works of
DPO are presented (Azar et al., 2023; Zhao et al.,
2023b; Ethayarajh et al., 2024; Lu et al., 2024).

5 Conclusion

We introduce FIPO, the Free-form Instruction-
oriented Prompt Optimization. The modular FIPO
template proposes to address APO as end-to-end
text generation, flexibly taking naive prompt, naive
response and ground truth as inputs, for obtain-
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ing a new optimized prompt. We hereby collect a
large-scale prompt optimization preference dataset,
employ with multiple fine-tuning strategies, and
then validate the efficacy across objective bench-
marks with various downstream generators.

Limitations

While FIPO demonstrates significant potential in
optimizing prompts for various downstream tasks,
there are several limitations to consider:

(1) Overwhelmed Cheating Notes. As shown
in the case analysis, FIPO sometimes provides
overly detailed instructions that can be considered
as “cheating notes”. This issue is particularly preva-
lent in tasks involving mathematical calculations.
While this enhances performance, it may not align
with the intended use of prompt optimization. (2)
Evaluation Metrics. The current evaluation pri-
marily focuses on accuracy metrics. While accu-
racy is important, other aspects such as the inter-
pretability, fairness, and ethical implications of the
optimized prompts should also be considered in
future work. (3) Optimization of In-context Ex-
amplars. FIPO does not include optimization of
the in-context examples, but rather focuses on the
optimization for the task instructions only.

Acknowledgements

This work was supported in part by the UK Engi-
neering and Physical Sciences Research Council
(EPSRC) through a Turing AI Fellowship (grant
no. EP/V020579/1, EP/V020579/2), and Innovate
UK through the Accelerating Trustworthy AI pro-
gramme (grant no. 10093055).

References
Bruce Abramson. 2014. The expected-outcome model

of two-player games. Morgan Kaufmann.

Josh Achiam, Steven Adler, Sandhini Agarwal, Lama
Ahmad, Ilge Akkaya, Florencia Leoni Aleman,
Diogo Almeida, Janko Altenschmidt, Sam Altman,
Shyamal Anadkat, et al. 2023. Gpt-4 technical report.
arXiv preprint arXiv:2303.08774.

Anthropic. 2022. Constitutional ai: Harmlessness from
ai feedback. Preprint, arXiv:2212.08073.

Mohammad Gheshlaghi Azar, Mark Rowland, Bilal
Piot, Daniel Guo, Daniele Calandriello, Michal
Valko, and Rémi Munos. 2023. A general theoret-
ical paradigm to understand learning from human
preferences. arXiv preprint arXiv:2310.12036.

Yuntao Bai, Andy Jones, Kamal Ndousse, Amanda
Askell, Anna Chen, Nova DasSarma, Dawn Drain,
Stanislav Fort, Deep Ganguli, Tom Henighan, et al.
2022. Training a helpful and harmless assistant with
reinforcement learning from human feedback. arXiv
preprint arXiv:2204.05862.

Eyal Ben-David, Nadav Oved, and Roi Reichart. 2022.
Pada: Example-based prompt learning for on-the-fly
adaptation to unseen domains. Transactions of the
Association for Computational Linguistics, 10:414–
433.

Yonatan Bisk, Rowan Zellers, Jianfeng Gao, Yejin Choi,
et al. 2020. Piqa: Reasoning about physical com-
monsense in natural language. In Proceedings of the
AAAI conference on artificial intelligence, volume 34,
pages 7432–7439.

Karl Cobbe, Vineet Kosaraju, Mohammad Bavarian,
Mark Chen, Heewoo Jun, Lukasz Kaiser, Matthias
Plappert, Jerry Tworek, Jacob Hilton, Reiichiro
Nakano, et al. 2021. Training verifiers to solve math
word problems. arXiv preprint arXiv:2110.14168.

Ganqu Cui, Lifan Yuan, Ning Ding, Guanming Yao,
Wei Zhu, Yuan Ni, Guotong Xie, Zhiyuan Liu, and
Maosong Sun. 2023. Ultrafeedback: Boosting lan-
guage models with high-quality feedback. arXiv
preprint arXiv:2310.01377.

Tri Dao, Dan Fu, Stefano Ermon, Atri Rudra, and
Christopher Ré. 2022. Flashattention: Fast and
memory-efficient exact attention with io-awareness.
Advances in Neural Information Processing Systems.

Joe Davison, Joshua Feldman, and Alexander Rush.
2019. Commonsense knowledge mining from pre-
trained models. In Proceedings of the 2019 Confer-
ence on Empirical Methods in Natural Language Pro-
cessing and the 9th International Joint Conference
on Natural Language Processing (EMNLP-IJCNLP),
pages 1173–1178, Hong Kong, China. Association
for Computational Linguistics.

Mingkai Deng, Jianyu Wang, Cheng-Ping Hsieh, Yi-
han Wang, Han Guo, Tianmin Shu, Meng Song, Eric
Xing, and Zhiting Hu. 2022. RLPrompt: Optimizing
discrete text prompts with reinforcement learning.
In Proceedings of the 2022 Conference on Empiri-
cal Methods in Natural Language Processing, pages
3369–3391, Abu Dhabi, United Arab Emirates. As-
sociation for Computational Linguistics.

Jacob Devlin, Ming-Wei Chang, Kenton Lee, and
Kristina Toutanova. 2018. Bert: Pre-training of deep
bidirectional transformers for language understand-
ing. arXiv preprint arXiv:1810.04805.

Xuan Long Do, Yiran Zhao, Hannah Brown, Yuxi Xie,
James Xu Zhao, Nancy F Chen, Kenji Kawaguchi,
Michael Qizhe Xie, and Junxian He. 2023. Prompt
optimization via adversarial in-context learning.
arXiv preprint arXiv:2312.02614.

https://arxiv.org/abs/2212.08073
https://arxiv.org/abs/2212.08073
https://doi.org/10.18653/v1/D19-1109
https://doi.org/10.18653/v1/D19-1109
https://doi.org/10.18653/v1/2022.emnlp-main.222
https://doi.org/10.18653/v1/2022.emnlp-main.222


11038

Abhimanyu Dubey, Abhinav Jauhri, Abhinav Pandey,
et al. 2024. The llama 3 herd of models. arXiv
preprint arXiv:2407.21783.

Kawin Ethayarajh, Winnie Xu, Niklas Muennighoff,
Dan Jurafsky, and Douwe Kiela. 2024. Kto: Model
alignment as prospect theoretic optimization. arXiv
preprint arXiv:2402.01306.

Tianyu Gao, Adam Fisch, and Danqi Chen. 2021.
Making pre-trained language models better few-shot
learners. In Proceedings of the 59th Annual Meet-
ing of the Association for Computational Linguistics
and the 11th International Joint Conference on Natu-
ral Language Processing (Volume 1: Long Papers),
pages 3816–3830, Online. Association for Computa-
tional Linguistics.

Deepanway Ghosal, Yew Ken Chia, Navonil Majumder,
and Soujanya Poria. 2023. Flacuna: Unleashing
the problem solving power of vicuna using flan fine-
tuning. Preprint, arXiv:2307.02053.

Priya Goyal, Piotr Dollár, Ross Girshick, Pieter No-
ordhuis, Lukasz Wesolowski, Aapo Kyrola, Andrew
Tulloch, Yangqing Jia, and Kaiming He. 2017. Ac-
curate, large minibatch sgd: Training imagenet in 1
hour. arXiv:1706.02677.

Karen Hambardzumyan, Hrant Khachatrian, and
Jonathan May. 2021. WARP: Word-level Adversarial
ReProgramming. In Proceedings of the 59th Annual
Meeting of the Association for Computational Lin-
guistics and the 11th International Joint Conference
on Natural Language Processing (Volume 1: Long
Papers), pages 4921–4933, Online. Association for
Computational Linguistics.

Xu Han, Weilin Zhao, Ning Ding, Zhiyuan Liu,
and Maosong Sun. 2021. Ptr: Prompt tuning
with rules for text classification. arXiv preprint
arXiv:2105.11259.

Adi Haviv, Jonathan Berant, and Amir Globerson. 2021.
BERTese: Learning to speak to BERT. In Proceed-
ings of the 16th Conference of the European Chap-
ter of the Association for Computational Linguistics:
Main Volume, pages 3618–3623, Online. Association
for Computational Linguistics.

Dan Hendrycks, Collin Burns, Steven Basart, Andy Zou,
Mantas Mazeika, Dawn Song, and Jacob Steinhardt.
2021. Measuring massive multitask language under-
standing. In International Conference on Learning
Representations.

Lifu Huang, Ronan Le Bras, Chandra Bhagavatula, and
Yejin Choi. 2019. Cosmos QA: Machine reading
comprehension with contextual commonsense rea-
soning. In Proceedings of the 2019 Conference on
Empirical Methods in Natural Language Processing
and the 9th International Joint Conference on Natu-
ral Language Processing (EMNLP-IJCNLP), pages
2391–2401, Hong Kong, China. Association for Com-
putational Linguistics.

Hamish Ivison, Yizhong Wang, Valentina Pyatkin,
Nathan Lambert, Matthew Peters, Pradeep Dasigi,
Joel Jang, David Wadden, Noah A Smith, Iz Belt-
agy, et al. 2023. Camels in a changing climate: En-
hancing lm adaptation with tulu 2. arXiv preprint
arXiv:2311.10702.

Zhengbao Jiang, Frank F. Xu, Jun Araki, and Graham
Neubig. 2020. How can we know what language
models know? Transactions of the Association for
Computational Linguistics, 8:423–438.

Takeshi Kojima, Shixiang Shane Gu, Machel Reid, Yu-
taka Matsuo, and Yusuke Iwasawa. 2022. Large lan-
guage models are zero-shot reasoners. Advances in
neural information processing systems, 35:22199–
22213.

Harrison Lee, Samrat Phatale, Hassan Mansoor, Thomas
Mesnard, Johan Ferret, Kellie Lu, Colton Bishop,
Ethan Hall, Victor Carbune, Abhinav Rastogi, and
Sushant Prakash. 2023. Rlaif: Scaling reinforce-
ment learning from human feedback with ai feedback.
Preprint, arXiv:2309.00267.

Brian Lester, Rami Al-Rfou, and Noah Constant. 2021.
The power of scale for parameter-efficient prompt
tuning. In Proceedings of the 2021 Conference on
Empirical Methods in Natural Language Processing,
pages 3045–3059, Online and Punta Cana, Domini-
can Republic. Association for Computational Lin-
guistics.

Mike Lewis, Yinhan Liu, Naman Goyal, Marjan
Ghazvininejad, Abdelrahman Mohamed, Omer Levy,
Ves Stoyanov, and Luke Zettlemoyer. 2019. Bart: De-
noising sequence-to-sequence pre-training for natural
language generation, translation, and comprehension.
arXiv preprint arXiv:1910.13461.

Xiang Lisa Li and Percy Liang. 2021. Prefix-tuning:
Optimizing continuous prompts for generation. In
Proceedings of the 59th Annual Meeting of the Asso-
ciation for Computational Linguistics and the 11th
International Joint Conference on Natural Language
Processing (Volume 1: Long Papers), pages 4582–
4597, Online. Association for Computational Lin-
guistics.

Pengfei Liu, Weizhe Yuan, Jinlan Fu, Zhengbao Jiang,
Hiroaki Hayashi, and Graham Neubig. 2023. Pre-
train, prompt, and predict: A systematic survey of
prompting methods in natural language processing.
ACM Computing Surveys, 55(9):1–35.

Xiao Liu, Yanan Zheng, Zhengxiao Du, Ming Ding,
Yujie Qian, Zhilin Yang, and Jie Tang. 2021. Gpt
understands, too. arXiv:2103.10385.

Ilya Loshchilov and Frank Hutter. 2019. Decoupled
weight decay regularization. In International Confer-
ence on Learning Representations.

https://doi.org/10.18653/v1/2021.acl-long.295
https://doi.org/10.18653/v1/2021.acl-long.295
https://arxiv.org/abs/2307.02053
https://arxiv.org/abs/2307.02053
https://arxiv.org/abs/2307.02053
https://doi.org/10.18653/v1/2021.acl-long.381
https://doi.org/10.18653/v1/2021.acl-long.381
https://doi.org/10.18653/v1/2021.eacl-main.316
https://openreview.net/forum?id=d7KBjmI3GmQ
https://openreview.net/forum?id=d7KBjmI3GmQ
https://doi.org/10.18653/v1/D19-1243
https://doi.org/10.18653/v1/D19-1243
https://doi.org/10.18653/v1/D19-1243
https://doi.org/10.1162/tacl_a_00324
https://doi.org/10.1162/tacl_a_00324
https://arxiv.org/abs/2309.00267
https://arxiv.org/abs/2309.00267
https://doi.org/10.18653/v1/2021.emnlp-main.243
https://doi.org/10.18653/v1/2021.emnlp-main.243
https://doi.org/10.18653/v1/2021.acl-long.353
https://doi.org/10.18653/v1/2021.acl-long.353


11039

Junru Lu, Jiazheng Li, Siyu An, Meng Zhao, Yulan
He, Di Yin, and Xing Sun. 2024. Eliminating bi-
ased length reliance of direct preference optimiza-
tion via down-sampled kl divergence. arXiv preprint
arXiv:2406.10957.

Long Ouyang, Jeff Wu, Xu Jiang, Diogo Almeida, Car-
roll L. Wainwright, Pamela Mishkin, Chong Zhang,
Sandhini Agarwal, Katarina Slama, Alex Ray, John
Schulman, Jacob Hilton, Fraser Kelton, Luke Miller,
Maddie Simens, Amanda Askell, Peter Welinder,
Paul Christiano, Jan Leike, and Ryan Lowe. 2022.
Training language models to follow instructions with
human feedback. In Thirty-Sixth Conference on Neu-
ral Information Processing Systems.

Alexander Pan, Jun Shern Chan, Andy Zou, Nathaniel
Li, Steven Basart, Thomas Woodside, Hanlin Zhang,
Scott Emmons, and Dan Hendrycks. 2023a. Do the
rewards justify the means? measuring trade-offs be-
tween rewards and ethical behavior in the machiavelli
benchmark. In International Conference on Machine
Learning. PMLR.

Liangming Pan, Michael Saxon, Wenda Xu, Deepak
Nathani, Xinyi Wang, and William Yang Wang.
2023b. Automatically correcting large lan-
guage models: Surveying the landscape of di-
verse self-correction strategies. arXiv preprint
arXiv:2308.03188.

Reid Pryzant, Dan Iter, Jerry Li, Yin Lee, Chenguang
Zhu, and Michael Zeng. 2023. Automatic prompt op-
timization with “gradient descent” and beam search.
In Proceedings of the 2023 Conference on Empiri-
cal Methods in Natural Language Processing, pages
7957–7968, Singapore. Association for Computa-
tional Linguistics.

Guanghui Qin and Jason Eisner. 2021. Learning how
to ask: Querying LMs with mixtures of soft prompts.
In Proceedings of the 2021 Conference of the North
American Chapter of the Association for Computa-
tional Linguistics: Human Language Technologies,
pages 5203–5212, Online. Association for Computa-
tional Linguistics.

Rafael Rafailov, Archit Sharma, Eric Mitchell, Stefano
Ermon, Christopher D Manning, and Chelsea Finn.
2023. Direct preference optimization: Your language
model is secretly a reward model. arXiv preprint
arXiv:2305.18290.

Colin Raffel, Noam Shazeer, Adam Roberts, Katherine
Lee, Sharan Narang, Michael Matena, Yanqi Zhou,
Wei Li, and Peter J Liu. 2019. Exploring the limits
of transfer learning with a unified text-to-text trans-
former. arXiv preprint arXiv:1910.10683.

Jie Ren, Samyam Rajbhandari, Reza Yazdani Am-
inabadi, Olatunji Ruwase, Shuangyan Yang, Minjia
Zhang, Dong Li, and Yuxiong He. 2021. {ZeRO-
Offload}: Democratizing {Billion-Scale} model
training. In 2021 USENIX Annual Technical Con-
ference.

Taylor Shin, Yasaman Razeghi, Robert L. Logan IV, Eric
Wallace, and Sameer Singh. 2020. AutoPrompt: Elic-
iting Knowledge from Language Models with Auto-
matically Generated Prompts. In Proceedings of the
2020 Conference on Empirical Methods in Natural
Language Processing (EMNLP), pages 4222–4235,
Online. Association for Computational Linguistics.

Mirac Suzgun, Nathan Scales, Nathanael Schärli, Se-
bastian Gehrmann, Yi Tay, Hyung Won Chung,
Aakanksha Chowdhery, Quoc Le, Ed Chi, Denny
Zhou, and Jason Wei. 2023. Challenging BIG-bench
tasks and whether chain-of-thought can solve them.
In Findings of the Association for Computational Lin-
guistics: ACL 2023, pages 13003–13051, Toronto,
Canada. Association for Computational Linguistics.

Rohan Taori, Ishaan Gulrajani, Tianyi Zhang, Yann
Dubois, Xuechen Li, Carlos Guestrin, Percy Liang,
and Tatsunori B Hashimoto. 2023. Stanford alpaca:
An instruction-following llama model.

Hugo Touvron, Louis Martin, Kevin Stone, Peter Al-
bert, Amjad Almahairi, Yasmine Babaei, Nikolay
Bashlykov, Soumya Batra, Prajjwal Bhargava, Shruti
Bhosale, et al. 2023. Llama 2: Open founda-
tion and fine-tuned chat models. arXiv preprint
arXiv:2307.09288.

Maria Tsimpoukelli, Jacob L Menick, Serkan Cabi,
SM Eslami, Oriol Vinyals, and Felix Hill. 2021. Mul-
timodal few-shot learning with frozen language mod-
els. Advances in Neural Information Processing Sys-
tems, 34:200–212.

Lewis Tunstall, Edward Beeching, Nathan Lambert,
Nazneen Rajani, Kashif Rasul, Younes Belkada,
Shengyi Huang, Leandro von Werra, Clémentine
Fourrier, Nathan Habib, Nathan Sarrazin, Omar San-
seviero, Alexander M. Rush, and Thomas Wolf. 2023.
Zephyr: Direct distillation of lm alignment. Preprint,
arXiv:2310.16944.

Mozes van de Kar, Mengzhou Xia, Danqi Chen, and
Mikel Artetxe. 2022. Don’t prompt, search! mining-
based zero-shot learning with language models. In
Proceedings of the 2022 Conference on Empirical
Methods in Natural Language Processing, pages
7508–7520, Abu Dhabi, United Arab Emirates. As-
sociation for Computational Linguistics.

Eric Wallace, Shi Feng, Nikhil Kandpal, Matt Gard-
ner, and Sameer Singh. 2019. Universal adversarial
triggers for attacking and analyzing NLP. In Proceed-
ings of the 2019 Conference on Empirical Methods
in Natural Language Processing and the 9th Inter-
national Joint Conference on Natural Language Pro-
cessing (EMNLP-IJCNLP), pages 2153–2162, Hong
Kong, China. Association for Computational Linguis-
tics.

Xinyuan Wang, Chenxi Li, Zhen Wang, Fan Bai,
Haotian Luo, Jiayou Zhang, Nebojsa Jojic, Eric P
Xing, and Zhiting Hu. 2023a. Promptagent:
Strategic planning with language models enables

https://doi.org/10.18653/v1/2023.emnlp-main.494
https://doi.org/10.18653/v1/2023.emnlp-main.494
https://doi.org/10.18653/v1/2021.naacl-main.410
https://doi.org/10.18653/v1/2021.naacl-main.410
https://doi.org/10.18653/v1/2020.emnlp-main.346
https://doi.org/10.18653/v1/2020.emnlp-main.346
https://doi.org/10.18653/v1/2020.emnlp-main.346
https://doi.org/10.18653/v1/2023.findings-acl.824
https://doi.org/10.18653/v1/2023.findings-acl.824
https://arxiv.org/abs/2310.16944
https://doi.org/10.18653/v1/2022.emnlp-main.509
https://doi.org/10.18653/v1/2022.emnlp-main.509
https://doi.org/10.18653/v1/D19-1221
https://doi.org/10.18653/v1/D19-1221


11040

expert-level prompt optimization. arXiv preprint
arXiv:2310.16427.

Zhen Wang, Rameswar Panda, Leonid Karlinsky, Roge-
rio Feris, Huan Sun, and Yoon Kim. 2023b. Multitask
prompt tuning enables parameter-efficient transfer
learning. In The Eleventh International Conference
on Learning Representations.

Jason Wei, Xuezhi Wang, Dale Schuurmans, Maarten
Bosma, Brian Ichter, Fei Xia, Ed Chi, Quoc Le, and
Denny Zhou. 2022. Chain-of-thought prompting elic-
its reasoning in large language models. In 36th Con-
ference on Neural Information Processing Systems.

Hanwei Xu, Yujun Chen, Yulun Du, Nan Shao, Wang
Yanggang, Haiyu Li, and Zhilin Yang. 2022. GPS:
Genetic prompt search for efficient few-shot learning.
In Proceedings of the 2022 Conference on Empiri-
cal Methods in Natural Language Processing, pages
8162–8171, Abu Dhabi, United Arab Emirates. As-
sociation for Computational Linguistics.

Aiyuan Yang, Bin Xiao, Bingning Wang, Borong
Zhang, Ce Bian, Chao Yin, Chenxu Lv, Da Pan,
Dian Wang, Dong Yan, et al. 2023a. Baichuan 2:
Open large-scale language models. arXiv preprint
arXiv:2309.10305.

An Yang, Baosong Yang, Binyuan Hui, Bo Zheng,
Bowen Yu, Chang Zhou, Chengpeng Li, Chengyuan
Li, Dayiheng Liu, Fei Huang, et al. 2024. Qwen2
technical report. arXiv preprint arXiv:2407.10671.

Chengrun Yang, Xuezhi Wang, Yifeng Lu, Hanxiao Liu,
Quoc V Le, Denny Zhou, and Xinyun Chen. 2023b.
Large language models as optimizers. arXiv preprint
arXiv:2309.03409.

Jingfeng Yang, Hongye Jin, Ruixiang Tang, Xiao-
tian Han, Qizhang Feng, Haoming Jiang, Bing Yin,
and Xia Hu. 2023c. Harnessing the power of
llms in practice: A survey on chatgpt and beyond.
arXiv:2304.13712.

Weizhe Yuan, Graham Neubig, and Pengfei Liu. 2021.
Bartscore: Evaluating generated text as text gener-
ation. Advances in Neural Information Processing
Systems, 34:27263–27277.

Weizhe Yuan, Richard Yuanzhe Pang, Kyunghyun Cho,
Sainbayar Sukhbaatar, Jing Xu, and Jason Weston.
2024. Self-rewarding language models. arXiv
preprint arXiv:2401.10020.

Tianjun Zhang, Xuezhi Wang, Denny Zhou, Dale Schu-
urmans, and Joseph E. Gonzalez. 2023. TEMPERA:
Test-time prompt editing via reinforcement learning.
In The Eleventh International Conference on Learn-
ing Representations.

Wayne Xin Zhao, Kun Zhou, Junyi Li, Tianyi Tang,
Xiaolei Wang, Yupeng Hou, Yingqian Min, Beichen
Zhang, Junjie Zhang, Zican Dong, et al. 2023a. A
survey of large language models. arXiv:2303.18223.

Yao Zhao, Rishabh Joshi, Tianqi Liu, Misha Khalman,
Mohammad Saleh, and Peter J Liu. 2023b. Slic-hf:
Sequence likelihood calibration with human feed-
back. arXiv preprint arXiv:2305.10425.

Zexuan Zhong, Dan Friedman, and Danqi Chen. 2021.
Factual probing is [MASK]: Learning vs. learning
to recall. In Proceedings of the 2021 Conference
of the North American Chapter of the Association
for Computational Linguistics: Human Language
Technologies, pages 5017–5033, Online. Association
for Computational Linguistics.

Yongchao Zhou, Andrei Ioan Muresanu, Ziwen Han,
Keiran Paster, Silviu Pitis, Harris Chan, and Jimmy
Ba. 2023. Large language models are human-level
prompt engineers. In The Eleventh International
Conference on Learning Representations.

A Dataset Diversification

We present our complete data diversification plans
in Figure 5. We first collect response and prompt
preference data as shown in the top, according to
pipeline introduced in section 2.4. Afterwards, to
better minimize the exposure gaps, we carry on
the diversification combinations as shown within
the table in the left middle of Figure 5. The di-
versification optionally selects naive response ŷn,
ground truth response yn and “generation” or
“multi-choice” format. We thereby have eight vari-
ous data format (2 × 2 × 2), and we demonstrate
with two types in the bottom left and middle parts.
The left corner one is an example format of type
3, in which only mandatory naive prompt xn is in-
cluded. It worth to mention that this format type is
also used during the testing phase as no responses
are provided at that stage. Another type 6 located in
the middle bottom transforms the initial generation
format as a multi-choice one, and add a new binary
naive response ŷn. Nevertheless, either type 3 or
type 6 has same task description attached.

The right side of Figure 5 illustrates specific in-
cremented data for IPL fine-tuning. Equations 11
and 8 denote that only optimizer model Mo is in-
cluded in preference optimization and supervised
fine-tuning approaches. However, discrimination
and instruction answering capacities are required
in our iterative self-rewarding training, as shown
in equations 14. Hence, we simply re-use the
collected data in the top of Figure 5. 15k naive
prompts xn and ground truth responses yn are
paired as additional instruction following data of
IPL, shown in the right middle part. Meanwhile,
we set a new meta prompt for the inner discrimina-
tion of IPL, shown in the right corner of Figure 5.
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Figure 5: An overview of our dataset diversification step. It is recommended to view the details with colors.

Another 15k naive prompts xn, ground truth re-
sponses yn and corresponding optimized prompts
xo− and xo+ are re-used for data construction.

In summary, we diversify the collected 30k raw
data into eight various formats, for bridging the
gaps between training and inference. Particularly,
we add 15k instruction following data and 15k dis-
crimination data for IPL, by re-using the raw data.

B HyperParameters and Training Cost

We report hyperparameters and training cost in Ta-
ble 5. We fine-tune all models on same computa-
tional node server equipped with 900G CPU RAM
and 8 X A100 40G GPUs. We only use single node
for fine-tuning 13B models, but use 4 nodes for
70B models. While the batch size varies, we main-
tain a consistent global batch size on every node.
In terms of different fine-tuning strategies, most
hyperparameters are shared. The only difference
lies on the learning rate, as we find large learning
rate for DPO and IPO will cause collapse. What’s
more, all preference learning approaches relay on
one external hyperparameter β. We set its value as
0.01 empirically (Tunstall et al., 2023).

The neural optimizer that we adopted is
AdamW (Loshchilov and Hutter, 2019) and the
scheduler employed is WarmupDecayLR (Goyal
et al., 2017). We incorporate Deepspeed (Ren et al.,
2021) and Flash Attention (Dao et al., 2022) to im-
prove the training efficiency. It worth to mention

Tulu2 13B Tulu2 70B

Nodes 1 4

Batch 8 2

Accumulations 2 8

HyperParams
Epoch=3, Seq Len=2048, SFT Lr=2e-5,

Else Lr=5e-7, Warmup Ratio=0.1, Beta=0.01,
Gen TopP=0.95, Gen Temperature=0.8

Train (1 epoch / 3W) 2.5h 2.5h

Table 5: Hyperparameters and training cost.

that IPL approaches takes more than double train-
ing time per epoch compared with regular prefer-
ence optimization approaches, since we increment
additional instruction following data and discrimi-
nation data, as well as self-rewarding data updates.

C Additional details of IPL

We first report the algorithmic narrative of IPL in
Algorithm 1. In consistent with Equations 12, 13,
and 14, we first generate a new prompt xn+ with
the optimizer model Mo, then ask the optimizer
also to judge if the newly optimized prompt is supe-
rior than the naive prompt xn. We takes the better
prompt as the final one, and then generate a new
task response ŷn+ using the optimizer itself for
next iteration. It should be noted that we start such
self-rewarding updates after one epoch of warm-up.

we report the accuracy of fine-tuned discrimina-
tion ability and proportions of more rigours sam-
ples involved in IPL in Table 7. We can notice that
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Generation Multi-choice
FIPO Optimizer GSM8K (3) BBH (3) PiQA (3) CosmosQA (5) MMLU (5) Weighted Avg.

Naive 24.77 36.21 73.35 51.17 51.22 47.79

SFT 13B 19.91 31.04 71.61 47.68 49.57 44.93
70B 21.43 32.92 74.39 49.97 51.55 46.96

DPO 13B 17.17 30.90 68.50 44.87 46.64 42.69
70B 27.74 35.56 74.17 54.93 52.73 49.07

70B-e1 25.38 33.86 74.39 52.42 52.44 48.12
IPL-DPO 70B-e2 24.28 36.10 73.84 51.22 52.04 48.23

70B-e3 25.13 35.25 74.95 50.46 52.12 48.10

IPO 13B 18.42 33.55 72.03 49.14 48.20 44.93
70B 25.00 39.21 76.84 56.01 54.29 50.94

70B-e1 25.99 34.09 74.66 53.62 52.33 48.30
IPL-IPO 70B-e2 26.70 38.07 76.28 54.38 54.81 50.81

70B-e3 26.67 39.60 77.11 56.71 56.02 52.13

IPL-IPO-gen 70B-e3 22.72 41.91 74.53 53.60 52.74 50.23
IPL-IPO-partial 70B-e3 23.08 40.03 76.22 54.29 51.99 49.59

Table 6: Complete evaluation results of different fine-tuning strategies, tested by the same Tulu2-7B model. The
“-eN” notation refers to the “N”-th round of iteration in IPL training (e.g., 13B-e2 refers to the second iteration of
fine-tuning the 13B model). “-gen” and “-partial” refer to two ablation experiments in accordance with Section 3.2.2.

Algorithm 1 Self-rewarding IPL Algorithm.
1: Input require: Total number of iterations E,
2: Optimizer model Mo,
3: Initilization: Naive Prompt xn,
4: Naive Response ŷn,
5: Ground Truth Response yn,
6: for e in E do
7: if e > 1 then
8: New prompt xn+ = Mo(x

n, ŷn,yn)
9: if Mo(x

n+,yn) ≻ Mo(x
n,yn) then

10: New response ŷn+ = Mo(x
n+)

11: Update xn = xn+

12: Update ŷn = ŷn+

13: end if
14: end if
15: Update Mo with DPO or IPO loss.
16: end for

the optimizer can easily handle the binary discrimi-
nation task with simultaneous training on the addi-
tional discrimination data. We use 5% training data
as the validation set, and find 100% classification
accuracy. Based on this, the optimizer accurately
update naive prompts xn with self-generate new
prompts xn+, introduced from line 9 to line 11 in
Algorithm 1. Nevertheless, the optimizer model
gradually update new superior prompt samples for
dynamic optimization with a conservative attitude,
as shown in the “Selection” column. We observe

Weighted Avg. Dis. Accuracy Selection

Naive 47.80 N/A N/A

IPL-IPO-70B-e1 48.30 N/A N/A

IPL-IPO-70B-e2 50.81 100% 1.25%

IPL-IPO-70B-e3 52.13 100% 2.40%

Table 7: Analysis regards to details of IPL. The “-eN”
notation refers to the “N”-th round of iteration in IPL
training. The selection refers to the data proportion that
be updated with newly generated prompts. The first
epoch is for warm-up, therefore there are not scores.

only 2.4% naive prompts and responses samples
are upgraded in the end, while the self-game ap-
proach significantly promotes the optimization of
downstream test prompts, as mentioned in Table 6.

D Entire fine-tuning results

We present entire fine-tuning results of our various
experiments in Table 6. Apart from conclusions
reported in Section 3.2.2, we further summarize
several findings: (1) When fine-tuned with SFT
approaches, 70B models perform better than 13B
models as expected. However, all SFT models per-
form worse than the naive baseline; (2) In terms of
two basic preference optimization training (DPO
and IPO), we observe that 70B models are still su-
perior to 13B models, and only the former ones
obtains super-human results; (3) When it comes
to our IPL approaches, there are differences when
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6 BBH Tasks following PromptAgent Work (Wang et al., 2023a)
Downstream LLM Optimizer Penguins Geometry Epistemic Object Counting Temporal Causal Judgment Average

Naive 0.436 0.536 0.611 0.318 0.362 0.547 0.468
APE 0.402 0.499 0.680 0.347 0.440 0.583 0.492

Llama2-7B PromptAgent 0.426 0.544 0.775 0.312 0.643 0.547 0.541
(Touvron et al., 2023) GPT-4 0.444 0.578 0.640 0.392 0.536 0.598 0.531

FIPO 0.458 0.542 0.754 0.350 0.683 0.616 0.567

Naive 0.336 0.089 0.581 0.690 0.155 0.832 0.447
APE 0.313 0.400 0.627 0.525 0.189 0.882 0.489

Tulu2-7B PromptAgent 0.470 0.350 0.691 0.577 0.176 0.882 0.524
(Ivison et al., 2023) GPT-4 0.542 0.397 0.603 0.674 0.176 0.888 0.547

FIPO 0.525 0.415 0.644 0.637 0.210 0.891 0.554

Naive 0.752 0.460 0.720 0.499 0.912 0.651 0.666
APE 0.740 0.533 0.713 0.530 0.897 0.643 0.676

Llama3-70B-Instruct PromptAgent 0.748 0.501 0.667 0.524 0.946 0.687 0.687
(Dubey et al., 2024) GPT-4 0.756 0.478 0.726 0.472 0.912 0.644 0.665

FIPO 0.765 0.503 0.678 0.539 0.923 0.716 0.692

Naive 0.593 0.540 0.698 0.602 0.879 0.767 0.680
APE 0.614 0.496 0.718 0.617 0.888 0.790 0.687

Qwen2-72B-Instruct PromptAgent 0.658 0.533 0.717 0.622 0.898 0.779 0.722
(Yang et al., 2024) GPT-4 0.630 0.540 0.700 0.642 0.876 0.759 0.691

FIPO 0.617 0.522 0.792 0.591 0.836 0.768 0.731

Naive 0.595 0.227 0.452 0.612 0.720 0.470 0.513
APE 0.747 0.490 0.708 0.716 0.856 0.570 0.681

GPT-3.5-turbo PromptAgent 0.797 0.670 0.806 0.860 0.934 0.670 0.790
(In-box Tester) GPT-4 0.632 0.589 0.840 0.647 0.821 0.550 0.680

FIPO 0.614 0.738 0.865 0.660 0.756 0.759 0.732

Naive 0.859 0.472 0.820 0.680 0.990 0.750 0.762
APE 0.862 0.691 0.844 0.650 0.988 0.749 0.797

GPT-4o PromptAgent 0.855 0.750 0.886 0.733 0.982 0.712 0.820
GPT-4 0.840 0.737 0.925 0.692 0.982 0.700 0.813
FIPO 0.876 0.810 0.891 0.684 0.965 0.840 0.844

Table 8: Comparison between FIPO optimizer, previous methods and GPT-4’s prompt optimization.

combined with DPO or IPO accordingly. IPL-DPO
keeps a similar conclusion with DPO. As for IPL-
IPO, we particularly find its full training works
the best, and obtain an obvious growing trend, ex-
hibiting a steeper upward growth of 2% per epoch.
We suppose the regularized design in Equation 10
contributes to stable improvements.

E Detailed results of 6 BBH subsets

We provide the performance of various optimizers
on different downstream testers, including the eval-
uation results of 6 BBH tasks in Table 8. Here are
some key points of the result analysis:

Overall Performance. The FIPO optimizer per-
forms well in most combinations, usually leading
in each task and average score. PromptAgent and
GPT-4 optimizers perform well on some specific
tasks, but are slightly inferior to FIPO overall.

Optimizer Comparison. When comparing dif-
ferent optimizers, FIPO outperforms other methods
across multiple downstream LLMs. While Promp-
tAgent occasionally achieves high scores in indi-
vidual tasks, its average performance is generally

lower than FIPO. Similarly, the GPT-4 optimizer
shows competitive results in certain scenarios but
does not maintain the same level of consistency as
FIPO. On the other hand, the Naive prompt and
APE optimizer often lag behind in most tasks. For
example, on GPT-4o, APE’s average score is 0.797,
lower than FIPO’s 0.844.

Task-specific Performance. FIPO excels in
many tasks. In the "Temporal" and "Causal Judg-
ment" tasks under Llama2-7B, it achieved the high-
est scores of 0.683 and 0.616, respectively. It also
secured the top scores of 0.525 and 0.891 in the
"Penguins" and "Causal Judgment" tasks under
Tulu2-7B. For GPT-4o, FIPO achieved the highest
scores in the "Geometry" and "Causal Judgment"
tasks, with 0.810 and 0.840, respectively. Similarly,
in the "Epistemic" task under Qwen2-72B-Instruct,
FIPO led with a score of 0.792.

In summary, the FIPO optimizer performed best
on a variety of downstream LLMs, especially on
GPT-4o and Llama3-70B-Instruct, where its stabil-
ity and efficiency were remarkable. The Promp-
tAgent and GPT-4 optimizers also performed well
on specific tasks, but were not as comprehensive
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as FIPO overall. The Naive prompt and APE opti-
mizer performed relatively poorly.

F Specific ablation discussion on BBH

We notice that the BBH dataset behaves signifi-
cantly different from other datasets in the ablation
experiments, as shown by the last lines of Table 6.
The corrupted optimizer IPL-IPO-gen and IPL-
IPO-partial gain suboptimal performances across
all benchmarks, except BBH. We suppose this may
be because the BBH contains a large number of
symbolic reasoning tasks, and this unique pattern
is not found in other testing datasets.

For instance, one of the typical subtask in BBH
is “Name a Geometry”, which asks to “name geo-
metric shapes from their SVG paths”. A typical ex-
ample is listed here: “This SVG path element <path
d="M 59.43,52.76 L 75.49,27.45 L 54.92,4.40
M 54.92,4.40 L 23.70,7.77 L 15.15,42.15 L
34.51,57.44 L 59.43,52.76"/> draws a ”. Therefore,
we suspect that when further using discrete natu-
ral language instructions to diversify our training
data, this may affect subtasks in BBH that involve
specific symbolic reasoning patterns.

Nevertheless, when examining the six represen-
tative subtasks in BBH, FIPO still achieves a clear
advantage over other leading prompt optimization
methods, as shown by the Table 8.

G Cost comparison: FIPO vs. others

In terms of overall cost against other aforemen-
tioned optimization approaches, shown in Table 9,
building FIPO optimizer will have $300 one-time
collecting cost and 10 hours training cost, which
equals to 75 usages of GPT-4. However, once FIPO
models are prepared, we save a lot of time as the op-
timization can be done locally. FIPO leads to less
total costs when optimizing over massive prompts.

In specific, we explain the cost number in Ta-
ble 9 column by column. The first column refers to
the cost of constructing data. Since APE, PromptA-
gent and directly using GPT-4 are all training-free
methods, they do not have the cost of construct-
ing training data. Similarly, the second column
refers to the time cost of training, and only our lo-
cal fine-tuned FIPO optimizer covers that. As for
the inference cost in the third and fourth columns,
we report the inference cost of the entire representa-
tive “penguins_in_a_table” subtask in BBH, which
includes 149 test samples. In particular, it worth
to note that the inference cost of PromptAgent is

Inference Per Test
Dataset Training Fee Time

APE $0 $0 $5 2h

PromptAgent $0 $0 $5 2h

GPT-4 $0 $0 $4 1h

FIPO (IPL-IPO-70B) $300 $60 $0 30s

Table 9: Cost report of different methods.

Figure 6: Analysis of overwhelmed cheating notes on
256 random optimized prompts for each benchmark.

consistent with its official report7. In addition, as
the only local optimizer, FIPO also includes a one-
time inference deployment cost. However, in our
practice, since the time for renting a server and
deploying a model does not exceed 3 minutes in
total, this part of the cost is basically negligible.

H Overwhelmed Cheating Notes

We provide a proportion visualization of analyzing
the possible over-optimized prompts in each testing
benchmark, manually checking with 256 random
samples, in Figure 6. The results show that math-
ematical questions in GSM8K and BBH are more
likely to be added cheating notes of final answers,
while other types of testing data receive moderate
prompt optimization. Nevertheless, even taking
into account this factor, the conclusion that our
local optimizer improves the overall performance
of general downstream generators by optimizing
prompts reasonably does not change (§ 3.2.1).

I Employed Meta Prompts

We report all employed meta prompts in this section
as reference for potential future researches. Please
refer to Table 10, 11 and 12 for data collection
meta prompt, data diversification meta prompt, and
discrimination meta prompt, respectively.

7https://github.com/XinyuanWangCS/PromptAgent/

https://github.com/XinyuanWangCS/PromptAgent/
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Data collection meta prompt

You are an expert of prompt optimization.

```
Sliver Prompt:
SP
```

```
Sliver Response:
SR
```

```
Golden Response:
GR
```

```
Task Introduction:
Based on the Silver Prompt, optional Silver Response and optional Golden Response, perform the
following actions:
1 – The optional Sliver Response was generated by an AI based on the Silver Prompt. Please help modify
the Silver Prompt to Golden Prompt that can obtain a more correct response, in reference to the optional
Golden Response.
2 - When building the Golden Prompt, you can consider several aspects, such as: (1) A roleplay leading
sentence to adapt the AI to the task-specific scenario; (2) Details of task characteristics, for instance,
the task could be a question answering task, a dialogue task, or a summarization task, etc; (3) Further
clarification of the task information, especially some ambiguous terms; (4) A more detailed solution
guidance, such as step-by-step plans, handlings of exceptions, special priorities or constraints, etc; (5) Any
specific requirements for the response, such as the length, the format, the style, the tone, the language, etc.
3 - Show me only the Golden Prompt, do not contain any other content.
```

Golden Prompt:

Table 10: The meta prompt used to harness data from GPT-3.5-turbo and GPT-4 APIs. During harnessing, we
replace placeholders “SP”, “SR” and “GR” with actual naive prompt xn, naive response ŷn and ground truth
response yn from each seed data sample, respectively.
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Data diversification meta prompt

You are an expert of prompt optimization.

```
Sliver Prompt:
SP
```
<Optional Responses>

The optional Sliver Response was generated by an AI based on the Silver Prompt. Please help modify
the Silver Prompt to Golden Prompt that can obtain a more correct response, in reference to the optional
Golden Response. The Golden Prompt should be instructive, concise and strictly faithful to any factual
information in the Silver Prompt. The length of the Golden Prompt should be less than GN words. Only
give me the content of Golden Prompt, do not contain any other information (e.g., your response of the
Golden Prompt, any postfix like “Golden Prompt”, etc.).

Flexible meta prompt for optional naive response

```
Sliver Response:
SR
```

Flexible meta prompt for optional ground truth response

```
Golden Response:
GR
```

Table 11: The meta prompt used for data diversification. During diversification, we replace placeholders “SP”, “SR”
and “GR” with actual naive prompt xn, naive response ŷn and ground truth response yn, respectively. Meanwhile,
flexible prompts of optional naive response and ground truth response are inserted by probability as introduced
in Figure 3 and 5. Moreover, we add length suggestion with “GN” signal, using the length of chosenl optimized
prompt label xo+.
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Discrimination meta prompt

You are an expert of prompt discrimination.

```
Raw Prompt:
RP
```

```
New Prompt A:
PA
```

```
New Prompt B:
PB
```

```
Golden Response:
GR
```

New Prompt A and New Prompt B are optimized from Raw Prompt. Please judge which prompt is more
loyal to the factual information of Raw Prompt, and is more desirable for an AI to generate the Golden
Response. Only answer with A or B.

Table 12: The meta prompt used for creating discrimination data and application of discrimination during IPL
training. The creation of discrimination data has been introduced in the right part of Figure 5. In terms of inner
discrimination of IPL, we replace placeholders “RP”, “PA”, “PB” and “GR” with naive prompt xn, naive prompt
xn, newly optimized prompt xn+ and ground truth response yn, respectively.
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