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Abstract

Large Language Models (LLMs) have signif-
icantly transformed our daily life and estab-
lished a new paradigm in natural language pro-
cessing (NLP). However, the predominant pre-
training of LLMs on extensive web-based texts
remains insufficient for advanced scientific dis-
covery, particularly in chemistry. The scarcity
of specialized chemistry data, coupled with
the complexity of multi-modal data such as
2D graph, 3D structure and spectrum, present
distinct challenges. Although several studies
have reviewed Pretrained Language Models
(PLMs) in chemistry, there is a conspicuous
absence of a systematic survey specifically fo-
cused on chemistry-oriented LLMs. In this
paper, we outline methodologies for incorpo-
rating domain-specific chemistry knowledge
and multi-modal information into LLMs, we
also conceptualize chemistry LLMs as agents
using chemistry tools and investigate their po-
tential to accelerate scientific research. Addi-
tionally, we conclude the existing benchmarks
to evaluate chemistry ability of LLMs. Finally,
we critically examine the current challenges
and identify promising directions for future re-
search. Through this comprehensive survey, we
aim to assist researchers in staying at the fore-
front of developments in chemistry LLMs and
to inspire innovative applications in the field. 1

1 Introduction

Recent years have witnessed remarkable advance-
ments in daily life driven by LLMs. Competi-
tive models like GPT-4 (Achiam et al., 2023) and
Claude (Anthropic, 2024) have demonstrated ex-
ceptional abilities across diverse tasks, often match-
ing or surpassing human-level performance, mark-
ing significant progress toward Artificial General
Intelligence (AGI, Bubeck et al. (2023)). In sci-

* Lu Chen and Xin Chen are the corresponding authors.
1We maintain an up-to-date Github repository at: https:

//github.com/OpenDFM/LLM4Chemistry.

Figure 1: Three common errors in general LLMs arising
from the key challenges.

entific domains, LLMs have been applied to han-
dle tasks involving natural language and various
scientific data (e.g., molecules, proteins, DNA),
showing promising results (Fang et al., 2023).
Among these, chemistry LLMs, further tailored
for chemical applications via additional training
or advanced prompt engineering, have garnered
significant attention. Before the advent of LLMs,
there are lots of notable efforts towards chemistry,
such as MolT5 (Edwards et al., 2022), Text2Mol
(Edwards et al., 2021), MoMu (Su et al., 2022),
Text+Chem T5 (Christofidellis et al., 2023). How-
ever, these models are built on PLMs like BERT
(Devlin, 2018) and T5 (Raffel et al., 2020), requir-
ing fine-tuning for specific tasks and lacking emer-
gent abilities (Wei et al., 2022a), such as Chain-of-
Thought (CoT, Wei et al. (2022b)) reasoning and
tool-using capabilities (Qin et al., 2023). Existing
reviews (Xiao et al., 2024; Liao et al., 2024; Pei
et al., 2024a) have already discussed those PLMs in
chemistry, such as Liao et al. (2024), which empha-
size molecule encoding methods and pretraining
objectives. More related works are discussed in the
Appendix A. In contrast, our survey focuses on
generative models with Transformer decoder ar-

https://github.com/OpenDFM/LLM4Chemistry
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chitectures (Vaswani et al., 2017), addressing key
challenges of general LLMs and reviewing existing
approaches to adapt them for chemistry-specific
tasks and applications.

General LLMs, such as the GPT (Ouyang et al.,
2022; Achiam et al., 2023) and LLaMA series (Tou-
vron et al., 2023a,b), have demonstrated impressive
performance. However, they tend to underperform
on chemistry-related tasks as shown in Figure 1.
We identify three key challenges contributing to
these limitations.

Challenge 1: domain knowledge is not enough.
Most LLMs are pre-trained with the objective
of predicting the next token based on web data
sourced from the internet (Ouyang et al., 2022), as
demonstrated by open-source models like LLaMa
series (Touvron et al., 2023a,b). While some
chemistry-related data exist within these datasets,
the quantity is minimal, and there is a lack of data
specifically tailored for chemistry. This deficiency
extends to other crucial steps in the development of
LLMs, such as supervised fine-tuning (SFT) and re-
inforcement learning from human feedback (RLHF,
Christiano et al. (2017); Stiennon et al. (2020)).

Challenge 2: multi-modal data is not perceived.
Chemistry encompasses various modalities, includ-
ing 1D sequences (Krenn et al., 2020), 2D molec-
ular graphs (Duvenaud et al., 2015; Xu et al.,
2018; Liu et al., 2019), and 3D structures (Schütt
et al., 2018; Satorras et al., 2021; Atz et al., 2021).
Additionally, there are numerous chemical spec-
tra, such as Nuclear Magnetic Resonance (NMR,
Simpson et al. (2012)), Liquid Chromatography-
Tandem Mass Spectrometry (LC-MS, Seger (2012);
Dührkop et al. (2015); Litsa et al. (2023)), and
Infrared Spectroscopy (IR, Alberts et al. (2023)).
These spectra contain substantial information that
LLMs currently fail to fully exploit.

Challenge 3: chemistry tools are not utilized.
Due to the core design of LLMs, they often struggle
with retaining up-to-date knowledge and perform-
ing specific chemistry operations (Castro Nasci-
mento and Pimentel, 2023; Schick et al., 2024).
On the other hand, there are numerous powerful
chemistry tools, such as the structure knowledge re-
trieval (PubChem (Kim et al., 2019), OPTIMADE
(Evans et al., 2024)), and various expert-designed
artificial intelligence systems tailored to address
specific problems like reaction prediction (Pesci-
ullesi et al., 2020), retrosynthesis planning (Segler
et al., 2018) and so on. The absence of integration
with these chemistry tools significantly hinders the

performance of LLMs in the field of chemistry.
In this survey, we critically review current ef-

forts addressing the three key challenges outlined
in Figure 2. Additionally, we review the existing
benchmarks used to evaluate the performance of
chemistry LLMs and offer suggestions for future
research directions. To the best of our knowledge,
this is the first systematic survey reviewing exist-
ing approaches for transferring general LLMs to
chemistry-specific LLMs in decoder architecture.

2 Domain Knowledge

Pre-training, SFT and RLHF have been the de facto
way to enhance domain knowledge of LLMs. We
will detail those methods in the following sections.

2.1 Pre-training
The natural of LLMs lay in language modeling,
given a set of examples (x1, x2, ..., xn) each com-
posed of variable length sequences of symbols
(s1, s2, .., sm), language model is framed as a unsu-
pervised distribution estimation and the joint prob-
abilities over symbols can be formulated (Radford
et al., 2019):

p(x) =

n∏
i=1

p(sn|s1, ..., sn−1), (1)

self-attention architectures like the Transformer
can be applied to compute these conditional prob-
abilities. Training on a large-scale corpus in this
manner enables LLMs to capture rich language
representations, refering to pre-training.

Continue pre-training is prefered given the
existence of advanced foundation models like
LLaMA (Touvron et al., 2023a,b) and Galactica
(Taylor et al., 2022), which already contain some
basic chemistry knowledge. In contrast, pre-
training from scratch is cost-prohibitive. Chem-
istry knowledge is typically encoded in specific
languages, such as the Simplified Molecular-Input
Line-Entry System (SMILES) (Weininger, 1988),
which represents 3D structures as flattened se-
quences while preserving most structural informa-
tion. Other representations include molecular for-
mulas, SELFIES (Krenn et al., 2020), International
Union of Pure and Applied Chemistry (IUPAC)
names, and the Chemical Identifier (InChI) (Heller
et al., 2013). To enhance foundation models with
domain-specific chemistry knowledge, it is neces-
sary to gather pre-training corpora in these chemi-
cal languages and apply continued pre-training.
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Chemistry LLMs

Challenge 3: Chem-
istry Tools (§ 4)

Embodied
Robots (§ 4.3)

Coscientist (Boiko et al., 2023),CLAIRify (Yoshikawa et al., 2023),OR-
GANA (Darvish et al., 2024),

ML Models (§ 4.2) ChatChemTS (Ishida et al., 2024), ChemCrow (M. Bran et al., 2024),
ChatMOF (Kang and Kim, 2024), ChemReasoner (Sprueill et al., 2024)

Structured Knowl-
edge Retrieval (§ 4.1)

ChemCrow (M. Bran et al., 2024),LLaMP (Chiang et al., 2024), ChatGPT
Chemistry Assistant (Zheng et al., 2023), DRAK-K (Liu et al., 2024b),

Challenge 2: Multi-
modal Data: (§ 3)

Other Modalites
(§ 3.4)

ChemVLM (Li et al., 2024c), ChemDFM-X (Zhao et al., 2024a)

3D Structure (§ 3.3) 3D-MoLM(Li et al., 2024d)

2D Graph (§ 3.2)

InstructMol (Cao et al., 2023), HIGHT (Chen et al., 2024b), MolTC (Fang
et al., 2024a), MolCA (Liu et al., 2023b), ReactXT (Liu et al., 2024e),
ICMA (Li et al., 2024b), MoleculeGPT (Zhang et al., 2023c), MolX (Le
et al., 2024), MM-RCR (Zhang et al., 2024e)

1D Sequence (§ 3.1) MolX (Le et al., 2024), MoleculeGPT (Zhang et al., 2023c)

Challenge 1: Domain
Knowledge (§ 2)

RLHF (§ 2.3) MolGen (Fang et al., 2024b), BindGPT (Zholus et al., 2024), MolRL-
MGPT (Hu et al., 2024)

SFT (§ 2.2)

Task-specific SFT
GPTChem (Jablonka et al., 2024),

MatChat (Chen et al., 2023),
MolecularGPT (Liu et al., 2024d)

Multi-task SFT

LlaSMol (Yu et al., 2024), Mol-
Instructions (Fang et al., 2023),
ChemDFM (Zhao et al., 2024b),
ChemLLM (Zhang et al., 2024a)

Pre-training (§ 2.1) ChemDFM (Zhao et al., 2024b)

Figure 2: Taxonomy of currect approachs for transfering general LLMs to specialized chemistry LLMs.

The volume of pre-training data required for
chemistry LLMs is immense, making it difficult to
obtain and, in some cases, restricted by copyright.
To the best of our knowledge, ChemDFM (Zhao
et al., 2024b) is the sole chemistry LLM specifically
pre-trained on a chemical corpus. ChemDFM’s
training data comprises 34 billion tokens from 3.9
million chemical papers collected online before
January 2022 and 49 million tokens from 1.4 thou-
sand chemistry books sourced from LibreTexts2

and Gold Books3. Through pre-training on this
chemical text, ChemDFM can acquire a solid un-
derstanding of chemistry and emerge as the top
open-source model (Feng et al., 2024). Another
T5-based chemistry LM, Nach0 (Livne et al., 2024),
collects 13 million abstracts from PubMed, 119K
patent descriptions from the USPTO, and incorpo-
rates approximately 100 million documents from
ZINC.

2.2 SFT

Pre-training on large corpus with next token pre-
diction does not align well with users’ objective,

2https://libretexts.org/
3https://goldbook.iupac.org/

as users expect models to "follow their instructions
helpfully and safely" (Zhang et al., 2023b). SFT
effectively aligns LLMs with user expectations by
training them on datasets consisting of (INSTRUC-
TION, OUTPUT) pairs, where INSTRUCTION
refers to specific chemistry tasks and OUTPUT
represents the desired responses. Given the variety
of chemistry tasks in the SFT dataset, it can be
further categorized as follows:

1. Multi-task SFT: We categorize commonly
used chemistry tasks into four types: SMILES
understanding, reaction understanding, no-
tation alignment and chemistry-related QA,
as detailed in Appendix B. The most signif-
icant distinction among different SFT mod-
els (Yu et al., 2024; Fang et al., 2023; Zhao
et al., 2024b; Zhang et al., 2024a) lie in their
data sources and the volume of data used,
and the detailed data distribution is shown
in Appendix B. The total dataset volume
ranges from 1.5M to 3M, although Zhang et al.
(2024a) does not provide exact figures, it is
likely of a similar magnitude. The distribution
of tasks within the SFT dataset determines the
model’s chemistry capabilities, as identified
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by (Feng et al., 2024). Zhao et al. (2024b);
Zhang et al. (2024a) focus more on chemistry-
related QA, gathering major data from sources
such as chemistry exams and existing datasets,
which enhances the model’s ability to answer
user questions more naturally.

2. Task-specific SFT: Task-specific finetuning
of LLMs has demonstrated effective predic-
tion performances, often surpassing tradi-
tional machine learning models, particularly
in low-data scenarios(Jablonka et al., 2024).
Jablonka et al. (2024) finetune GPT-3 for clas-
sification, regression, and inverse design tasks,
achieving competitive results in three case
studies (polymers, metal-organic frameworks,
and photoswitches). More recently, Liu et al.
(2024d) propose hybrid instruction tuning on
more than 1000 property tasks with LLaMA2-
7b-chat (Touvron et al., 2023b), reporting up
to a 16.6% average improvement over leading
LLM baselines across all classification tasks.
Additionally, Chen et al. (2023) also fine-tune
LLaMA2-7B-chat with 13,878 pieces of struc-
tured material knowledge data to predict inor-
ganic material synthesis pathways.

In addition to these chemistry tasks, chemical
text mining is also a crucial foundation in chemical
research, as much scientific knowledge is dispersed
across the text, tables, and figures in millions of
academic papers (Dagdelen et al., 2024). Dagdelen
et al. (2024) focus on joint named entity recogni-
tion and relation extraction, enabling the genera-
tion of simple English sentences or more structured
formats, such as JSON object, from individual sen-
tences or entire paragraphs. Zhang et al. (2024c)
extend these efforts to more chemical text mining
tasks, achieving the best performance across all
tasks, with exact accuracy ranging from 69% to
95% using minimal annotated data.

2.3 RLHF
While pre-training and SFT provide chemistry
LLMs with domain-specific knowledge and enable
them to perform specific tasks, these models are
still prone to hallucination. RLHF is the most effec-
tive method to alleviate hallucinations and build a
truthful, helpful and harmless LLM (Ouyang et al.,
2022). There are many detail algorithms to utilize
human feedback, such as PPO (Schulman et al.,
2017), DPO (Rafailov et al., 2024). Beyond human
feedback, other methods for collecting preference

feedback include AI feedback (Lee et al., 2023; Bai
et al., 2022) and environment feedback (Cao et al.,
2024; Dong et al., 2024).

Existing research on human alignment for chem-
istry LLMs primarily focuses on molecular genera-
tion tasks. Fang et al. (2024b) first pre-trains LLM
on SELFIES (Krenn et al., 2020), enabling the gen-
eration of syntactically correct molecules; however,
the model also produces undesirable molecules,
referred as molecular hallucinations. To mitigate
these hallucinations and better align with actual
chemical contexts, they apply a rank loss (Liu et al.,
2022) by assigning higher probabilities to molecule
candidates with desired properties. Zholus et al.
(2024) finetunes a GPT-based model for 3D molec-
ular design, and utlizes external feedback from
docking software using REINFORCE algorithm
(Williams, 1992). Hu et al. (2024) further inves-
tigates multiple GPT agents to generate desirable
molecules in diverse directions, with the reward
function estimated by docking software. The ob-
jective is to maximize the average reward while
simultaneously improving molecular diversity.

AI and environment feedback are the most com-
monly used rewards for chemistry LLMs, as the
more valuable human feedback is often unavail-
able due to the need for strong domain knowledge
and the lack of effective tools to collect chemistry-
specific feedback. Hu et al. (2024) design a Python-
based open-source graphical user interface (GUI)
to explore and evaluate molecules, and capture
chemist’s implicit knowledge and preferences more
efficiently. This tool provides a promising approach
for collecting chemistry-specific feedback to better
align chemistry LLMs with human expertise.

3 Multi-Modal Data

Domain knowledge training is a standard approach
for developing domain-specific LLMs, as demon-
strated in fields like geoscience (Deng et al., 2024),
law (Zhou et al., 2024), and medicine (Zhang et al.,
2023a). However, chemical data is highly frag-
mented across multiple modalities (Mirza et al.,
2024), such as 2D graphs, 3D structures, and spec-
tra, as shown in Figure 3, which cannot be directly
processed by vanilla LLMs. Inspired by recent ad-
vances in multi-modal and vision LLMs (Liu et al.,
2024a; Li et al., 2024a; Huang et al., 2024a), numer-
ous studies have focused on integrating chemical
modalities with vanilla LLMs through the design
of alignment components. We provide a compre-
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hensive review of these works based on the modali-
ties they support: 1D Sequences, 2D Graphs, 3D
Structures, and Other Modalities.

3.1 1D Sequences

SMILES (Weininger, 1988) is a widely used molec-
ular representation, but it is generally processed
as text using a byte-pair encoding tokenizer (Sen-
nrich, 2015), which fails to capture its inherent
chemical information. To address this limitation,
MolX (Le et al., 2024) treats SMILES as a dis-
tinct modality and proposes a pre-trained BERT-
like (Devlin, 2018) SMILES encoder to extract fea-
tures, which are then aligned with other modalities
through projection. MoleculeGPT (Zhang et al.,
2023c) also adapt ChemBerta (Ahmad et al., 2022)
for SMILES encoding. However, SMILES lacks
robustness and does not fully capture spatial in-
formation, leading to the development of other 1D
sequence representations, such as SELFIES (Krenn
et al., 2020), IUPAC names, molecular fingerprints
(Morgan, 1965), and InChI (Heller et al., 2013).
These 1D sequences are generally processed simi-
larly to text but can be further refined using special-
ized encoders, such as SELFormer (Yüksel et al.,
2023) for SELFIES and variational autoencoders
(VAE, Kingma (2013)) for molecular fingerprints.

3.2 2D Graphs

Compared to 1D sequences, 2D graphs offer a
more intuitive representation of molecular struc-
tures and chemical bonds. To process 2D graphs,
an encoder is required to convert them into vector
representations, followed by a projector to align
these vectors with LLMs. Graph neural networks
(GNNs, Hu et al. (2019); Xiao et al. (2022)) are
widely used as 2D graph encoders and have been
adopted by most multimodal chemistry LLMs (Liu
et al., 2024e; Li et al., 2024b; Zhang et al., 2023c;
Le et al., 2024; Zhang et al., 2024e). For in-
stance, MolTC (Fang et al., 2024a) train two GNN-
based encoders and representation projectors by
freezing the LLM and backpropagating the gener-
ation loss. InstructMol(Cao et al., 2023) employs
MoleculeSTM’s graph encoder (Liu et al., 2023a),
which is trained through molecular-textual con-
trastive learning. MolCA (Liu et al., 2023b) utilze a
more expressive GNN model - Graph isomorphism
network (GIN, Hu et al. (2019)), which pre-trained
on 2 million molecules from the ZINC15 (Ster-
ling and Irwin, 2015). HIGHT(Chen et al., 2024b)
further introduce a hierarchical graph tokenizer

which em Vector Quantized-Variational AutoEn-
coder (VQVAE, (Zang et al., 2023)) to extract high-
order structural information and then feed them
into LLMs.

There are various projectors to map graph fea-
tures into the LLM embedding space, such as cross-
attention (Alayrac et al., 2022), Q-Former (Li et al.,
2023), position-aware vision language adapters
(Bai et al., 2023), and light-weight Multi-layer
Perceptron (MLP). Q-Former is the most widely
adopted projector (Liu et al., 2023b; Fang et al.,
2024a; Zhang et al., 2023c), maintaining a set of
learnable query tokens to interact with the graph
encoder and extract features. However, Instruct-
Mol (Cao et al., 2023) argues that Q-Former re-
quires a large number of paired data for pretraining,
making alignment inefficient, and instead employs
a lightweight MLP for alignment. DeCo (Yao et al.,
2024) also find that Q-Former tends to lose fine-
grained visual attributes and spatial locality in vi-
sual LLMs.

3.3 3D Structures
The 3D structures of molecules is crucial because
it contains spatial information essential for under-
standing molecular dynamics, protein-ligand inter-
actions, enzymatic functions, and other biomolecu-
lar phenomena (Li et al., 2024d). Unlike 1D se-
quences or 2D graphs, 3D structures provide a
complete geometric representation of the molecule,
allowing models to take into account the three-
dimensional arrangement of atoms and the dis-
tances between them. MolLM (Tang et al., 2024)
and Uni-Mol (Zhou et al., 2023) demotarte per-
formance enhancement in downstream tasks when
incorporating 3D information. 3D-MoLM (Li et al.,
2024d) utilizes Uni-Mol (Zhou et al., 2023) to en-
code 3D conformations generated from SMILES
and employs Q-Former (Li et al., 2023) for cross-
modal alignment. This approach outperforms
baseline models that rely on 1D or 2D molecu-
lar perceptions in tasks such as molecule-text re-
trieval, molecule captioning, and open-text ques-
tion answering, particularly when addressing 3D-
dependent properties. In contrast, 3D-MolT5 (Pei
et al., 2024b) contends that the modality alignment
approach employed by 3D-MoLM (Li et al., 2024d)
is inefficient and introduces a specialized 3D vo-
cabulary to train 1D, 3D, and text modalities within
a unified architecture, demonstrating significant im-
provements over 3D-MoLM (Li et al., 2024d) in
various downstream tasks.
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Figure 3: For example, the compound C8H11NO can be represented across various modalities. 1D sequeues
include SMILES, IUPAC name and so on. Molecular structure consist of 2D graphs and 3D structures, 2D graphs
encompass three matrices: atomic features, atom connection, chemical bonds features, 3D strutures compromise the
coordinate of every atom. Other modalities consist of mass spectra, images, and so on.

3.4 Other Modalities

2D graphs or 3D structures generated by RDKit are
often represented as matrices, which are not human-
readable. In contrast, chemical images are more
intuitive and frequently used to represent chemi-
cal structures in a human-friendly format. At the
same time, numerous efficient image algorithms,
such as the Vision Transformer (ViT) (Dosovitskiy,
2020) and Swin Transformer (Liu et al., 2021), can
be directly employed as modality encoders. GIT-
Mol (Liu et al., 2024c) utilizes Swin Transformer
(Liu et al., 2021) from SwinOCSR for image ecod-
ing, and adopt cross-attention for modal alignment.
ChemVLM (Li et al., 2024c) adopts InternViT-6B
(Chen et al., 2024d) as the vision encoder, follow-
ing the LLaVA (Liu et al., 2024a) architecture in the
"ViT-MLP-LLM" style. Additionally, ChemVLM
introduces three new chemical image datasets —
ChemOCR, MMCR-Bench, and MMChemBench,
However, these datasets are not open-source at this
time. To facilitate future research on chemical im-
ages, we provide a summary of existing chemical
image datasets in Appendix C.

Another important chemistry-specific modality
is spectral , which can be obtained through simula-
tions (CFMID 4.0, Wang et al. (2021)) and exper-
iments. This data is rich in structural information
and plays a vital role in determining molecular
structures. For example, MSNovelist (Stravs et al.,
2022) utilizes an encoder-decoder neural network
to generate molecular structures de novo from tan-

dem mass spectrometry, but its accuracy is less than
50%. Comprehensive exploration of the diverse in-
formation embedded in these spectral modalities is
crucial for advancing research in this domain.

4 Chemistry Tools

Although domian knowledge training and multi-
modal enhancement can encode a certain amount
of domain-specific knowledge into LLMs, it is con-
strained by scalability and intrinsic memory ca-
pacity (Chiang et al., 2024). In this section, We
emphasize improving the capability of LLMs to
tackle complex chemistry and embodied problems
through the use of chemistry tools, such as op-
erating experimental equipment for scientific re-
search. We categorize these chemistry tools into
three types: structured knowledge retrieval, ma-
chine learning (ML) models, and embodied robots.

4.1 Structured Knowledge Retrieval
Structured knowledge retrieval, or retrieval-
augmented generation (RAG, (Lewis et al., 2020)),
has been proposed to alleviate hallucinations in
both chemistry-specific and general LLMs (Xu
et al., 2024). The key component of knowledge
retrieval is the knowledge source, and the retrieval
method is typically determined by the source. We
categorize common knowledge sources as follows:

1. Database: There are many famous chem-
istry database, such as, Materials Project (MP,
Jain et al. (2013)), OPTIMADE (Evans et al.,
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2024). These databases cannot be accessed
through direct web searches; instead, data re-
trieval requires following specific API doc-
umentation. LLaMP (Chiang et al., 2024)
design hierarchical ReAct (Yao et al., 2022)
agents that can dynamically and recursively
interact with MP to ground LLMs on high-
fidelity materials informatics.

2. Scientific Literature: Peer-reviewed research
articles are the most accurate and authorita-
tive data source, and there are many Scholarly
engines can help us find the related papers.
Zheng et al. (2023) propose to use ChatGPT
for text mining the synthesis conditions of
metal-organic frameworks (MOFs) and de-
velop a ChatGPT Chemistry Assistant (CCA)
chatbot base on the systhesis dataset and bib-
liographic context (such as authors and DOI),
to alleviate hallucinatory errors.

3. Knowledge Graph: A knowledge graph is a
structured representation that allows for com-
plex queries and provides insights that tradi-
tional databases cannot easily offer (Ye et al.,
2024). Liu et al. (2024b) propose KG-driven
Knowledge Injection (DRAK-K) by retrieving
the top-k most relevant pieces of knowledge
and transforming the related knowledge into
structured background context for LLMs.

4.2 ML Models

LLMs are prone to worse than existing ML base-
lines (Guo et al., 2023) in reaction-related tasks,
and this tasks are difficult to be solved by knowl-
edge retriveal. On the other hand, LLMs can inter-
act with various tools (APIs) to accomplish com-
plex tasks (Qin et al., 2023) in ReAct (Yao et al.,
2022) style , and we can boost chemistry LLMs
performance with SOTA ML models. ChemCrow
(M. Bran et al., 2024) design reacttion tool set
consist of NameRXN, ReactionPredict and Reac-
tionPlanner provied by RXN4Chemistry API from
IBM Research, and plan the syntheses of an insect
repellent and three organocatalysts. ChatChemTS
(Ishida et al., 2024) develop a user frendly chat-
bot named ChatChemTS which utilize AI-based
molecule generators such as ChemTSv2 (Ishida
et al., 2023) for molecular design. ChatMOF (Kang
and Kim, 2024) foucs on generating new metal or-
ganic frameworks (MOFs, Kitagawa et al. (2014))
which are useful in many chemical applications

due to large porosity, high surface area,and excep-
tional tunability (Deng et al., 2012), and they also
predict the properties of generated MOFs. They
adopt MOFTransformer (Kang et al., 2023) for the
universal prediction of MOF properties and genetic
algorithm (Park et al., 2022) to generate new MOFs,
and achieve high accuracy of 95.7% for predicting,
and 87.5% for generating tasks with GPT-4.

ML models can also help discover new catalyst
by just giving feedback, ChemReasoner (Sprueill
et al., 2024) use atomistic graph neural networks
(GNNs) trained from quantum chemistry simula-
tions for structure-based scoring, the GNNs are
used to yeild reward and drive LLM towards cat-
alysts with specific properties. This novel idea
suggest that ML models not only can be used as
tools aid in specific task, but also can be used as
feeback to guide and stimulate the LLMs to fulfill
the tasks by themselfs.

4.3 Embodied Robots

Chemistry experiments are often resoure- and labor-
intensive, and automated experiments canattain
higher throughput and precision (Tom et al., 2024).
However, the discovery of new material requires
not only automation but autonomy—the ability of
an experimental agent to interpret data and make
decisions based on it (Szymanski et al., 2023),
where LLMs are excellent at planing and reason-
ing, showing promise of sought-after system that
autonomously designs and executes scientific ex-
periments (Boiko et al., 2023).

Coscientist (Boiko et al., 2023) is a GPT-4 driven
AI system which can autonomously designs, plans
and performs complex experiments, it demonstrate
the versatility and performance across six tasks.
CLAIRify (Yoshikawa et al., 2023) also leverage
robots and LLM to automate chemistry experi-
ments, and they pay more attention to how to gen-
erate syntactically valid programs in a data-scarce
domain-specific language that incorporates envi-
ronmental constraints. ORGANA (Darvish et al.,
2024) further extend CLAIRify with visual per-
ception of the environment and support complex
experiments between multiple robots.

5 Benchmarks

Benchmarks are essential for evaluating the perfor-
mance of chemistry LLMs on chemistry-related
tasks and can be broadly categorized into two
categories: science benchmarks and molecule-
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specific benchmarks. Chemistry is a subset of sci-
ence, and existing science benchmarks evaluate
LLMs’ ability to solve scientific problems, includ-
ing those related to chemistry. Existing science
benchmarks, such as SciQ (Welbl et al., 2017), Sci-
Code (Tian et al., 2024), ScienceQA (Lu et al.,
2022), AGIEval (Zhong et al., 2023), SciEval (Sun
et al., 2024), SciBench (Wang et al., 2023), and
VisScience(Jiang et al., 2024), typically cover a
wide range of scientific disciplines, including bi-
ology, earth science, physics, chemistry, and even
social science. Although these science benchmarks
include chemistry-related tasks, they are not specif-
ically designed for chemistry and fail to address
many chemistry-specific problems.

In contrast, molecule-specific benchmarks are
designed to assess knowledge in molecule-related
sciences (e.g., chemistry, materials science, bio-
chemistry). ChemLLMBench (Guo et al., 2023)
first adapts traditional chemistry tasks to a lan-
guage model setting, evaluating the performance
of contemporary LLMs in zero-shot and few-shot
prompts. SciKnowEval (Feng et al., 2024) expands
the chemistry domain to molecules by introduc-
ing a large dataset of 50,000 problems that assess
various LLM abilities, including knowledge cov-
erage, reflection and reasoning, and application.
MassSpecGym (Bushuiev et al., 2024) focuses on
characterization techniques, such as Tandem Mass
Spectrometry (MS/MS), and evaluates the ability
of LLMs to elucidate molecular structures from
MS/MS data. Notably, there are several other im-
portant chemistry benchmarks, including Schol-
arChemQA (Chen et al., 2024a), SCIASSESS (Cai
et al., 2024), SciKnowEval (Feng et al., 2024),
ChemEVal (Huang et al., 2024b), Alberts et al.
(2024), and MolPuzzles (Guo et al., 2024). Due
to page limitations, we provide a brief overview of
these benchmarks in Table 3.

6 Future Directions

Although current approaches have made steady
progress towards chemistry LLMs, there remains
significant room for improvement. Future research
directions can be categorized into three main as-
pects: data, model, and application.

6.1 Data

Data Diversity Training data is the foundation
of LLMs. However, most existing datasets are built
from pre-existing sources, such as MoleculeNet

(Wu et al., 2018), and cover a limited range of
chemistry tasks. Future work should aim to create
more diverse and comprehensive datasets to en-
hance the training of chemistry LLMs and broaden
their capabilities.

CoT Reasoning Chain-of-Thought (CoT, Wei
et al. (2022b) ) reasoning is one of the most notable
emergent abilities of LLMs, involving the gener-
ation of a sequence of intermediate steps leading
to the final answer. However, existing chemistry
LLMs often lack this critical reasoning capability
due to simple training instruction pairs. Developing
training data with explicit reasoning paths to effec-
tively elicit the CoT ability in chemistry LLMs is a
crucial direction for future research.

Chemical Modality As described in Section 3.4,
many chemistry-specific spectra are not yet fully
exploited in in chemistry LLMs. However, these
spectra contain rich structural information that can
be valuable for various chemical tasks. For ex-
ample, tandem mass spectrometry (MS/MS) can
provide detailed insights into the molecular struc-
ture, allowing for the identification and character-
ization of compounds and elucidation of reaction
mechanisms.

6.2 Model

Multi-Modal Alignment Most works towards
multi-modal chemistry LLMs always invole a sin-
gle pair of modalities, limiting their representations
ability. Align multiple N ( ≥ 3) modalities is a
promising direction as different modalites are com-
plementary and can provide more comprehensive
understanding of chemistry molecules.

RLXF RLHF is a crucial step in training pow-
erful LLMs. Although obtaining human feedback
is challenging, especially in chemistry where data
annotation requires specialized domain knowledg,
we can leverage advanced LLMs as assistants to
guide this process. Additionally, we can also utilize
results from professional chemistry software as a
form of reward to align chemistry LLMs.

6.3 Application

Research Assistants Chemistry LLMs have the
potential to serve as powerful research assistants,
aiding chemists by automating routine tasks such
as literature review, data analysis, and hypothesis
generation. For future development, these mod-
els can be designed to understand complex scien-
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tific queries, provide insights from vast amounts of
chemical literature, suggest experimental protocols,
and even propose novel research directions.

Automated Experimentation Automated exper-
imentation is another promising direction for ad-
vancing chemistry LLMs. Integrating these models
with automated laboratory systems can enable them
to not only predict molecular properties or suggest
potential chemical reactions but also design, exe-
cute, and analyze experiments in real-time. Future
research should explore how chemistry LLMs can
be trained and aligned to interact with automated
experimental setups, ensuring reliability, safety,
and compliance with scientific standards.

7 Conclusion

In this survey, we systematically investigate the
current approaches to adapting general LLMs for
chemistry LLMs. We highlight key challenges, in-
cluding domain knowledge, multi-modal data, and
the integration of chemistry-specific tools, and re-
view existing efforts to address these challenges.
While significant progress has been made, achiev-
ing chemical general intelligence remains a distant
goal, and we identify promising future directions.
We hope this survey will inspire further innovative
research in the field.

Limitations

In this paper, a comprehensive review of existing
methods for constructing chemistry-focused LLMs
is presented, with an emphasis on three key aspects
for enhancing general LLMs: domain-specific
knowledge, multi-modal data, and chemistry tools.
This survey aims to provide researchers with a
concise understanding of chemistry LLMs and
suggest potential directions for future research.
However, certain limitations may be present.

References. Due to page limitations and
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not include all relevant references and detailed
technical information. However, we strive to keep
our work up-to-date on our GitHub repository.
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A Related Work

The intersection of LLMs and chemistry is an ur-
gent and rapidly growing field. Numerous works
and reviews have addressed this topic, which can
be broadly categorized into:

A.1 General Science
Several surveys focus on general science, includ-
ing chemistry. Zhang et al. (2024d) explore LLM
applications across mathematics, physics, biology,
medicine, geography, geology, environmental sci-
ence, and chemistry. However, the broad scope
limits the depth of discussion on chemistry-specific
LLMs. Zhang et al. (2024b) focus more on the
chemical domain but still include biological LLMs
and BERT-style models, without discussing the
emergent applications of chemistry-specific agents.

A.2 Chemistry-Specific Surveys
Chemistry’s significance has drawn considerable
attention, leading to various efforts summarizing
current trends. Xia et al. (2022) review Chemi-
cal Pre-trained Models (CPMs) based on GNNs or
Transformers but focus little on LLMs. Janakara-
jan et al. (2024) emphasize the role of language
models in molecular discovery but offer limited
insights on training chemistry-specific LLMs. Liao
et al. (2024) concentrate on molecule encoding
and pretraining objectives, while Pei et al. (2024a)
discuss progress from a multi-modal perspective,
neglecting LLMs’ tool-using potential. Ramos et al.
(2024) review chemistry LLM agent applications
in literature analysis, experiment planning, and hy-
pothesis generation, but overlook multi-modal ca-
pabilities. Notably, these surveys categorize BERT-
style LMs as LLMs, despite their need for task-
specific fine-tuning and lack of emergent abilities.

B SFT Tasks Description

The most frequently used chemistry tasks for SFT
and their description are shown in Table 1. In ac-
cordance with the task division presented in Table
1, we illustrate in Figure 4 the data distribution of
the commonly used SFT dataset.

C Molecule Image Dataset

We describe the existing molecule image dataset in
Table 2.

D Benchmarks

We briefly introduce the existing benchmarks in
Table 3, covering aspects such as subject, task type,
dynamics, source, and modality.
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Type Chemistry Tasks Description

SMILES
Understanding

Molecule description Given a molecule SMILES, generating text descrip-
tion illuminating the structure, properties ,biological
activity, and applications.

Text-based molecule design Inverse task of molecule description, given a text
description, generating the molecule SMILES.

Molecular property prediction Molecular property prediction focus on drawn from
Mquantum mechanics properties of molecules drawn
from MoleculeNet.

Reaction
Understanding

Reagent prediction Reagent prediction generate suitable catalysts, sol-
vents, or ancillary substances required for a specific
chemical reaction.

Forward reaction prediction Forward reaction prediction generate probable prod-
uct(s) of a chemical reaction.

Retrosynthesis Inverse task of forward reaction prediction, generate
the synthesis routes and precursor molecules given
target molecule.

Notation
Alignment

SMILES and IUPAC names Given SMILES, generate IUPAC name, and reverse
transformation.

SMILES and Formulas Given SMILES, generate formulas, and reverse trans-
formation.

Chemistry-Related
QA

QA Chemical QA extracted from existing dataset or
exam.

Table 1: The most frequently used chemistry tasks for SFT.

Figure 4: The compositional structure of representative SFT dataset. The definition of tasks above the the horizontal
lines is shown in Table 1, the source and size of the different tasks are indicated below the horizontal lines, and
percentages on the pie charts are present to show the difference of different dataset.
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Dataset scale Description

Synthetic

USPTO-680K (Chen et al.,
2024c)

680K Multiple molecular formulas in one image

USPTO-30K (Morin et al., 2023) 30K 10K without bbreviation groups; 10K has
superatomic groups; 10K is larger than 70

atoms
MolGrapher-Synthetic-300K

(Morin et al., 2023)
300K Rdkit generation

img2Mol (Clevert et al., 2021) 41K Rdkit generation
MMChemOCR (Li et al., 2024c) 1K closed source
MMCR-bench (Li et al., 2024c) 1K closed source

MMChemBench (Li et al.,
2024c)

700 closed source

Realistic

MolNexTR test data (Chen et al.,
2024c)

18K 5088 handwritten molecular images

RxnScribe (Qian et al., 2023) 1413 4 forms of reaction images
OpenChemIED (Fan et al., 2024) 254 Only eval data is open source

ReactionDataExtractor 2.0
(Wilary and Cole, 2023)

517 Only eval data is open source

Table 2: Overview of molecular image datasets, categorized into synthetic and realistic groups with details on
their scale and descriptions. Synthetic datasets are primarily RDKit-generated or derived from large collections,
while realistic datasets include handwritten and reaction images. Some datasets are closed-source or only provide
evaluation data.

Dataset Subject Task Type Samples Modality Source

SciQ (Welbl et al., 2017) Bio, Chem, Earth, Phy MCQ, DA 1000 Text CK-12, OpenStax
SciCode (Tian et al., 2024) Math, Phy, Chem,

Bio, Mat
DA 338 Text Research Paper

ScienceQA (Lu et al., 2022) Natural, Social and
Language Science

MCQ 4,241 Image, Text School Curricula

AGIEval (Zhong et al., 2023) Bio, Chem, Phy, Math,
Law, at el.

MCQ,DA 8,062 Text Human Exam

SciEval (Sun et al., 2024) Bio, Chem, Phy MCQ,DA 15901 Text Socratic QA , MedQA,
PubMedQA

SciBench (Wang et al., 2023) Chem, Math, Phy DA 789 Image, Text TextBook
VisScience (Jiang et al., 2024) Math, Chem, Phy MCQ,DA 3000 Image,Text K12 education

ChemLLMBench (Guo et al., 2023) Chem DA 800 Text PubChem, MoleculeNet,
USPTO, ChEBI,Suzuki

SciKnowEval (Feng et al., 2024) Bio, Chem MCQ, DA 50,048 Text Literatures, Existing QAs,
Databases

MassSpecGym (Bushuiev et al., 2024) Chem DA 17,556 Spectra(Text) MoNA, MassBank,
GNPS,In-House Database

ScholarChemQA (Chen et al., 2024a) Chem MCQ 500 Text Paper
SciAssess (Cai et al., 2024) Mat, Bio, Drug MCQ,DA 14,721 Image, Text Existing benchmarks,

Papers
ChemEVal (Huang et al., 2024b) Chem DA 840 Text Open-Source Data

MolPuzzles (Guo et al., 2024) Chem DA 19891 Spectra(Image) Textbook
Alberts et al. (2024) Chem DA 79K Spectra(Text) USPTO

Table 3: A brief introduction to the existing benchmarks. "MCQ" refers to Multi-Choice Questions, while "DA"
denotes Direct-Answer tasks. "Samples" refers to the number of test set examples. The "Spectra" modality is
distinctive, as spectra can be represented either as images or text.
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