@inproceedings{sarkar-etal-2025-cryptopiqa,
title = "{C}rypt{O}pi{QA}: A new Opinion and Question Answering dataset on Cryptocurrency",
author = "Sarkar, Sougata and
Badwal, Aditya and
Roy, Amartya and
Rudra, Koustav and
Ghosh, Kripabandhu",
editor = "Rambow, Owen and
Wanner, Leo and
Apidianaki, Marianna and
Al-Khalifa, Hend and
Eugenio, Barbara Di and
Schockaert, Steven",
booktitle = "Proceedings of the 31st International Conference on Computational Linguistics",
month = jan,
year = "2025",
address = "Abu Dhabi, UAE",
publisher = "Association for Computational Linguistics",
url = "https://aclanthology.org/2025.coling-main.736/",
pages = "11107--11120",
abstract = "Cryptocurrency has attracted a lot of public attention and opinion worldwide. Users have different kinds of information needs regarding such topics and publicly available information is a good resource to satisfy those information needs. In this paper, we investigate the public opinion on cryptocurrency and bitcoin on two social media {--} Twitter and Reddit. We have created a multi-level dataset \textit{CryptOpiQA} and garnered valuable insights. The dataset contains both gold standard (manually annotated) and silver standard (inferred from the gold standard) labels. As a part of this dataset, we have also created a Question Answering sub-corpus. We have used state-of-the-art LLMs and advanced techniques such as retrieval augmented generation (RAG) to improve question-answering (QnA) results. We believe this dataset and the analysis will be useful in studying user opinions and Question-Answering on cryptocurrency in the research community."
}
<?xml version="1.0" encoding="UTF-8"?>
<modsCollection xmlns="http://www.loc.gov/mods/v3">
<mods ID="sarkar-etal-2025-cryptopiqa">
<titleInfo>
<title>CryptOpiQA: A new Opinion and Question Answering dataset on Cryptocurrency</title>
</titleInfo>
<name type="personal">
<namePart type="given">Sougata</namePart>
<namePart type="family">Sarkar</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Aditya</namePart>
<namePart type="family">Badwal</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Amartya</namePart>
<namePart type="family">Roy</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Koustav</namePart>
<namePart type="family">Rudra</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Kripabandhu</namePart>
<namePart type="family">Ghosh</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<originInfo>
<dateIssued>2025-01</dateIssued>
</originInfo>
<typeOfResource>text</typeOfResource>
<relatedItem type="host">
<titleInfo>
<title>Proceedings of the 31st International Conference on Computational Linguistics</title>
</titleInfo>
<name type="personal">
<namePart type="given">Owen</namePart>
<namePart type="family">Rambow</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Leo</namePart>
<namePart type="family">Wanner</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Marianna</namePart>
<namePart type="family">Apidianaki</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Hend</namePart>
<namePart type="family">Al-Khalifa</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Barbara</namePart>
<namePart type="given">Di</namePart>
<namePart type="family">Eugenio</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Steven</namePart>
<namePart type="family">Schockaert</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<originInfo>
<publisher>Association for Computational Linguistics</publisher>
<place>
<placeTerm type="text">Abu Dhabi, UAE</placeTerm>
</place>
</originInfo>
<genre authority="marcgt">conference publication</genre>
</relatedItem>
<abstract>Cryptocurrency has attracted a lot of public attention and opinion worldwide. Users have different kinds of information needs regarding such topics and publicly available information is a good resource to satisfy those information needs. In this paper, we investigate the public opinion on cryptocurrency and bitcoin on two social media – Twitter and Reddit. We have created a multi-level dataset CryptOpiQA and garnered valuable insights. The dataset contains both gold standard (manually annotated) and silver standard (inferred from the gold standard) labels. As a part of this dataset, we have also created a Question Answering sub-corpus. We have used state-of-the-art LLMs and advanced techniques such as retrieval augmented generation (RAG) to improve question-answering (QnA) results. We believe this dataset and the analysis will be useful in studying user opinions and Question-Answering on cryptocurrency in the research community.</abstract>
<identifier type="citekey">sarkar-etal-2025-cryptopiqa</identifier>
<location>
<url>https://aclanthology.org/2025.coling-main.736/</url>
</location>
<part>
<date>2025-01</date>
<extent unit="page">
<start>11107</start>
<end>11120</end>
</extent>
</part>
</mods>
</modsCollection>
%0 Conference Proceedings
%T CryptOpiQA: A new Opinion and Question Answering dataset on Cryptocurrency
%A Sarkar, Sougata
%A Badwal, Aditya
%A Roy, Amartya
%A Rudra, Koustav
%A Ghosh, Kripabandhu
%Y Rambow, Owen
%Y Wanner, Leo
%Y Apidianaki, Marianna
%Y Al-Khalifa, Hend
%Y Eugenio, Barbara Di
%Y Schockaert, Steven
%S Proceedings of the 31st International Conference on Computational Linguistics
%D 2025
%8 January
%I Association for Computational Linguistics
%C Abu Dhabi, UAE
%F sarkar-etal-2025-cryptopiqa
%X Cryptocurrency has attracted a lot of public attention and opinion worldwide. Users have different kinds of information needs regarding such topics and publicly available information is a good resource to satisfy those information needs. In this paper, we investigate the public opinion on cryptocurrency and bitcoin on two social media – Twitter and Reddit. We have created a multi-level dataset CryptOpiQA and garnered valuable insights. The dataset contains both gold standard (manually annotated) and silver standard (inferred from the gold standard) labels. As a part of this dataset, we have also created a Question Answering sub-corpus. We have used state-of-the-art LLMs and advanced techniques such as retrieval augmented generation (RAG) to improve question-answering (QnA) results. We believe this dataset and the analysis will be useful in studying user opinions and Question-Answering on cryptocurrency in the research community.
%U https://aclanthology.org/2025.coling-main.736/
%P 11107-11120
Markdown (Informal)
[CryptOpiQA: A new Opinion and Question Answering dataset on Cryptocurrency](https://aclanthology.org/2025.coling-main.736/) (Sarkar et al., COLING 2025)
ACL