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Abstract

Large Language Models (LLMs) present mas-
sive inherent knowledge and superior semantic
comprehension capability, which have revolu-
tionized various tasks in natural language pro-
cessing. Despite their success, a critical gap
remains in enabling LLMs to perform knowl-
edge graph completion (KGC). Empirical ev-
idence suggests that LLMs consistently per-
form worse than conventional KGC approaches,
even through sophisticated prompt design or
tailored instruction-tuning. Fundamentally, ap-
plying LLMs on KGC introduces several crit-
ical challenges, including a vast set of entity
candidates, hallucination issue of LLMs, and
under-exploitation of the graph structure. To
address these challenges, we propose a novel
instruction-tuning-based method, namely FtG.
Specifically, we present a filter-then-generate
paradigm and formulate the KGC task into
a multiple-choice question format. In this
way, we can harness the capability of LLMs
while mitigating the issue casused by hallucina-
tions. Moreover, we devise a flexible ego-graph
serialization prompt and employ a structure-
text adapter to couple structure and text infor-
mation in a contextualized manner. Experi-
mental results demonstrate that FtG achieves
substantial performance gain compared to ex-
isting state-of-the-art methods. The instruc-
tion dataset and code are available at https:
//github.com/LB0828/FtG.

1 Introduction

Knowledge graphs (KGs) encode and store abun-
dant factual knowledge in the format of triples
like (head entity, relation, tail entity), which pro-
vide faithful knowledge source for downstream
knowledge-intensive tasks (Pan et al., 2023; Luo
et al., 2023b). However, due to the evolving nature
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Figure 1: Unsatisfactory performance (Hits@1 metric)
of LLMs on the test set of FB15k-237 compared to
conventional KGC method RotatE (Sun et al., 2019).

of knowledge, real-world KGs often suffer from
incompleteness, urging auto-completion of them.
Therefore, knowledge graph completion (KGC),
which aims to infer missing triples from the exist-
ing KG, has been a fundamental and challenging
problem in artificial intelligence research.

Recently, large language models (LLMs) have
demonstrated impressive memorization and reason-
ing abilities through pre-training on massive text
corpora (Zhang et al., 2024; He et al., 2024). De-
spite their success, LLMs are limited in insufficient
knowledge and prone to generate hallucinations
(Huang et al., 2023; Li et al., 2023). Multiple at-
tempts that exploit KGs to address the hallucina-
tions issues of LLMs have demonstrated promis-
ing achievements on various natural language pro-
cessing tasks (Luo et al., 2023b; Xu et al., 2024).
However, the integrating LLMs with KGs for KGC
remains underexplored, which present a significant
opportunity to revolutionize the approach to KGC
by leveraging the contextual understanding and rea-
soning abilities of LLMs.

Zhang et al. (2023) and Shu et al. (2024) ap-
ply LLMs to relatively simple KG triple classifi-
cation (i.e., determining if it is true) has achieved
promising results. For more practical and challeng-
ing KGC task, Zhu et al. (2023) exploit ChatGPT
(OpenAI, 2023) with in-context learning (Wei et al.,

https://github.com/LB0828/FtG
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2022b) to transform the KGC task into a text-based
prediction. However, contrary to expectations,
ChatGPT, equipped with hundreds of billions of
parameters, lags behind the performance achieved
by conventional structure-based methods (e.g., Ro-
tatE (Sun et al., 2019)). As shown in Figure 1, on
widely-used dataset FB15k-237 (Toutanova and
Chen, 2015), ChatGPT only achieves 0.097 on
the Hits@1 metric while RotatE achieves 0.241.
Furthermore, KG-LLaMA (Yao et al., 2023) uti-
lizes instruction tuning (Wei et al., 2022a) to adapt
LLaMA2-7b (Touvron et al., 2023) to KGC task,
the performance achieved still is not satisfactory
(0.165 Hits@1 on FB15k-237). Considering the
powerful abilities of LLMs, yet they perform worse
than conventional methods on KGC task, a perti-
nent question arises: Why LLMs cannot present
satisfactory performance on KGC task?

We speculate LLMs struggle in the KGC task
from two aspects: (1) Large entity candidate set.
The KGC task can essentially be regarded as a
classification task, where the label is all entities in
KG. Recent works (Ma et al., 2023) evaluating the
performance of LLMs on classification tasks have
shown that LLMs struggle in datasets with a large
number of labels. The result is consistent with Yao
et al. (2023), where LLMs perform relatively better
on the KG with a smaller entity set. The enormity
of the entity candidate set in the KG poses a chal-
lenge for LLMs. Furthermore, LLMs are known for
their propensity to hallucinate content, generating
information not grounded by world knowledge (Ji
et al., 2023). Directly applying LLMs to elicit miss-
ing entities from the entire token space often leads
to generating invalid entities outside the entity set.
(2) Inherent Graph Structure of KGs. Different
from text-based NLP tasks, KGs demonstrate unor-
ganized and complicated graph structures. Current
efforts (Fan et al., 2024) have revealed that perfor-
mance of LLMs on fundamental graph structural
understanding tasks is subpar. Effectively guiding
LLMs to comprehend the structural information of
KGs remains a considerable challenge.

Building on these findings, we propose a novel
instruction-tuning based method, namely FtG,
which harnesses and unleashes the capability of
LLMs for KGC task. To address the issues of
enormous entity candidate set, we present a filter-
then-generate paradigm, where FtG first employs
a conventional KGC method as the filter to elim-
inate unlikely entities and retain only the top-k
candidates. Then we formulate the KGC task into

a multiple-choice question format and construct
instruction template to prompt LLMs to generate
target entity from the top-k candidates. Essentially,
this paradigm mirrors human behavior. For exam-
ple, when answering a question, humans would
eliminate obviously wrong answers and find the an-
swer from few remaining candidates. In this way,
we narrow the candidate set significantly, and the
multiple-choice question format effectively avoids
LLMs to output uncontrollable text. Moreover, to
incorporate graph structure information into LLMs,
we devise a structure-aware ego-graph serialization
prompt and propose a light-weight structure-text
adapter to map the graph features into the text space.
Comparison experiment results show that our pro-
posed FtG greatly improves performance of LLMs
on KGC task. In summary, our contributions are:

• We propose a novel instruction-tuning based
method FtG to enhance the performance of
LLMs in the KGC task. In which, our pro-
posed filter-then-generate paradigm can ef-
fectively harness the powerful capability of
LLMs while mitigating the issues caused by
hallucinations.

• To bridge the gap between the graph structure
and LLMs, we introduce a structure-aware
ego-graph prompt and devise a structure-text
adapter in a contextualized way.

• Our FtG outperforms the state-of-the-art meth-
ods over three widely used benchmarks,
which demonstrates our model’s superiority.
Further results reveal that our FtG paradigm
can enhance existing KGC methods in a plug-
and-play manner.

2 Preliminaries

Knowledge Graph Completion (KGC). Knowl-
edge graph (KG) is commonly composed of a col-
lection of fact triples. Let G = (E ,R, T ) be a KG
instance, where E ,R, and T represent the set of
entities, relations, and triples, respectively. Each
triple (h, r, t) ∈ E ×R× E describes the fact that
a relation r exists between head entity h and tail
entity t. Given an incomplete triple (h, r, ?) or
(?, r, t) as query q, knowledge graph completion
aims to predict the missing tail or head entity. In
conventional KGC models, they learn specific struc-
tural embeddings for KGs, and the missing entity
is predicted by finding the highest score f(h, r, e)
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Figure 2: The overall framework of FtG. For a query triple, we employ a KGC filter to obtain top-k candidates and
construct corresponding multiple-choice question instruction. Then we sample the ego-graph of query entity and
prune irrelevant neighbors. To bridge the gap between graph and text, we encode the pruned ego-graph into a soft
graph token and map the graph token into text embedding space with a lightweight adapter. The target entity name
is generated with soft graph token, textual serialization of pruned ego-graph, and instruction prompt.

or f(e, r, t), ∀e ∈ E , where f is the model-specific
scoring function.
Instruction Tuning for KGC. Instruction tun-
ing refers to fine-tuning LLMs to follow human-
curated instructions, enabling adaptation of LLMs
to specific tasks. When applying LLMs to the
KGC task, an instruction tuning sample comprises
an instruction prompt and input-output pair. The
instruction prompt I (e.g., "Predict the missing
tail entity") is definition of KGC task for LLMs
to comprehend and execute. The input X is the
verbalization of the query q described in natural
language. The instruction tuning process aims to
strictly generate the missing entity in natural lan-
guage given the instruction and the query input:
Y = LLMθ(I, X), where θ are the parameters
of LLM. The prevalent Negative Log-Likelihood
Loss in language modeling is selected as training
objective, which can be formed as:

L(θ) = −
L∑
i=1

logPθ(Yi|I, X, Y<i), (1)

where Y<i represents the prefix of missing en-
tity name sequence Y up to position i − 1,
Pθ(Yi|I, X, Y<i) represents the probability of gen-
erating token Yi, and L is the sequence length of
Y .

3 Methodology

In this section, we first provide an in-depth de-
scription of our filter-then-generate paradigm in
Sec. 3.1, specifically designed for KGC task. Based
on such paradigm, to bridge the gap between
graph structure and text, we further introduce two
novel modules: 1) a flexible ego-graph serialization
prompt in Sec. 3.2, which can effectively convey
the structural information around the query triple,
and 2) a structure-text prefix adapter in Sec. 3.3,
to map graph structure features into the text em-
bedding space. Finally, we detail the instruction
tuning strategy in Sec. 3.4, focusing on efficient
adaptation to KGC task. The overall architecture
of our proposed model is illustrated in Figure 2.

3.1 Filter-then-Generate Paradigm

To address the challenge of large entity candi-
date set, we propose a novel filter-then-generate
paradigm for LLMs on KGC task. As its name
implies, we utilize a filter to eliminate unlikely en-
tities and retain only the top-k candidates. LLMs
then generate the target entities conditioned on the
query and candidates list. Within our paradigm,
given a query q = (h, r, ?) or q = (?, r, t), we em-
ploy a conventional structure-based KGC method
as filter to score each entity e in KG G and re-
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tain top-k highest scoring entities as candidate
set Ck = [e1, e2, e3..., ek]. The idea behind this
paradigm is that conventional shallow embedding
based models are good at easy samples but fail
to discriminate target entities from a set of hard
samples. Then we reformulate the KGC task into
the form of multiple-choice question and design a
simple instruction template that prompts LLMs to
generate answer:

Instruction: Please answer the following
question and select only one answer from
the candidates that is most relevant to the
question.
Question: <Verbalization of query q>
[Optional] Context: <Ego-graph serializa-
tion prompts>
Candidates: <Candidate set Ck>
Answer: <Target entity name>

In above instruction template, we adopt the same
verbalization as Yao et al. (2023) to transform the
query triple into a simple question, and the context
is optional, which conveys the structural informa-
tion around the query described in following sec-
tion. Essentially, our filter-then-generate pipeline
demonstrates following advantages. Firstly, it can
rescue LLMs from a large number of candidate en-
tities, enabling LLMs to leverage their own knowl-
edge and reasoning abilities to identify the target
entity from a group of candidate entities, which go
beyond the abilities of conventional methods but
could be well solved by LLMs. Additionally, the
multiple-choice question format effectively avoids
LLMs to output uncontrollable text.

3.2 Ego-graph Serialization Prompt

In our paradigm, we aim to exploit semantic com-
prehension and reasoning capability of LLMs for
KGC task. Nevertheless, transforming the query
triple into a text-based prediction inevitably ne-
glects the structural information of KG, which is
an important feature for KGC task.Moreover, un-
derstanding graph structures using LLM continues
to be a challenge, and although there has been some
exploration into designing prompts to convey struc-
tural information, a comprehensive solution is still
lacking.

To incorporate the structural information of KG
into LLMs, we design an ego-graph serialization
prompt. Instead of accessing to the entire KG, we

extract the 1-hop ego-graph (Wang et al., 2019)
around the query entity, which characterizes the
first order connectivity structure of entity. Con-
sidering that not all neighborhoods are useful for
query, and some of them even introduce additional
noise, we employ structure embeddings of KGs to
sample more informative neighbors. Specifically,
given a KG G and the query triple q = (h, r, ?)
under the tail entity prediction setting (same in
head entity prediction), we first sample the both in-
coming and outgoing triples of h as the 1-hop ego-
graph Nh = {(h, r′, e) ∈ G} ∪ {(e, r′, h) ∈ G}.
Then let E ∈ R|E|×ds and R ∈ R|R|×ds denote
the structural entity embedding matrix and relation
embedding matrix, respectively, and ds is structural
embedding dimension. The structure embedding
matrices are provided by the KGC model adopted
as the filter of FtG. We take in query q = (h, r, ?)
and the 1-hop ego-graph Nh to extract the most
relevant neighbors Ñh as follows:

Ñh = {(h′, r′, t′) | (h′, r′, t′) ∈ Nh

and cos(h′ ∥ r′,h ∥ r) > ϵ}
(2)

where h ∈ R1×ds and r ∈ R1×ds represent the
structural embedding of h and r, cos(·, ·) is the
cosine similarity, ϵ is the threshold, and ∥ is the
concatenation operation.

After obtaining the extracted ego-graph Ñh, we
follow existing work (Jiang et al., 2023a) perform
breadth-first search (BFS) serialization to linearize
it into a textual sentence. Specifically, starting from
the entity h, we perform BFS to visit all entities in
Ñh. We then concatenate all the visited triples in
the order of their traversal during the BFS process
and remove duplicate entities, resulting in a long
sequence, denotes as:

SÑh
= {h, r1, e1, r2, e2, · · · , rm, em}, (3)

where m is the number of triples in Ñh.

3.3 Structure-Text Adapter
Graph Encoding and Adaption. While our ego-
graph serialization prompt has captured the lo-
cal structure information around the query, the
linearization process inevitably loses the connec-
tive pattern of the graph. Therefore, we propose
a soft prompt strategy to couple the KG struc-
ture and text information in a contextualized way.
Given the pruned ego-graph Ñh, we obtain the
ego-graph representation through parameter-free
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message passing on encoded structure features, and
map the graph representation into the embedding
space of LLM via a trainable projection matrix
Wp ∈ Rds×dx :

SÑh
=

1

|Ñh|

∑
e′∈Ñh

e′, S′
Ñh

= Wp · SÑh
, (4)

where S′
Ñh

is the projected ego-graph representa-

tion, e′ ∈ R1×ds is corresponding entity structural
embedding, and dx denotes the dimension of em-
bedding space of LLMs. We do not explore more
complex adaptation schemes (e.g., cross-attention)
because they require extra graph-text pairs for pre-
training. Moreover, such straightforward linear
projection allows us to iterate data-centric experi-
ments quickly, which has been proven effective in
visual-text alignment (Liu et al., 2023).
Target Entity Generation. Given a query q =
(h, r, ?) and ego-graph serialization sequence SÑh

,
we formulate them to corresponding textual ver-
sion and obtain the input of the LLM, denoted as
X = Xq + XSÑh

. Let X ∈ R|X|×dx denote the
textual content embeddings of input, where |X| is
the token length of X . We concatenate the soft
graph token and input embeddings as final input
of LLMs, i.e., X′ = S′

Ñh
∥ X. In this way, the

structure information can interact frequently with
the textual information, enabling LLMs to lever-
age the underlying graph structure. Finally, our
optimization objective is to maximize the proba-
bility of generating the target entity name Yt by
maximizing:

P (Yt|X′,XI) =
L∏
i=1

Pθ(yi|S′
Ñh

∥ X,XI ,Yt,<i),

(5)
where XI denotes the representation of instruction
tokens, and L is the token length of target entity.
Connection to Graph Neural Networks. Our
model shares essential mechanism similarities with
existing GNNs, thus covering their advantages.
First, due to the input length limitation of LLMs,
our ego-graph serialization prompt for the query
entity is aligned with GraphSAGE (Hamilton et al.,
2017). And our similarity-based extraction mod-
ule resembles graph regularization techniques like
DropEdge (Rong et al., 2020). Additionally, our
structure-text adapter carries structure features that
can interact with text semantic features deeply in
the encoding phase. Causal attention in LLMs can

be regarded as an advanced weighted average ag-
gregation mechanism of GAT (Velickovic et al.,
2018), facilitating our model to effectively model
the varying importance of different neighbors to
the central entity. Therefore, our framework inte-
grates inductive bias required for graph tasks and
enhances the graph structure understanding capa-
bility of LLMs.

3.4 KGC-Specific Instruction Tuning Strategy

The instruction tuning process aims to customize
the reasoning behavior of LLM to meet the spe-
cific constraints and requirements of KGC task.
An example of our instruction data can be seen in
Appendix D.2. During the training process, we
always keep the parameters of KGC filter frozen,
and update both the weights of the projection layer
and LLM. Considering the computation overhead
of full-parameters updates for LLM, we employ
low-rank adaptation (i.e., LoRA (Hu et al., 2022))
due to its simple implementation and promising
performances (Liu et al., 2022). This approach
freezes the pre-trained model parameters and up-
dates the parameters of additional trainable weight
matrix W ∈ Rd1×d2 by decomposing it into a prod-
uct of two low-rank matrices: W = BA, where
B ∈ Rd1×r, A ∈ Rd2×r, and r ≪ min(d1, d2).
Hence, LoRA can effectively adapt the LLM to
KGC task while requiring little memory overhead
for storing gradients.

4 Experiment

4.1 Experimental Setup

We employ three widely-used KG datasets for
our evaluation: FB15k-237 (Toutanova and Chen,
2015), CoDEx-M (Safavi and Koutra, 2020), and
NELL-995 (Xiong et al., 2017). Detailed dataset
statistics are shown in Appendix A. And the base-
lines adopted in our experiments are shown in Ap-
pendix B. In our implementation, we use LLaMA2-
7B (Touvron et al., 2023) as the LLM backbone.
We employ RotatE (Sun et al., 2019) as our filter
for its simplicity and lightweight nature. The effect
of different filters is discussed in Sec. 4.4. We re-
port Mean Reciprocal Rank (MRR) and Hits@N
(N=1,3,10) metric following the previous methods.
Specific implementation details please refer to Ap-
pendix C.
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Model FB15k-237 CoDEx-M NELL-995

MRR H@1 H@3 H@10 MRR H@1 H@3 H@10 MRR H@1 H@3 H@10

Structure-Based Methods
TransE (Bordes et al., 2013) .279 .198 .376 .441 .303 .223 .336 .454 .401 .344 .472 .501
DistMult (Kazemi and Poole, 2018) .281 .199 .301 .446 .223 .145 .245 .383 .485 .401 .524 .610
ComplEx (Trouillon et al., 2016) .278 .194 .297 .450 .337 .262 .370 .476 .482 .399 .528 .606
ConvE (Dettmers et al., 2018) .312 .225 .341 .497 .318 .239 .355 .464 .491 .403 .531 .613
RotatE (Sun et al., 2019) .338 .241 .375 .533 .302 .219 .341 .461 .483 .435 .514 .565
KG-Mixup (Shomer et al., 2023) .358 .264 - .548 .319 .242 - .465 .522 .458 - .621

PLM-Based Methods
GenKGC (Xie et al., 2022) - .192 .355 .439 - - - - - - - -
KG-S2S (Chen et al., 2022) .336 .257 .373 .498 .246 .186 .268 .372 .392 .324 .438 .511
CSProm-KG (Chen et al., 2023) .358 .269 .393 .538 .320 .243 .355 .464 .508 .438 .548 .626

ChatGPT (Zhu et al., 2023) ♣ - .097 .112 .124 - - - - - - - -
PaLM2-540B (Anil et al., 2023) ♣ - .115 .166 .217 - - - - - - - -
KG-LLaMA-7B (Yao et al., 2023) ♢ .238 .165 .272 .423 .179 .159 .200 .204 .397 .388 .405 .406

FtG(Ours) .392 .321 .413 .542 .395 .352 .407 .473 .538 .479 .573 .626

Table 1: The performance of FtG and baselines on three KG datasets. ♣ denotes results are obtained through
evaluating all test triples from the Li et al. (2024). ♢ means that partial unreported results are obtained through the
implementations as Yao et al. (2023).

4.2 Main Results

Table 1 displays the results of our experiments.
Overall, we can observe that FtG achieves consis-
tent and significant improvement on both datasets
across most metrics, which demonstrates the effec-
tiveness of our proposed FtG.

Compared to structure-based baselines, FtG
showcases remarkable performance, which demon-
strates the capability of FtG to understand and
leverage graph structure. Additionally, compared
to RotatE, which is employed as the filter in our
model, FtG achieves Hits@1 improvements of
33.2%, 60.7%, and 10.11% across three datasets,
indicating that filter-then-generate paradigm can
effectively incorporate the strength of RotatE and
LLMs, enabling FtG to leverage knowledge mem-
orization and reasoning ability of LLM to address
indistinguishable entity candidates. Compared to
the sparse NELL-995, FtG improves more in the
remaining two datasets, suggesting that FtG can
fully utilize the structural information of the KG.

For the PLM-based baselines, FtG outperforms
the SOTA method CSProm-KG by a substantial
margin, indicating the superiority of our method.
Focusing on the LLMs-based methods, we can
find that even with instruction fine-tuning on KGs,
LLMs still yield inferior performance. The reason
is that directly eliciting LLMs to generate answers
is prone to be influenced by hallucination of LLMs,
leading to uncontrollable responses. In compari-
son, FtG achieves substantial improvements across
three datasets, indicating that FtG can effectively

harness and unleash the capability of LLMs.

4.3 Ablation Study
In this subsection, we conduct an ablation study to
investigate the individual contributions of different
components in FtG. The results and meanings of
various variants are reported in Table 2. The results
reveal that all modules are essential because their
absence has a detrimental effect on performance.

FGP ESP STA
FB15k-237 NELL995

MRR H@1 MRR H@1

" " " .392 .321 .538 .479

" % % .363(↓.029) .279(↓.042) .534(↓.004) .469(↓.010)
" " % .374(↓.018) .295(↓.026) .535(↓.003) .471(↓.008)

" % " .382(↓.010) .306(↓.015) .532(↓.006) .472(↓.007)
% % % .238(↓.154) .165(↓.156) .397(↓.141) .388(↓.091)

Table 2: Ablation for the FtG in FB15k-237 and
NELL995. FGP denotes filter-then-generate paradigm.
ESP denotes ego-graph serialization prompt. STA de-
notes structure-to-text adapter.

Specifically, to demonstrate the effectiveness of
filter-then-generate paradigm, we directly adopt
multiple-choice question instruction to fine-tune
LLaMA-7b, and the results are shown in Table 2
Line 2. We observe that our paradigm significantly
outperforms the base model that directly adopts
instruction tuning (the last line). This demon-
strates filter-then-generate paradigm can harness
and unleash the capability of LLMs. Moreover, by
comparing the variant with ego-graph serialization
prompt (Line 3) and Line 2, we find that neigh-
borhood information surrounding the query entity
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can facilitate LLMs to perform KGC task. And the
effect of ego-graph serialization prompt is more
significant in FB15k-237, which is due to the fact
that NELL-995 is a more sparse KG (the average
node degree is lower than 2).

Besides, comparing the Line 2 and Line 4, we
can find that our proposed graph soft prompt can
achieve impressive Hits@1 improvements of 9.7%
on FB15k-237, which demonstrates the soft graph
prompt with lightweight adapter can deeply encode
the inherent structural characteristics of the KG.

4.4 Discussion

In this section, we conduct a multifaceted perfor-
mance analysis of FtG by answering the follow-
ing questions. More analysis please refer to Ap-
pendix D.
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Figure 3: Visualization of candidate entity embeddings
in CoDEx-M and NELL-995. Each color denotes a
query, and candidate entities of the same color belong
to the same query. △ denotes the target entity.

Q1: Why can FtG make impressive gains? Our
motivation for proposing FtG is that we argue that
LLMs are not good KGC reasoner, but strong
discriminator of hard samples. We select sev-
eral test samples where RotatE prediction failed in

FB15k-237, and visualize the top-20 highest scor-
ing entities embeddings of each query in Figure 3
(a). Dots of the same color represent entities that
are candidates under the same query, and △ is the
target entity. Obviously, we can find that these can-
didate entities are indistinguishable for RotatE, and
they overlap in the embedding space. As shown
in Table 7, these hard samples require additional
contextual knowledge to be distinguished. In con-
trast, we visualize the candidate entity’s hidden
states in the last transformer-layer of FtG in Fig-
ure 3 (b). The figure demonstrates that our FtG
can well distinguish the target entity from the hard
samples, which is attributed to the inherent con-
textual knowledge of LLMs. Besides, we observe
similar visualization results on the CoDEx-M and
NELL-995 datasets.
Q2: Is FtG compatible with existing KGC meth-
ods? Here, we further evaluate whether our pro-
posed FtG is robust enough when equipped with
various KGC methods as a filter. Taking on a more
challenging setting, we do not resort to retrain
with different KGC methods. Instead, we load
the trained LoRA weights directly and then switch
different KGC filters for evaluation. Specifically,
we employ a range of prevalent KGC methods,
including structure-based TransE, ComplEx, Ro-
tatE, as well as PLM-based method CSProm-KG.
Our results, as shown in Figure 4, demonstrate
that existing KGC methods achieve significant im-
provements when integrated with FtG, across both
FB15k-237 and NELL-995 datasets. This suggests
that FtG can effectively incorporate the strength of
conventional KGC methods and LLMs, enabling
FtG to leverage the reasoning ability of LLMs to
address indistinguishable candidates. Furthermore,
this also underscores our method’s capacity to en-
hance existing KGC methods in a plug-and-play
manner, demonstrating the versatility and effec-
tiveness of FtG.
Q3: Is structure-aware pruning necessary in
ego-graph serialization prompt? We replace the
ego-graph serialization prompt in FtG with three
other common heuristics,including random walk of
the query entity, the entire one-hop ego-graph, and
two-hop ego-graph. Empirical results are shown in
Table 3, their final prediction are outperformed by
FtG. Notably, comparing the results of the entire
one-hop ego-graph (Line 3) with FtG, we can see
that structure-aware pruning plays a crucial role,
especially on the FB15k-237 dataset, which is rich
in graph structure information (average degree of
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Figure 4: Performance (Hits@1&MRR) of FtG with var-
ious KGC filter on FB15k-237 and NELL-995 dataset.

entity is 37.4). These results demonstrate that our
structure-aware pruning strategy can retain only the
relevant information while filtering out the irrele-
vant neighbors. And it shares essential mechanism
similarities with GAT (Velickovic et al., 2018), thus
covering the advantage of GAT.

Heuristics FB15k-237 NELL995

MRR H@1 H@3 MRR H@1 H@3

Structure-aware pruning .392 .321 .413 .538 .479 .573

Random Walk .356 .286 .402 .531 .468 .567
Entire 1-hop Ego-graph .368 .313 .405 .536 .476 .568

2-hop Ego-graph .382 .308 .404 .528 .463 .565

Table 3: Comparison of prediction performance with
different heuristics.

Q4: How does the number of candidate entities
retained in the filtering stage affect the perfor-
mance? Here, we analyze the connection between
the size of candidate set and performance. Our
results, as presented in Figure 5. We observe that
when increasing the size of the candidate set, the
variation in model performance is not significant.
The impact of this hyperparameter on results is
akin to the trade-off between accuracy and recall.
A larger candidate set implies a higher likelihood
of containing the correct entity but also means that
the LLM needs to comprehend more entities. In
this paper, We prefer to enable LLMs to focus on
hard samples that conventional KGC can not solve
them well with limited model capacity and data
amount. Therefore, we finally chose to set the size
of the candidate entities to 20.
Q5: What are effects of filter-then-generate
paradigm? We devise several variants to fully

10 20 30 40
Number of candidate entities

0.30

0.35

0.40

0.45

0.50

0.55
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Hits@1
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0.54

0.57

0.60
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Hits@1
Hits@3
Hits@10

Figure 5: Performance of FtG with different sizes of
candidate entities.

analyze the impact of the FtG paradigm LLMs.
Specifically, these variants are:

• LLaMA2-7B: directly prompt the LLM for
KGC , the prompt format can refer to Table 4.

• LLaMA2-7B-FtG: we do not fine-tune the
LLM and only adopt the FtG prompt.

• ChatGPT: we utilize the same prompt (refer
to Figure 7) as Li et al. (2024) to evaluate.

• KG-LLaMA2-7B: adopt instruction-tuning to
adapt LLaMA2-7B for KGC.

• FtG∗: we only adopt filter-then-generate
paradigm to fine-tune the LLM, it can be re-
garded as a ablation vertion.

The results, as illustrated in Figure 6, indicate
that the filter-then-generate paradigm serves as
an effective strategy for leveraging the capabil-
ities of LLM in KGC. Especially, LLaMA2-7B
with multiple-choice question prompt can outper-
form ChatGPT across some metrics in FB15k-237
dataset.

MRR

Hits@1

Hits@3

Hits@10
FB15k-237 Dataset

0.1
0.2

0.3
0.4

0.5

LLaMA2-7B
LLaMA2-7B-FtG
ChatGPT
KG-LLaMA2-7B
FtG*

MRR

Hits@1

Hits@3

Hits@10
CoDEx-M Dataset

0.1
0.2

0.3
0.4

LLaMA2-7B
LLaMA2-7B-FtG
KG-LLaMA2-7B
FtG*

Figure 6: Effect of filter-then-generate paradigm. The
MRR metric of ChatGPT in FB15k-237 is unreported,
to include it in our figure without causing distraction,
we’ve set its value to 0 by default.

5 Related Works

Structure-based KGC methods. Early methods
typically define a score function to evaluate the
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scores of triples through spatial measurement or
latent matching. TransE (Bordes et al., 2013) de-
fines each relation as translation from the head
entity to tail entity. RotatE (Sun et al., 2019) fur-
ther extends this idea in a complex space, enabling
to model the symmetry relation pattern. Seman-
tic matching methods, such as DistMult (Kazemi
and Poole, 2018) and ComplEx (Trouillon et al.,
2016), , leverage the semantic similarity to capture
complex interactions among entities and relations.
Additionally, RGCN (Schlichtkrull et al., 2018),
CompGCN (Vashishth et al., 2020), and SMiLE
(Peng et al., 2022) employ graph neural networks
to model the graph structure patterns inherent in
KGs. KG-Mixup (Shomer et al., 2023) address the
degree bias in KG, achieving promising results.
PLM-based KGC methods. KG-BERT (Yao et al.,
2019) and StAR (Wang et al., 2021) utilize cross-
entropy object and fine-tune PLM to produce entity
embeddings. SimKGC (Wang et al., 2022) convert
the KGC task into a semantic matching task and in-
troduce contrastive learning to model fine-grained
semantics. However, these methods suffer from
unstable negative sampling. KGT5 (Saxena et al.,
2022), KG-S2S (Chen et al., 2022), and UniLP
(Liu et al., 2024) further exploit T5 (Raffel et al.,
2020) with soft prompt to improve performance
of generative KGC. Jiang et al. (2023b) propose
a retrieve-based method to probe knowledge from
PLM for open KG completion. CSProm-KG (Chen
et al., 2023) integrates PLM with a structure-based
method to bridge the structure and text information,
achieving SOTA performance.

Moreover, Large Language Models (LLMs) have
revolutionized various tasks in natural language
processing. Focusing on KGC task, Zhu et al.
(2023) construct prompts and evaluate the perfor-
mance of ChatGPT with in-context learning on
KGC task. ChatRule (Luo et al., 2023a) leverages
ChatGPT to mine logical rules in KGs and applies
these rules to make predictions. With the devel-
opment of techniques of LLMs in the open source
community, KG-LLaMA (Yao et al., 2023) makes
the first step by applying instruction tuning to adapt
LLaMA on KGC task. Additionally, some methods
(Li et al., 2024) distill contextual knowledge from
LLMs to improve the quality of entity texts, thus
benefiting existing PLM-based approaches. Nev-
ertheless, existing approaches that utilize LLMs
for KGC task have not demonstrated satisfactory
performance, and it remains a challenge to apply
LLMs in the KGC task. The detailed comparison

between our FtG and existing LLM-based methods
refer to Appendix F.

6 Conclusions

In this paper, we propose FtG, a instruction-tuning
based method to enhance the performance of LLMs
in KGC task. Our proposed filter-then-generate
paradigm can effectively harness the capabilities of
LLMs. To further incorporate the structural infor-
mation into LLMs, we devise an ego-graph prompt
and introduce a structure-text adapter. Extensive
experiments demonstrate the effectiveness of FtG.
In the future, we plan to adapt our method to other
relevant downstream tasks, such as recommenda-
tion and open question answering.

Limitations

FtG can effectively harness the reasoning ability of
LLMs and successfully incorporate the graph struc-
tural information into the LLMs, achieving substan-
tial performance improvement on KGC task. How-
ever, the extremely large number of parameters in
LLMs makes fine-tuning them resource-intensive.
At the same time, LLMs are notoriously slow at
decoding during inference. In our experiment, we
use DeepSpeed (Rajbhandari et al., 2020) to accel-
erate training and inference, but FtG remain slower
than traditional methods due to its inherent scale.
Besides, if the KGC filter is not able to recall the
target entity within the top-k candidates, FtG can-
not make correct prediction. Therefore, a potential
way to improve the effectiveness of FtG is to im-
prove the success rate of target entity recall, and
our FtG is more of a general framework to adapt
LLM to KGC task.
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A Dataset

We use FB15k-237 (Toutanova and Chen, 2015),
CoDEx-M (Safavi and Koutra, 2020), and NELL-
995 (Xiong et al., 2017) for evaluation. FB15k-237
is a subset extracted from the Freebase (Bollacker
et al., 2008), which includes commonsense knowl-
edge about movies, sports, locations, etc. CoDEx-
M is extracted from Wikipedia, which contains tens
of thousands of hard negative triples, making it a
more challenging KGC benchmark. NELL-995 is
taken from the Never Ending Language Learner
(NELL) system and covers many domains. De-
tailed statistics of all these datasets are shown in
Table 5.

B Baseline Details

B.1 Baselines
We compare our FtG against three types of base-
lines: (1) structure-based methods, including
TransE (Bordes et al., 2013), DistMult (Kazemi
and Poole, 2018), ComplEx (Trouillon et al., 2016),
ConvE (Dettmers et al., 2018), RotatE (Sun et al.,
2019), and KG-Mixup (Shomer et al., 2023). (2)
PLM-based methods, including GenKGC (Xie
et al., 2022), KG-S2S (Chen et al., 2022), and
CSProm-KG (Chen et al., 2023). (3) LLM-based
methods, including ChatGPT (Zhu et al., 2023),
PaLM2-540B (Anil et al., 2023), and KG-LLaMA-
7B (Yao et al., 2023). Both ChatGPT and PaLM2-
540B employ LLMs as the backbone and focus
on prompt engineer, enabling LLMs to understand
the KGC task. KG-LLaMA-7B is an instruction
fine-tuned LLaMA2-7B based on KG datasets.

B.2 Implementation of Baselines
Since some baselines miss results on some metrics,
we implement these baselines based on their re-
leased code. For structure-based baselines, we use
the toolkit provided in RotatE1, which gives state-
of-the-art performance of existing KGC models in
a unified framework. We adopt the optimal hyper-
parameter configurations reported in their papers.

For KG-S2S, on the CoDEx-M dataset, we uti-
lize the official code provided 2 and set the length
of the entity description text to 30, epochs to 50,
batch size to 32, and beam width to 40. For ex-
periments on the NELL-995 dataset, the epoch is
increased to 100, batch size is determined to be

1https://github.com/DeepGraphLearning/
KnowledgeGraphEmbedding

2https://github.com/chenchens190009/KG-S2S

64, and the learning rate is fixed at 0.001. It is
worth noting that the NELL-995 dataset inherently
lacks entity description texts, the length of entity
description text is set to 0. For CSProm-KG 3,
following the original paper, we choose ConvE as
graph model owing to its superior performance met-
rics, alongside the BERT-base model serving as the
foundational PLM. Specifically, on the CoDEx-M
dataset, we set the batch size to 128, epoch to 60,
length of entity description text to 30, learning rate
to 0.0005, prompt length to 30, label smoothing
to 0.1, and embedding dimension to 156. On the
NELL-995 dataset, we adopt same configurations
expect the length of entity description is set 0. For
the KG-LLaMA-7B, we adopt same LoRA config-
urations in Table 6 as our FtG for fair comparison.

C Implementation Details

In our implementation, the quantity k of candidates
retained is selected from {10, 20, 30, 40}. During
training, we keep the RotatE frozen and employ
LoRA to fine-tune the model. The detailed hyper-
parameters we use during training and inference
are shown in Table 6. We employ identical hyper-
parameters in different datasets. DeepSpeed ZeRO
stage34 is enabled for optimization. All models
are trained using 2 Nvidia A800 GPUs, each with
80GB of memory. For all datasets, we report Mean
Reciprocal Rank (MRR) and Hits@N (N=1,3,10)
metric following the previous works.

D Instruction Template

D.1 Prompt for ChatGPT and PaLM2

Zhu et al. (2023) construct few-shot demonstrations
to assess the performance of LLM in KGC. Figure 7
shows a example of the input to LLMs, and (Li
et al., 2024) utilize the API parameter to obtain
multiiple candidates, enabling the calculation of
Hits@1, Hits@3, and Hits@10 metrics.

D.2 Prompt for FtG

In our framework, we use a simple template in
Table 4 to convert the query triple to text format like
Yao et al. (2023). Then we formulate the KGC task
into a multiple-choice question fromat. A specific
example is shown in Figure 8.

3https://github.com/chenchens190009/CSProm-KG
4https://github.com/microsoft/

Megatron-DeepSpeed

https://github.com/DeepGraphLearning/KnowledgeGraphEmbedding
https://github.com/DeepGraphLearning/KnowledgeGraphEmbedding
https://github.com/chenchens190009/KG-S2S
https://github.com/chenchens190009/CSProm-KG
https://github.com/microsoft/Megatron-DeepSpeed
https://github.com/microsoft/Megatron-DeepSpeed


11194

Triple (War on Terrorism, military/military conflict/combatants./military/military combatant group/combatants, Canada)

Tail Prompt War on Terrorism, military/military conflict/combatants./military/military combatant group/combatants?

Head Prompt What/Who/When/Where/Why military/military conflict/combatants./military/military combatant group/combatants Canada?

Table 4: The prompt we sue to verbalize the query triple.

Dataset |E| |R| |Train| |Valid| |Test|

FB15k-237 14,541 237 272,115 17,535 20,466
CoDEx-M 17,050 51 185,584 10,310 10,311
NELL-995 74,536 200 149,678 543 2,818

Table 5: Statistics of the Datasets.

Name Value

lora r 16
lora alpha 32

lora dropout 0.05
lora target modules (q, k, v, o, down, up, gate) proj

cutoff len 1024
epochs 2

per device batch size 64
gradient accumulation steps 1

learning rate 3e− 4
weight decay 1e− 5
warm ratio 0.01

lr scheduler type cosine
num return sequences 10

projection layers 1

Table 6: Detailed hyperparameters used in our paper.

E Case Study

In Table 8, we demonstrate some cases to illus-
trate the differences in responses between existing
LLMs-based methods and FtG. From the cases,
our FtG can effectively leverage the capabilities of
LLMs while avoiding the generation of uncontrol-
lable text.

F Comparison with existing LLMs-based
methods

In this subsection, we provide a detailed introduc-
tion to existing LLMs-based methods and further
discuss the potential application of our FtG. The
existing LLM-based methods mainly include:

• KoPA (Zhang et al., 2023): proposes an
instruction-tuning method based on LLaMA2-

Hard negative candidates Explanation

(Senegal, part of, Middle East) Senegal is part of West Africa.

(Lesotho, official language, American English)
English, not American English, is an official

language of Lesotho.

(Vatican City, member of, UNESCO)
Vatican City is a UNESCO World Heritage

Site but not a member state.

Table 7: Selected examples of hard samples in Codex.

Prompt for triple: (Friedrich Gundolf, employer, Heidelberg University)

Tail Prediction: Predict the tail entity [MASK] from the given (Erich Brandenburg,
employer, [MASK]) by completing the sentence “who is the employer of Erich
Brandenburg? The answer is ”. The answer is Leipzig University, so the [MASK] is
Leipzig University. Predict the tail entity [MASK] from the given (Friedrich
Gundolf, employer, [MASK]) by completing the sentence “who is the employer of
Friedrich Gundolf? The answer is ”. The answer is

Head Prediction: Predict the head entity [MASK] from the given ([MASK],
employer, Leipzig University) by completing the sentence “Leipzig University is the
employer of who? The answer is ”. The answer is Erich Brandenburg, so the
[MASK] is Erich Brandenburg. Predict the head entity [MASK] from the given
([MASK], employer, Heidelberg University) by completing the sentence “Heidelberg
University is the employer of who? The answer is ”. The answer is

Figure 7: The prompt that directly leverage LLMs to
perform KGC. Tail Prompt and Head Prompt mean the
input to predict the tail and head entity respectively.

FtG Prompt for triple: (Friedrich Gundolf, employer, Heidelberg University)

Instruction: Please answer the following commonsense question and select only
one answer from the candidates that is most relevant to the question.

Head Prediction
Context: Hubertus Strughold employer Heidelberg University Robert Spaemann
employer Heidelberg University Michael von Albrecht employer Heidelberg
University.
Question:What/Who/When/Where/Why employer Heidelberg University?
Candidate Answers: Friedrich Julius Stahl, Wolfgang Schadewaldt, Theodor
Mommsen, Wilhelm Kahl, Ludwig Bergstr\u00e4sser, Carl Engler, Karl von Gareis,
Adolf Butenandt, Heinrich von Sybel, Friedrich Gundolf, Hermann Usener, Ernst
Zitelmann, Walther Sch\u00fccking, Hermann Dietrich, Albert H\u00e4nel, Johann
Michael Franz Birnbaum, Ludwig Bamberger, Carl Bosch, Rudolf Otto, Friedrich
Carl von Savigny.

Tail Prediction
Context: Friedrich Gundolf is German poet.
Question: Friedrich Gundolf employer?
Candidate Answers: Ludwig Maximilian University of Munich, University of
Giessen, Heidelberg University, Humboldt University of Berlin, Karlsruhe Institute
of Technology, University of Marburg, University of Bonn, University of Freiburg,
Leipzig University, University of Kiel, University of T\u00fcbingen, University of
G\u00f6ttingen, Goethe University Frankfurt, University of W\u00fcrzburg, Freie
Universit\u00e4t Berlin, Technische Universit\u00e4t Darmstadt, Technical
University of Berlin, University of Halle-Wittenberg, University of Wroc\u0142aw,
University of Stuttgart.

Figure 8: An example prompt that we adopt in FtG.
denotes target entity.

7B for KG triple classification task. Although
the authors claim their focus is on KGC, their
work is strictly speaking a triple classification
task. This means given a true triple, they ran-
domly replace the head entity or tail entity
to construct a negative sample, and then let
the model perform binary classification, i.e.,
simply outputting True or False.

• KG-LLM (Shu et al., 2024): similarly fo-
cuses on the triple classification task. It con-
structs chain-of-thought prompts via random
walks on the KG and then fine-tunes LLMs to
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Query head: (?, employer, Heidelberg University)

Models Labels Output

LLaMA2-7B % What/Who/When/Where/Why em-
ployer University of Cincinnati end-
code

ChatGPT % [MASK] is not able to provide a
specific answer for the second sen-
tence without more information.

ChatGPT+FtG Prompt % Hubertus Strughold, Robert Spae-
mann, and Michael von Albrecht
are employed by Heidelberg Uni-
versity.

GPT4-o % Max Weber. So, the [MASK] is
Max Weber.

GPT4-o+FtG Prompt " Friedrich Gundolf

FtG (ours) " Friedrich Gundolf

Query tail: (Friedrich Gundolf, employer, ?)

Models Labels Output

LLaMA2-7B % Hermann Oncken (1879–1934)
Theodor W. Adorno and Max
Horkheimer, Dialectic of Enlighten-
ment (1947)

ChatGPT " University of Heidelberg, so the
[MASK] is University of Heidel-
berg.

ChatGPT+FtG Prompt " Heidelberg University

GPT4-o " The answer is Heidelberg Univer-
sity.

GPT4-o+FtG Prompt " Heidelberg University

FtG (ours) " Heidelberg University

Table 8: Case comparisons between our FtG and exist-
ing LLMs. Corresponding prompt refer to Appendix D.

perform binary classification. The results indi-
cate that LLMs have a potential to understand
structural information on the KG.

• ChatGPT for KGC (Zhu et al., 2023): is
the first approach that truly utilizes LLMs
for KGC task, which converts the KGC task
into sentence masking prediction. ChatGPT
is used to predict the missing entity by pre-
dicting the special token [MASK]. However,
ChatGPT did not yield satisfactory results
compared to the impressive capabilities it has
demonstrated in other NLP tasks.

• Contextualization Distillation (Li et al.,
2024): is a data-augmentation method that
utilizes LLMs to generate background text
about the query entity to enhance existing
KGC methods that utilize textual information.
However, due to the hallucination issues in-
herent to LLMs and the high requirements of
downstream KGC methods, the improvement
is limited.

• KG-LLaMA (Yao et al., 2023): con-
verts KGC into a QA task, leveraging the
instruction-following capability of LLMs to
adapt them for KGC tasks. While this ap-
proach has achieved promising results, it still
falls short compared to previous methods
based on structural information.

In contrast, our FtG can effectively leverage the
capabilities of LLMs while avoiding the generation
of uncontrollable text. Additionally, we propose
an efficient approach to enable LLMs to utilize the
structural information of KGs, which has not been
achieved by previous methods.
Potential Downstream Applications of FtG.

• The construction of KG is very expensive,
especially in specialized domains such as fi-
nancial and law. Our method can fully lever-
age LLMs’ inherent knowledge and reasoning
capabilities, making it suitable for automati-
cally completing existing KGs. Additionally,
the AI community has witnessed the emer-
gence of numerous powerful LLMs, which
have made huge advancements and led to the
pursuit of possible Artificial General Intelli-
gence. Our FtG provides a possible way to
integrate knowledge graphs with LLMs, align-
ing with the current trends in AI domains.

• In the recommendation domain, systems need
to suggest specific items from a vast pool.
Our approach can be effectively applied here:
filter-then-generate paradigm can initially fil-
ter the large pool of items, honing in on a
more relevant subset based on user profiles
and preferences. And the ego-graph serializa-
tion prompt can capture and model detailed
user interaction history. Finally, the encoding
the ego-graph into a soft prompt token and
map it into LLMs’ space with an adapter can
provides a meaningful way to apply LLMs for
final recommendation.


	Introduction
	Preliminaries
	Methodology
	Filter-then-Generate Paradigm
	Ego-graph Serialization Prompt
	Structure-Text Adapter
	KGC-Specific Instruction Tuning Strategy

	Experiment
	Experimental Setup
	Main Results
	Ablation Study
	Discussion

	Related Works
	Conclusions
	Dataset
	Baseline Details
	Baselines
	Implementation of Baselines

	Implementation Details
	Instruction Template
	Prompt for ChatGPT and PaLM2
	Prompt for FtG

	Case Study
	Comparison with existing LLMs-based methods

