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Abstract

Recent advancements in text-to-image gener-
ation, notably the series of Stable Diffusion
methods, have enabled the production of di-
verse, high-quality photo-realistic images. Nev-
ertheless, these techniques still exhibit limita-
tions in terms of knowledge access. Retrieval-
augmented image generation is a straightfor-
ward way to tackle this problem. Current stud-
ies primarily utilize coarse-grained retrievers,
employing initial prompts as search queries for
knowledge retrieval. This approach, however,
is ineffective in accessing valuable knowledge
in long-tail text-to-image generation scenarios.
To alleviate this problem, we introduce Fin-
eRAG, a fine-grained model that systematically
breaks down the retrieval-augmented image
generation task into four critical stages: query
decomposition, candidate selection, retrieval-
augmented diffusion, and self-reflection. Exper-
imental results on both general and long-tailed
benchmarks show that our proposed method
significantly reduces the noise associated with
retrieval-augmented image generation and per-
forms better in complex, open-world scenarios.

1 Introduction

Text-to-image (T2I) generation, a dynamic research
area within artificial intelligence, is focused on the
development of models capable of generating im-
ages in response to language prompts. The primary
objective is to maintain fidelity to the prompts
while minimizing the occurrence of visual con-
cept hallucination and detail distortion. A variety
of potent models have emerged in this field, in-
cluding auto-regressive models (Yu et al., 2022),
generative adversarial networks(Xu et al., 2018;
Tao et al., 2022; Zhang et al., 2021; Zheng et al.,
2021), and diffusion models(Rombach et al., 2022;
Podell et al., 2023; Peebles and Xie, 2023). Among
these, diffusion models have demonstrated the most
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Figure 1: Illustrative examples of FineRAG. Our model
excels Stable Diffusion and previous RAG-based image
generation models in accurately generating visual con-
cepts in long-tailed complex scenarios.

promising performance (Rombach et al., 2022;
Podell et al., 2023; Peebles and Xie, 2023; Bao
et al., 2023). These models, by leveraging a multi-
step denoising process, can generate visually ap-
pealing and accurate images corresponding to the
input textual descriptions.

Despite the remarkable progress achieved by
recent diffusion models, they continue to face
challenges with generating images involving less
frequent entities. For instance, as illustrated in
Figure 1, Stable Diffusion (Rombach et al.,
2022) tends to incorrectly infer the knowledge
of ‘Siamese cat’, which is a special breed of cat.
To enhance the faithfulness of image generation,
several methods based on Retrieval-Augmented
Generation (RAG) have been proposed by re-
searchers (Chen et al., 2022; Blattmann et al., 2022;
Sheynin et al., 2022; Yasunaga et al., 2022). These
RAG-based image generation methods operate by
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sourcing knowledge from an external corpus, usu-
ally containing extensive text-image pairs, as a sup-
plement. This corpus, rich in long-tailed and con-
temporary information, serves as strong support for
faithful image generation.

Previous RAG-based image generation mod-
els (Blattmann et al., 2022; Chen et al., 2022) have
primarily used original prompts as queries for im-
age retrieval. Such a coarse-grained retrieval ap-
proach leads to two primary challenges. Firstly,
there may be no images in the corpus that perfectly
match the prompt. For example, using the prompt
‘A Siamese cat is sniffing a Santa Claus mug on
a dining table.’ as a query might return ‘A mug
with a cat painted on it.’ due to the absence of ex-
act matches to the original query in the knowledge
corpus. This leads to an incomplete knowledge
resource that fails to encapsulate the concepts ‘A
Siamese cat’ and ‘Santa Claus mug’. Secondly,
even if the model identifies a set of images relevant
to the prompt, not all retrieved images contribute
positively to the generative process. For instance,
in the case of ‘Audrey Hepburn and Xukun Cai
dancing on the African savannah.’,1 an image de-
picting a blank ‘African savannah’ is more useful
than an image depicting ‘a herd of horses on the
African savannah.’ Similarly, a photorealistic im-
age of an elephant is more beneficial than a simple
stick figure of an elephant for the prompt ‘Two ele-
phants are walking on the grassland.’ Conclusively
speaking, the RAG-based image generation task
is complex and cannot be effectively addressed by
merely utilizing a single prompt as a query.

To overcome these limitations, we propose a
fine-grained retrieval-augmented image generation
framework, FineRAG, which breaks down com-
plex instructions into atomic retrievable queries,
facilitating more effective knowledge sourcing and
enhancing alignment between prompts and gener-
ated images. Specifically, we first decompose the
original text prompts with composite knowledge
into fine-grained atomic search queries, leading
to more precise retrieval of useful visual informa-
tion. For the image generation task, the relevance
of source images does not necessarily equate to
their utility. For instance, consider generating an
image based on the instruction ‘A Basset bleu de
Gascogne and a cat are playing in front of the Ber-
nice Pauahi Bishop Museum’. As depicted in Fig-
ure 2 at stage 2.1, both a photorealistic image of

1Xukun Cai is a famous actor in China.

the scene and a simplistic painting of a cat may
be deemed relevant. However, the latter may not
be suitable for generating images that accurately
align with the user’s instructions. Thus, the rele-
vance of an image should not be confused with its
appropriacy for a specific image generation task.
To select the most suitable images that best satisfy
a user’s instructions, we introduce a filtering mod-
ule for further filtration. Subsequently, we use the
selected images to produce a first-round image with
a retrieval-augmented diffusion model. It is impor-
tant to note that even though all the images are
useful, accurately integrating this knowledge poses
another challenge. So we introduce a reflection
module, assessing whether the retrieved images
can jointly result in satisfactory generation results.
If not, it reasons how to improve upon the current
decomposed queries and performs the RAG-based
image generation for another round.

We perform extensive experiments on widely-
used T2I benchmark COCO (Lin et al., 2014),
where our proposed model achieves better text-
image alignment compared with SOTA methods,
demonstrating the general generation ability of our
FineRAG model. Additionally, we construct an
additional benchmark to evaluate generation abil-
ity in complex long-tailed scenarios. Experiments
show that our method significantly outperforms
both SOTA diffusion methods and RAG-based im-
age generation baselines.

To summarize, our contributions are three-fold:
(1) We identify the limitations of current RAG-

based image generation models, particularly the
coarse-grained retrieval pipeline that leads to in-
complete knowledge sourcing.

(2) To tackle these problems, we introduce Fin-
eRAG, a novel framework that deconstructs intri-
cate instructions into elemental search queries. This
framework is structured around four primary stages:
query decomposition, candidate filtering, retrieval-
augmented diffusion, and self-reflection.

(3) Experimental results demonstrate that our
framework enhances both the prompt-image align-
ment and the image faithfulness.

2 Related Work

2.1 Text-to-Image Generation

Text-to-image generation models are mainly di-
vided into three categories: auto-regressive mod-
els (Yu et al., 2022), generative adversarial net-
works (Xu et al., 2018; Tao et al., 2022; Zhang
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et al., 2021; Zheng et al., 2021), and diffusion mod-
els (Rombach et al., 2022; Podell et al., 2023; Pee-
bles and Xie, 2023; Saharia et al., 2022; Ramesh
et al., 2022; Nichol et al., 2021). Among these,
diffusion models have shown superior synthesis
results, representing the current state-of-the-art.
Among all the diffusion models, Stable Diffu-
sion (Rombach et al., 2022) introduced latent diffu-
sion models, which implement a diffusion training
process within the latent space of pretrained au-
toencoders. Subsequently, the U-Net backbone is
replaced with a transformer that operates on latent
patches (Peebles and Xie, 2023; Bao et al., 2023).

While existing models primarily focus on refin-
ing image details via fine-tuning, our study seeks to
employ an external knowledge corpus to bolster the
coherence between textual prompts and the resul-
tant images, particularly in scenarios characterized
by complex long-tail distributions.

2.2 Retrieval-Augmented Generation

Retrieval-Augmented Generation (RAG) models,
which integrate an external retrieval corpus to en-
hance the factuality, have shown significant im-
provements in both language (Gao et al., 2023;
Zhu et al., 2023) and image generation (Chen et al.,
2022; Yasunaga et al., 2022). RAG-based image
generation models like KNN-Diffusion (Sheynin
et al., 2022) and RDM (Blattmann et al., 2022)
enable out-of-domain image generation by alter-
ing the retrieval database at inference time. Re-
Imagen (Chen et al., 2022) incorporates retrieval
with image-text pairs in text-to-image generation.
RA-CM3 (Yasunaga et al., 2022) leverages an auto-
regressive architecture and concatenates all the ref-
erence images with prompts to enhance both text
generation and image generation.

Despite their potential, existing retrieval-
augmented image generation models predomi-
nantly employ original prompts as queries for im-
age retrieval. This coarse-grained retrieval strat-
egy can result in incomplete knowledge acquisi-
tion and potential overlook of the most suitable
image. To address these limitations, we introduce
a fine-grained retrieval-augmented image gener-
ation framework, FineRAG. This framework de-
composes complex instructions into fine-grained
atomic search queries, which significantly facili-
tate knowledge sourcing and enhance alignment
between prompts and the resultant images.

3 Preliminary

Diffusion Models are generative models that simu-
late a diffusion process to generate data similar to
a given dataset, employing a two-step process: for-
ward and reverse process (Rombach et al., 2022).

In the forward process, original data samples x0

are progressively noised over T timesteps. This pro-
cess follows q(xt|xt-1) = N (xt;

√
1− βtxt-1, βtI),

where βt determines the noise level at each
timestep. This procedure culminates in a sequence
of data samples {xt}Tt=1. In backward process, dif-
fusion model denoises data step-by-step, modeled
as p(xt-1|xt) = N (xt-1;µθ(xt), σ

2
t I).

The optimization objective is to estimate
E[ϵ|xt] by minimizing noise prediction loss:
minθ Et,x0,ϵ ∥ϵ− ϵθ(xt, t)∥2, where t is uniform
between 1 and T , and ϵ is the standard Gaussian
noises injected to xt. For conditional models, the
condition information, c, is also incorporated:

min
θ

Et,x0,c,ϵ ∥ϵ− ϵθ(xt, t, c)∥2 (1)

4 Methodology

We propose a fine-grained retrieval-augmented im-
age generation framework, FineRAG, which dis-
sects complex instructions into fine-grained atomic
search queries to facilitate accurate knowledge
sourcing. The architecture of FineRAG is detailed
in Figure 2. Initially, composite knowledge instruc-
tions are decomposed into atomic search queries
for precise visual information retrieval. A filtering
module is then employed to select the most appro-
priate images in line with the user’s information
needs. Subsequently, a retrieval-augmented diffu-
sion model generates a preliminary image, and a re-
flection module is included to assess the combined
potential of the retrieved images for satisfactory
generation. If the output is unsatisfactory, the mod-
ule optimizes the decomposed queries and initiates
another round of RAG-based image generation. We
will introduce the details of each component in the
remaining part of this section.

4.1 Query Decomposition & Layout Design

Query decomposition is a fundamental process
in the realm of image retrieval systems, which
breaks down a complex or multi-faceted instruc-
tion (query) into simpler, fine-grained sub-queries.
These sub-queries can then be independently pro-
cessed by the retrieval system.
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A Basset bleu de Gascogne and a cat are playing
in front of the Bernice Pauahi Bishop Museum.

Figure 2: The overview of our FineRAG framework. Different from existing methods that retrieve images using the
original text prompt, we propose retrieving images of fine-grained entities. Given a textual instruction, FineRAG
framework operates as follows: a query decomposer simplifies instructions into retrievable sub-questions and
designs a layout. Relevant images are retrieved and selected by an image filter. A layout-guided diffusion model
uses the selected image and layout to generate an initial image, which is then evaluated by a self-reflection module.
If unsatisfactory, the process is repeated with revised sub-questions and layout.

Consider the example where the instruction is to
retrieve images corresponding to the scenario “A
Basset bleu de Gascogne and a cat are playing in
front of the Bernice Pauahi Bishop Museum”. In
this case, the query decomposition process would
break down this complex instruction into atomic
queries such as “A Basset bleu de Gascogne”, “A
cat”, and “Bernice Pauahi Bishop Museum”. Each
of these atomic queries encapsulates a specific de-
tail and can be individually processed.

Technically, we employ LLMs as query rewrit-
ers, an approach that has demonstrated its efficacy
in the field of information retrieval (Wang et al.,
2023; Mao et al., 2023; Jagerman et al., 2023;
Alaofi et al., 2023). Previous research has utilized
LLMs to discern the object type in captions (Qu
et al., 2023), for instance, identifying ’person’ in
’A long-hair woman is walking in the street’. How-
ever, within our framework, we require not just the
object type but also a comprehensive phrase encap-
sulating the object’s details, such as ’a long-hair
woman’. We provide two example inputs to the
query decomposer to aid the LLM in understand-
ing the task. In order to seamlessly incorporate the
reference images of each object into the subsequent
diffusion module, we also generate a layout follow-

ing the previous approach (Qu et al., 2023).
By incorporating query decomposition as a pre-

liminary step in the retrieval process, the system
can more accurately uncover visual concepts inher-
ent in instruction, thereby providing a more com-
prehensive knowledge base for diffusion models.

4.2 Element Retrieval & Candidate Selection

In order to minimize noise and maximize relevance,
our approach incorporates a two-tiered retrieval
process designed to provide useful visual knowl-
edge for each atomic search query.

Initially, atomic search queries are used to en-
gage a coarse retriever, which selects the top-k
images for each atomic search query from external
image datasets. This forms a candidate image set,
denoted as I . We record the similarity score of each
image, denotes as SI.

If the average of SI is lower than a threshold θ,
we consider these images as containing noise and
discard them. Otherwise, we consider them relevant
and pass them to the candidate image filter. Unlike
the coarse image retriever, the candidate image
filter evaluates the utility of an image from a com-
prehensive perspective, such as style and whether it
contains irrelevant items, among other factors. As
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depicted in Figure 2, a photorealistic image of a
white cat may be more beneficial than a simplistic
cat drawing given the query ‘a cat’. To address this
variability, we employ an image filter to sift through
the candidate images. This filter is devised to select
the most supportive reference image Ii for each
atomic search query i. This mechanism considers
the relevance of the scene, particularly focusing on
the exclusion of irrelevant objects, and style of the
image. The prompt is shown in Figure 3.

The adoption of this two-tiered retrieval process
helps ensure that reference images contain as little
noise as possible and contribute effectively to the
image generation task.

4.3 Retrieval-augmented Diffusion Models
In this work, we utilize a layout-guided diffusion
model (Li et al., 2023) as our diffusion backbone,
a choice motivated by their extensive accessibility
and ease of layout annotation by LLMs.

Layout-guided diffusion model is a grounded
text-to-image model, which leverage the caption
and grounded entities to generate image. The in-
struction c′ can be represented as a tuple (C,B),
where:

Caption: C = [c1, . . . , cL],

Entity Bounding Boxes: B = [(b1, l1), . . . , (bN, lN)].

Here, L is the caption length, bi is the entity em-
bedding, li is the bounding box for the ith atomic
search query. The entity embedding is calculated
as follows:

bi =

{
MLP(fimage(Ii), fpos(li)) if Si > θ,

MLP(ftext(Ti), fpos(li)) otherwise,
(2)

where Ti is the ith decomposed query, fimage is im-
age encoder, ftext is text encoder, fpos is the position
embedding for bounding box, and N is the number
of entities. Then, the optimization objective of the
diffusion model in Equation( 1) is turned to:

min
θ

Et,x0,c′,ϵ

∥∥ϵ− ϵθ(xt, t, c
′)
∥∥2 , (3)

where θ denotes the parameters of the model, xt is
the image at time t, and y is the target image. The
optimization aims to minimize the mean square
error between the actual noise ϵ and the noise pro-
duced by the model ϵθ(xt, t, y).

4.4 Self-Reflection and Iterative Refinement
Despite the efficacy of LLMs in query decomposi-
tion and layout design, in the absence of feedback

GPT-4

Request

As an expert in image selection, your role is to identify the most 
suitable image for generating a compositional image based on a 
provided caption. The set of reference images will depict an entity 
mentioned in the caption.

Please adhere to the following guidelines when selecting an image:
1. The image should prominently feature the entity in question 
with minimal unrelated elements.
2. The entities in the selected image must be entirely visible, with 
no parts omitted. For instance, if the entity is a 'cat', an image that 
showcases 'a complete, solitary cat' would be more suitable than 
images such as 'a cat peeking out from a cage' or 'only the head of 
a cat’.
3. The style of the image should align with the caption. For 
example, if the caption reads 'A cat running on the grass.', a 
photorealistic depiction of a cat would be more appropriate than a 
simplistic drawing of a cat.

Please refrain from selecting images that may contain potentially 
offensive content, such as nudity.

Explanations are not required; please provide an integer indicating 
your selection, even if you are uncertain. The index begins from 0.

Input:
Caption: {caption}
Entity: {entity}
Images: [IMAGE0] ... [IMAGE4]

In
st
ru
ct
io
n

Te
st

Figure 3: Prompt for candidate selection.

from diffusion models, these methods may yield
suboptimal results in image generation tasks. To en-
hance the robustness of these modules, we prompt
a MLLM to reflect the process of query decompo-
sition and layout design. This reflection is based on
the original caption, the results of query decompo-
sition, layout design, and the generated image.

In this iterative refinement process, if the LLM
assesses the generated output as satisfactory, the
process concludes. Conversely, if the LLM identi-
fies potential areas for enhancement, it detects the
unsatisfactory elements and generates improved
versions of both the query decomposition and lay-
out design. This iterative self-correction mecha-
nism has been empirically proven to significantly
enhance the quality of the final image output, as
evidenced by our experimental results.

5 Experiments

5.1 Experiment Settings

5.1.1 Datasets
COCO dataset. COCO dataset (Lin et al., 2014)
includes 82,783 training images and 40,504 test im-
ages, spanning 80 distinct semantic classes. Each
image is characterized by five textual descriptions.
To have a wider comparison in different scenar-
ios, we employ the test set restructured by the
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LayoutLLM-T2I (Qu et al., 2023), which com-
prises five sections, numerical, spatial, semantic,
mixed, and null, containing a total of 943 images.

Multi-Entity Draw Bench. We introduce the
Multi-Entity Draw Bench to better evaluate T2I
models’ ability to generate complex, rare scenar-
ios—something existing benchmarks inadequately
assess. By prompting GPT-4, we generated 2,000
entities categorized into specific animal breeds,
unique landmarks, foods, and celebrities. GPT-4
then crafted captions combining one to three enti-
ties, from which we randomly selected 200 unique
captions as our test set. This approach ensures a
comprehensive evaluation of models’ capabilities
in generating diverse and intricate images.

5.1.2 Evaluation Metrics

Our quantitative evaluation utilizes a set of met-
rics. For text-image alignment, we leverage the
commonly-used similarity score between the gen-
erated image and the input text calculated by CLIP,
denoted as SIM. For image quality assess, we lever-
age the aesthetic score2, denoted as AES. For faith-
fulness evaluation, we borrow the faithfulness eval-
uator proposed in previous work (Hu et al., 2023).
Following the official repo, we generate 6 VQA
questions for each instruction, then we leverage
GPT-4o as a strong VQA evaluator to answer these
questions about generated images. The average ac-
curacy is denoted as TIFA.

5.1.3 Baselines

To evaluate the effectiveness of our method, we
contrast it with several popular baselines, including
both text-to-image generation methods VQ Dif-
fusion (Gu et al., 2022), Stable Diffusion (Rom-
bach et al., 2022) and LayoutLLM (Qu et al.,
2023), and retrieval-augmented image generation
methods RDM (Blattmann et al., 2022) and Re-
Imagen(Chen et al., 2022). All the models are
listed in Table 1. All models, except for ReImage,
are replicated according to their official reposito-
ries. Since Re-Imagen is not open-source, we re-
implemented it ourselves to ensure a fair compari-
son. To maintain consistency, Re-Imagen employs
the same external corpus as ours but leverages the
original image captions for retrieval. This setup
allows us to directly compare the impact of us-
ing large language models (LLMs) in the retrieval
process. By eliminating variations due to different

2https://github.com/LAION-AI/aesthetic-predictor

external corpora, we underscore the inherent effec-
tiveness of our proposed LLM-enhanced retrieval-
augmented image generation system.

5.1.4 Implementation Details
Our implementation leverages GPT-4o mini for
query decomposition and layout design, with the
query decomposer guided by two-shot examples
from LayoutLLM-T2I’s (Qu et al., 2023) policy
model. For visual concept retrieval, we use CLIP
index (Beaumont, 2022) from a 500 million image-
text pair subset of the LAION (Schuhmann et al.,
2022) dataset to retrieve the top 100 images. To
enhance long-tailed entities, we use a BM25 re-
triever on the WIT dataset, containing 6 million
text-image pairs, to retrieve the top 10 images. A
cross-modal reranker, BLIP (Li et al., 2022), then
narrows this pool to the top 5 images. GPT-4o mini
is employed again for candidate filtering, select-
ing one image from the top 5. Diffusion models
leverage pre-trained weights from GLIGEN.

5.2 Quantitative Analysis

To substantiate the efficacy of our FineRAG frame-
work, we conduct a series of experiments on both
COCO test set and Multi-Entity Draw Bench.

Results on Multi-Entity Draw Bench. It is
observed that Re-Imagen underperforms in gen-
erating imaginary scenes that do not exist in re-
ality due to ineffective retrieval, which is even
lower than retrieval-free model: Stable Diffusion
1-4. Conversely, our model demonstrates robust
performance in such scenarios, attributable to its
effective query decomposition, candidate selection,
and reflection pipeline.

Results on COCO dataset. The result on COCO
dataset is shown as table 1 and table 3. (1) Com-
pared to the same diffusion model without retrieval
(LayoutLLM-t2i), our approach demonstrates bet-
ter text-image alignment and image quality. This
improvement is due to the model’s ability to re-
trieve high-quality, fine-grained images, enabling
more accurate image synthesis. (2) In compari-
son to RAG-based diffusion models RDM and
Re-Imagen, FineRAG exhibits substantial improve-
ments in terms of both text-image alignment (SIM)
and image quality (AES) scores. Both RDM and
Re-Imagen incorporate the retrieved images in an
implicit way, which can potentially lead to gener-
ation inaccuracies due to the coarse matching of
images. Conversely, FineRAG employs a layout-
guided diffusion model as its core structure, en-
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Models Mixed Numerical Null Semantic Spatial Total
SIM↑ AES↑ SIM↑ AES↑ SIM↑ AES↑ SIM↑ AES↑ SIM↑ AES↑ SIM↑ AES↑

w.o. Retrieval

VQ-Diffusion 26.71 5.62 25.90 5.69 26.24 5.71 26.95 5.54 26.24 5.58 26.43 5.63
Stable Diffusion 1-1 27.28 6.07 26.50 5.71 26.70 5.95 27.12 5.94 26.69 5.80 26.86 5.90
Stable Diffusion 1-4 27.63 6.14 26.99 5.94 27.31 5.97 27.79 6.00 27.30 5.79 27.42 5.97
LayoutLLM-t2i 26.57 5.76 25.89 5.79 25.55 5.76 26.45 5.88 25.58 5.67 26.01 5.77

w. Retrieval

RDM 25.91 5.12 26.00 5.25 25.65 5.17 25.87 5.04 26.00 5.01 25.88 5.11
Re-Imagen 27.48 5.90 27.57 5.89 27.31 5.92 27.43 5.94 27.45 5.87 27.44 5.90

FineRAG (Ours) 28.40 6.16 28.38 6.12 27.70 6.10 28.23 6.09 28.67 6.10 28.27 6.11

Table 1: Results on the COCO test set. ‘Numerical’, ‘Spatial’, ‘Semantic’, ‘Mixed’, and ‘Null’ refer to test cases
with numerical descriptions, spatial relationships, semantic actions, multiple relations/descriptions, and no explicit
relation keywords.

Models SIM↑ AES↑ TIFA↑

w.o. Retrieval

VQ-Diffusion 27.87 5.52 0.48
LayoutLLM-t2i 31.57 5.70 0.51
Stable Diffusion 1-1 29.64 5.61 0.50
Stable Diffusion 1-4 32.38 5.79 0.55

w. Retrieval

RDM 24.76 4.65 0.44
Re-Imagen 27.88 5.63 0.47

FineRAG (Ours) 33.58 6.03 0.67

Table 2: Quantitative comparison of text-to-image gen-
eration models on the Multi-Entity Draw Bench.

Model FID↓

LayoutLLM-t2i 39.3
Ours 36.1

Table 3: FID score on COCO test set.

abling an interpretable incorporation of external
knowledge. The results confirm the effectiveness
of our approach in leveraging retrieval mechanisms
for enhanced image synthesis.

5.3 Ablation Study

As shown in Figure 4, we conducted ablation stud-
ies to assess the impact of each component in our
method. Results indicate that removing any single
component leads to a noticeable drop in perfor-
mance, underscoring the importance of each part,
especially the query decomposer and self-reflector.
Specifically, the query decomposer simplifies com-
plex instructions into manageable sub-queries, en-
hancing information retrieval accuracy. The self-
reflector enables the model to iteratively refine out-
puts, leading to higher quality and coherence. More-
over, unlike LayoutLLM-t2i, our model incorpo-
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w.o. Selector
w.o. Self-Reflector

Figure 4: Ablation study on COCO test set.

rates retrieved images, which enhance text-image
alignment and image quality. This integration re-
sults in outputs that are both visually appealing and
contextually relevant.

5.4 Qualitative Analysis

To highlight the efficacy of our proposed model
and its potential applications, we present exam-
ples from the Multi-Entity Draw Bench in Figure 5.
RAG-based methods are compared using retrieved
reference images, leading to the following conclu-
sions: (1) Our model retrieves finer-grained, high-
quality images, enabling more detailed synthesis
and better text-image alignment compared to Re-
Imagen. (2) While diffusion and RAG-based meth-
ods struggle with complex scenarios (e.g., ‘Saus-
surea ussuriensis in Laut Pechora’), our model syn-
thesizes complete, accurate images.

6 Conclusion

We propose a novel FineRAG framework that de-
constructs complex instructions into atomic search
queries, thus improving knowledge sourcing and
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Prompt: J.K. Rowling signing books in Amelungsburg with Pudlpointr

Prompt: David Bowie recording in Kaiseraugst with Pelargonium inquinans

Prompt: Taylor Swift and a Beagle visiting Ahrensburg

Prompt: Saussurea ussuriensis growing in Laut Pechora

Prompt: Gelbbacke sniffing around Le Perthus

Ours SD 1-4 LayoutLLMRe-Imagen VQ

Figure 5: Qualitative results on the COCO test set and Multi-Entity Draw Bench. The generated images from each
model are presented sequentially, from left to right. ‘VD’ denotes VQ-Diffusion, ‘SD’ denotes Stable Diffusion. For
better illustration, we list reference images retrieved by RAG-based methods besides the generated image.

boosting retrieval-augmented image generation.
The framework handles four critical stages: infor-
mation retrieval, image selection, effective integra-
tion of the retrieved knowledge into the generation
process, and optimization through a self-reflective
component. Experimental results show that our
method significantly reduces noise and exhibits
outstanding performance in complex, open-world
scenarios. Our framework paves the way for fu-
ture research and applications by optimizing the
retrieval-augmented image generation process.

7 Limitations and Future Directions

The challenge lies in defining the capability bound-
aries of diffusion model. An ideal end-to-end model
would have awareness of its strengths and limita-

tions, extracting only unfamiliar information from
reference images to generate accurate outputs, lead-
ing to the generation of more faithful images.
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