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Abstract

Cross-domain constituency parsing remains a
challenging task due to the lack of high-quality
out-of-domain data. In this paper, we propose a
data augmentation method via lightweight large
language model (LLM) generation and tree hy-
bridization. We utilize LLM to generate phrase
structures (subtrees) for the target domain by
incorporating grammar rules and lexical head
information into the prompt. To better leverage
LLM-generated target-domain subtrees, we hy-
bridize them with existing source-domain sub-
trees to efficiently produce a large number of
structurally diverse instances. Experimental re-
sults demonstrate that our method achieves sig-
nificant improvements on five target domains
with a lightweight LLM generation cost.

1 Introduction

As a fundamental task in natural language process-
ing (NLP), constituency parsing aims to analyze the
syntactic structure of a sentence by representing the
compositional relationships of its constituents in a
hierarchical tree, which has been proven to be ben-
eficial for various downstream tasks (Wang et al.,
2018; Xu and Durrett, 2019). Though constituency
parsing has made significant advancements in in-
domain scenarios over the years (Kitaev and Klein,
2018; Zhang et al., 2020), cross-domain parsing
remains challenging due to the scarcity of high-
quality labeled data specific to each target domain.

Previous works usually enhance cross-domain
parsing via automatic data augmentation ap-
proaches, which are more cost-effective than man-
ually annotating target-domain data (Feng et al.,
2021; Zhang et al., 2022). Recently, the large lan-
guage model (LLM) has achieved great success
with its powerful generative capabilities in many
NLP tasks (Wei et al., 2022; Liu et al., 2023). Li
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et al. (2023) utilize LLM to generate target-domain
sentences and use a small parser to obtain tree struc-
tures. Their method leverages LLM to generate a
large number of complete sentences and requires
multiple iterations of self-training, leading to rela-
tively high computational costs.

In this paper, we propose a simple and effec-
tive data augmentation method for cross-domain
constituency parsing. As tree structures are rarely
presented in the pretraining, LLM parsing is hin-
dered by flawed trees and faces challenges with
longer constituents (Bai et al., 2023). To address
this issue, we employ LLM to generate phrases
instead of complete sentences or trees. Specifi-
cally, we leverage grammar rules as guidelines to
produce high-quality phrases with corresponding
subtree structures for the target domain.

To better utilize the subtrees generated by LLM
for cross-domain parsing, we introduce a tree hy-
bridization method. The core idea is that lexical-
ized trees with the same constituent label and lex-
ical head are interchangeable. In this work, hy-
bridization conveys dual significance: 1) Tech-
nologically, it refers to that we allow the newly
hybrid-generated subtrees to be used in subsequent
hybridizations, which is significantly differs from
previous works and increases structural diversity
and complexity. 2) Intuitively, it involves integrat-
ing phrases from the target domain into sentences
from the source domain, effectively merging the
two domains and minimizing their disparities.

To summarize, our contributions are three-fold:
• We propose a lightweight method to leverage

LLM for generating high-quality phrases with cor-
responding subtree structures, which is responsible
for introducing words for the target domain.
• We design a tree hybridization method to ef-

ficiently and continuously produce a large num-
ber of diverse instances for data augmentation, ef-
fectively leveraging subtrees generated by LLM,
which mainly serves to create new structures.
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Figure 1: Overall workflow of our proposed method.

• Experimental results demonstrate the efficacy
of our approach in improving cross-domain parsing
performance while maintaining a low cost.

Our code is available at https://github.com/
zzy0509/LLM-Tree-Hybridization.

2 Related work

Cross-domain Constituency Parsing Con-
stituency parsing, a fundamental task in NLP, has
shown significant progress in recent years (Stern
et al., 2017; Kitaev and Klein, 2018; Zhang et al.,
2020; Xin et al., 2021; Yang and Tu, 2022). While
achieving over 95% F-scores in the newswire
domain using the Penn Treebank (PTB) (Marcus
et al., 1993), the performance in the open domain
remains struggling due to the lack of high-quality
annotated domain-specific data.

Fried et al. (2019) trained parsers on in-domain
corpora and evaluated them on out-domain corpora,
presenting valuable insights into the generalization
of neural parsers. Li et al. (2023) first applied
self-training method to cross-domain constituency
parsing and proposed enhancing it with LLMs by
iteratively generating domain-specific raw corpora.
Their approach differs from ours as they use LLMs
to generate sentences for the target domain and
derive tree structures with a self-trained parser. In
contrast, we utilize LLMs to generate phrases with
accurate subtree structures and without requiring
an additional parser. Notably, our LLM generation
process is more lightweight, generating only a few
phrases instead of numerous sentences.

Data Augmentation for Constituency Parsing
Due to the high cost of annotation, especially for
tree structures, data augmentation has gained sig-
nificant popularity in constituency parsing. Some
studies (Shi et al., 2021b; Xu et al., 2021; Yang
et al., 2022) have explored enhancing parsers
through the use of partially annotated structures,
such as entity spans or markups. Another augmen-
tation method involves creating new substructures.
Shi et al. (2020, 2021a) propose a method that gen-
erates trees by substituting subtrees with the same
constituent label. Similarly, Zhang et al. (2022)
use subtree replacement to create new sentences
for downstream tasks, achieving significant perfor-
mance on various text classification benchmarks.

However, previous methods may lead to seman-
tic errors in the generated data. Our approach goes
further by utilizing subtrees annotated with lexical
heads from lexicalized trees to improve semantic
accuracy. Additionally, we further consider the
diversity of new data. Thus, we introduce tree hy-
bridization to merge different subtrees.

LLM Parsing Recently, LLMs have achieved re-
markable success in many NLP tasks (Brown et al.,
2020; Wei et al., 2022; Liu et al., 2023). However,
because tree structure data is rarely included in
pretraining, LLMs may not be effective few-shot
learners for constituency parsing. Bai et al. (2023)
revealed that LLMs suffer from hallucinations and
have limited ability to learn extremely long con-
stituents. To address these challenges, we simplify
the prompt requirements, enabling LLMs to gener-
ate phrases with accurate subtree structures.

https://github.com/zzy0509/LLM-Tree-Hybridization
https://github.com/zzy0509/LLM-Tree-Hybridization
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(b) Hybridization from the lower level to the higher level.

Figure 2: The process of tree hybridization. We use
yellow color and blue color to represent the subtree
structures from different trees, respectively.

3 Our Approach

To enhance cross-domain constituency parsing, in
this work, we propose a data augmentation method.
The basic idea is to first leverage the powerful gen-
erative capabilities of LLM to generate accurate
and domain-specific constituency subtrees. Then, a
tree hybridization method is proposed to efficiently
produce a large number of diverse instances for
further data augmentation, by making full use of
both the LLM-generated target-domain subtrees
and existing source-domain treebank. The whole
workflow of our method is shown in Figure 1.

3.1 Tree Hybridization

To better understand, we first introduce our tree
hybridization method, which is responsible for cre-
ating a large number of new structures with diver-
sity. The main idea is that the lexicalized subtrees
with the same non-terminal constituency label and
lexical head can be replaced with each other to pro-

Algorithm 1: Tree Hybridization
input :Source Lexicalized Treebank S
output :Pseudo Treebank T

1 T = {}
2 for iter in [1, 2, 3] do
3 Construct subtree dictionary D with

different levels based on S
4 for level in [1, 2, ...] do
5 for s in Dlevel do
6 Choose alternatives:

v ∈ Dlevel−1

7 Replace subtrees:
8 s′ ← replace the subtree
9 of s with v

10 Update corpus:
11 Dlevel = Dlevel ∪ s′

12 end
13 S = S ∪Dlevel

14 end
15 end
16 Select T ∈ S whose label is ‘S’

duce new subtrees, as is shown in Figure 2(a). As
presented in Algorithm 1, our tree hybridization
method can be divided into 3 detailed steps:

1) Constructing Subtree Dictionary: As
shown in Figure 2(b), we collect subtrees from the
source lexicalized treebank and level them based
on the number of leaf nodes to construct a subtree
dictionary. Subtrees containing more leaf nodes
are assigned a higher level and the last level con-
sists of the complete lexicalized trees. Specifi-
cally, the source lexicalized treebank containing
two parts, the existing source-domain lexicalized
treebank, which is built by applying head-finding
rules to the source-domain constituency treebank,
and the target-domain lexicalized subtrees gener-
ated by LLM as illustrated in Section 3.2. Since hy-
bridization continuously generates new structures,
the dictionary contains two types of subtrees: the
subtrees from the source lexicalized treebank and
the subtrees generated from hybridization.

2) Continuously Replacing Subtrees: During
each replacement, we first determine to choose the
subtree generated from hybridization with the prob-
ability p and the subtree generated from LLM with
the probability 1− p. Then, we randomly select an
alternative subtree that has the same constituency
label and the same lexical head as the subtree be-
ing replaced and then generate a new subtree. The
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dictionary is updated after each replacement, al-
lowing the newly generated subtrees to be used
continuously in subsequent replacements.

Moreover, hybridization starts from the lower
level and progresses to the last level, which is a
bottom-up process. We use the subtrees contained
in the previous level, which have been updated, to
replace the subtrees of the current level. Taking Fig-
ure 2(b) as an example, the subtree “playing those
games” in LEVEL 2 is used to generate a higher
subtree “love playing those games” in LEVEL 3.

3) Obtaining pseudo treebank: The hybridiza-
tion process continues until the replacement oper-
ation is completed for the last level, generating a
large number of complete trees, concluding one
iteration of hybridization. To generate more com-
plex structures, our hybridization comprises three
iterations. At the end of the hybridization pro-
cess, we select trees whose constituency label is
‘S’, forming a pseudo treebank for cross-domain
constituency parsing data augmentation.

Compared with the previous compositional
constituency-based data augmentation method (Shi
et al., 2021a; Zhang et al., 2022), our method has
the following two advantages. 1) We allow the
newly produced subtrees to participate in subse-
quent replacements continuously, rather than just
one-time replacement. This not only introduces
greater diversity to the composed tree structures
but also significantly increases the number of trees
produced for data augmentation. 2) We use lexi-
calized tree instead of constituency tree, requiring
the replaced subtrees same in constituency label
and lexical head. This enhances the replacement
constraints and significantly improves semantic cor-
rectness, which is proved in Appendix A.1.

3.2 Generating Target-Domain Subtrees via
LLM

LLMs exhibit impressive generative capabilities
which have been successfully leveraged to produce
new and diverse augmented data for enhancing
various tasks (Wan et al., 2023; Xu et al., 2023;
Abaskohi et al., 2023). However, LLMs still have
limitations in handling constituency parsing, suf-
fering from the hallucination of generating invalid
constituency trees, especially when the input sen-
tences are domain-specific and long (Bai et al.,
2023). To address the above issue, in this work, we
propose a lightweight data augmentation method
that simplifies the generation task by requiring the
LLM to generate only target-domain phrases based
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NN[dog]DT[a]

hot dog DT

Figure 3: The process of LLM generating.

on given grammar rules, rather than generating full
raw sentences. In this way, we can directly obtain
high-quality target-domain phrases along with their
constituency subtrees from the LLM, eliminating
additional parsing to determine the constituency
structure of the LLM-generated augmented data.
As illustrated in the Figure 1, the target domain sub-
trees are generated by the following three stages:

Stage 1: Extracting Domain Dictionary and Lex-
icalized Grammar Rules. At this stage, to miti-
gate the issues of hallucination and lacking flexibil-
ity in the LLM, we fully utilize existing large-scale
target-domain raw texts and source-domain tree-
banks to extract a target-domain dictionary and
lexicalized grammar rules, respectively. These re-
sources serve as instructions to guide the LLM in
generating high-quality target-domain phrases with
the specified constituency subtree structures.

For the target-domain dictionary, we directly
select high-frequency words from existing target-
domain raw texts. We also obtain the correspond-
ing part-of-speech (POS) tag for each word in the
dictionary, which will be used in the second stage.
For the lexicalized grammar rules, we extract rules
from the source-doamin lexicalized treeban. Con-
sidering the differences in grammar rules across
domains, especially for high subtrees (Yang et al.,
2022), thus we only use subtrees whose heights are
between three and eight. For instance, the subtree
“video games” in Figure 1 with the height of 3 is
considered as the rule “NP→ NN NNS”.

Stage 2: LLM Prompting with Target-domain
Words and Lexicalized Grammar Rules. After
extracting the target-domain dictionary and lexi-
calized grammar rules, we prompt LLM to gener-
ate target-domain phrases using the given target-
domain words and grammar rules. To ensure the
generation quality and diversity, during each gener-
ation, we select a grammar rule and sample three
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LLM Prompt

As a language assistant, you excel at selecting appropriate words from
the vocabulary and creating phrases based on the grammar rules.
Please strictly observe the constraints.
1. The phrase must follow the given grammar rules and make sense logi-

cally.
2. The phrase does not have to be a complete sentence.
3. The generated phrase must be different from the example.
4. The POS of the words in the vocabulary are consistent, so you can only

use one word from the vocabulary.
Grammar rules: NP[NN] → DT JJ NN
Candidate words: [‘ring’, ‘song’, ‘bicycle’]. The part of speech of all
candidate words is NN.
The step of constructing a phrase based on the grammar rules “NP[NN]
→ DT JJ NN” is the following:
determiner “an” and adjective “excellent” and singular noun “toy” combine
and get the noun phrase “an excellent toy”
Examples: an excellent toy, a cute movie...
Based on the above information, generate a phase of 3 words.

Figure 4: Prompt template used in LLM generation.

candidate words from the target-domain dictionary
whose POS tag is the same as the lexical head of
the rule. This not only ensures LLM can select one
appropriate word and expand it into a phrase but
also guarantees that the generated phrase resembles
the style of the target domain since the lexical head
is definitely from the target domain. Taking Figure
3 as an example, when the given lexicalized gram-
mar rule is “NP[NN]→ DT NN”, we only sample
words whose POS tag is “NN” as candidate words.

The detailed prompt template is shown in Figure
4. It includes a series of step-by-step instructions,
specified grammar rules, candidate words, and illus-
trative examples. Notably, we first utilize gpt-3.5-
turbo to generate a few phrases under the zero-shot
setting and then select high-quality phrases using
the same method described as follows.

Stage 3: Checking Phrase Quality. In order to
guarantee the quality of the LLM-generated data
used for subsequent tree hybridization, further ver-
ification is conducted on the generated phrases,
considering their length and POS tags. As shown
in Figure 3, we only retain phrases that meet the
length requirements which are explicitly specified
in the prompt. Additionally, the domain dictionary
is utilized to confirm that the POS of the words
in generated phrases adhere to the given grammar
rules. Through these two steps, we ensure that the
obtained phrases fully comply with the given gram-
mar rules, enabling accurate reconstruction of the
phrase structures based on these rules.

3.3 Data Selection Strategy

To ensure the augmented data used for cross-
domain parsing is high-quality and aligns with the

style of the target domain, we further select data
from the generated pseudo treebank based on three
strategies from different perspectives: token, gram-
mar rule, and confidence. Moreover, we further
combine the two best-performing strategies, sur-
prisingly resulting in a better performance.

Token-based selection strategy: To maintain
the pseudo data resembling the style of the target
domain, we use word distribution as the selection
strategy. We define the frequency of the words in
the domain dictionary as the word distribution and
calculate the average frequency of leaf nodes in the
constituency tree and set a threshold.

Grammar-rule-based selection strategy: To
guarantee the correctness of the newly generated
structure after hybridization, we compare the struc-
ture of hybrid data with the source-domain treebank
and filter out the data whose subtree structures have
never existed in the source-domain treebank.

Confidence-based selection strategy: To main-
tain the semantic correctness of data, we compute
confidence for the sentences using the log probabil-
ity computed by the language model GPT-2 (Rad-
ford et al., 2019) and set a threshold.

Token-Grammar-based selection strategy: To
maintain both the style and structural information
of data, we combine Token-based selection strategy
and Grammar-rule-based selection strategy.

4 Experiments

4.1 Experimental Settings

Datasets. Following previous work (Li et al.,
2023), we use PTB as the source-domain
(newswire) training and dev data. For the target-
domain test data, we use the Multi-domain Con-
stituent TreeBank (MCTB) (Yang et al., 2022), in-
cluding Dialogue, Forum, Law, Literature, and Re-
view domains. To construct the domain dictionary,
we collect raw texts from the same sources as the
test set, including Wizard (Dinan et al.), Reddit
(Völske et al., 2017), ECtHR (Stiansen and Voeten,
2019), Gutenberg1, and Amazon (He and McAuley,
2016). Each domain dictionary consists of the top
K = 10k high-frequency words from the raw texts.

Model Settings. We use Berkeley Neural Parser
(Kitaev and Klein, 2018) as the backbone, which
is a chart-based parser adopting a self-attentive en-
coder and a chart-based decoder. Following Fried
et al. (2019), all the experiments are based on

1https://www.gutenberg.org/

https://www.gutenberg.org/
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Method Dialogue Forum Law Literature Review Average

GPT-3.5-turbo 70.70 71.56 80.72 72.83 71.24 73.42
Liu and Zhang (2017) 85.56 86.33 91.50 84.96 83.89 86.45
Li et al. (2023) 87.59 87.55 93.29 87.54 85.58 88.31

Kitaev and Klein (2018) 86.30 87.04 92.06 86.26 84.34 87.20
Our method 87.45† 87.50† 92.86† 87.16† 85.44† 88.08†

Table 1: The overall result of our method. The "Bold" identifies the best performance, while "Underline" identifies
the second-best performance. The † represents the statistical significance compared to baseline with p < 0.005.
All the results of our experiments are based on pretrained-bert-large and averaged on three distinct seeds.

BERT (Devlin et al., 2019)2 and we adopt Dan
Bikel’s randomized parsing evaluation comparator
(Noreen, 1989) for statistical significance test.

For each domain, LLM generates 10,000 phrases.
During each replacement, we set p = 0.5. Our
source lexicalized treebank involves subtrees gen-
erated from LLM and top K = 2,000 data from
PTB that are closest to the target domain based on
the Token-based selection strategy. After three iter-
ations, we choose trees whose constituency label
is ‘S’, containing 20,000 augmented data for each
domain and select top K = 8,000 data based on our
selection strategy. We compare 8,000 hybrid data
with source-domain data in Appendix A.2.

Comparison Models. In addition to comparing
with the Berkeley Neural Parser baseline, we also
compare with three competitive models: GPT-3.5-
turbo, In-order Parser (Liu and Zhang, 2017), and
LLM-enhanced ST (Li et al., 2023). The perfor-
mance of GPT-3.5-turbo is reported by Li et al.
(2023) on few-shot settings, by generating brack-
eted trees for target domain sentences. We also
compare with an additional cross-domain baseline
model from Shi et al. (2021a) in the few-shot learn-
ing scenarios in Appendix A.4.

4.2 Main Results
The main experimental results are listed in Table 1.
Our proposed approach demonstrates substantial
and consistent improvements over the Berkeley
Neural Parser baseline across all domains, with
an average increase of 0.88 points, verifying the
effectiveness of our data augmentation method.

Particularly, the most significant improvements
are observed in the Dialogue and Review domains,
with the increase of 1.15 and 1.10. This is not
surprising, as the original sentences in these do-
mains are relatively shorter than in others, aligning

2https://huggingface.co/bert-large-uncased
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Figure 5: Comparative analysis of costs and perfor-
mance between Li et al. (2023) and ours. Generate
Number, Output Length, Intput Length, and Total Cost
of generating stage averaged on five target domains.

well with the characteristics of our generated data.
Our approach also demonstrated consistent perfor-
mance across domains with longer sentence (rang-
ing from 22.01 to 25.59), maintaining an average
improvement of 0.72. This consistency highlights
the robustness of our method in effectively han-
dling different domains with varying features.

Notably, GPT-3.5-turbo consistently underper-
forms relative to all the comparison models across
all domains, suggesting that LLMs still have limi-
tations in parsing. Our approach successfully miti-
gates the limitations of LLMs in constituency pars-
ing, leveraging their strengths to enhance cross-
domain parsing performance. When comparing
our method to LLM-enhanced ST (Li et al., 2023),
our approach achieves comparable performance at
a significantly lower cost. We conduct a further
discussion of the cost comparison in the next part.

4.3 Cost Analysis

Li et al. (2023) shares a similar idea of leveraging
LLMs to enhance cross-domain parsing with data
augmentation. They prompts the LLM to generate
target-domain raw sentences, which are then incor-
porated into the self-training process of a small con-

https://huggingface.co/bert-large-uncased
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Method Dialogue Forum Law Literature Review Average

Kitaev and Klein (2018) 86.30 87.04 92.06 86.26 84.34 87.20

Substitution 86.93 87.14 92.47 86.85 84.98 87.67
Our method 87.45 87.50 92.86 87.16 85.44 88.08

w/o Hybridization 86.76 87.25 92.41 86.56 84.88 87.57
w/o Generation 86.25 86.82 92.08 86.23 84.19 87.11
w/o Selection 86.81 87.26 92.49 86.73 84.89 87.64

+ Token-Based 87.20 87.40 92.71 86.86 85.19 87.87
+ Rule-Based 87.13 87.35 92.67 87.05 85.03 87.85
+ Conf-Based 86.91 87.33 92.60 86.87 84.93 87.73

Table 2: Results of the effects of substitution, hybridization, generation, and different data selection strategies on the
five target domains. Substitution represents using only the subtrees generated from LLM during replacement. “w/o
Hybridization” represents using only the LLM-generated subtrees as additional augmented data. “w/o Generation”
represents hybridization only on the source-domain treebank. The rest of the results represent different selection
strategies, and our method is experimented with based on the Token-Grammar-based strategy.

stituency parser. While their approach has achieved
leading results across various fields, we think it has
come upon a significantly larger cost.

Figure 5 provides an intuitive comparison of the
associated costs. Firstly, their approach involves 4
iterations of self-training and utilizes LLM to gener-
ate 10,000 raw sentences in each iteration, whereas
ours only requires 10,000 phrases at a time. So
our generation number is just 25% of theirs. Fur-
thermore, their approach generates complete sen-
tences, while ours only generates phrases. This
results in our average output length being just 12%
of theirs (3.82 tokens compared to 31.93 tokens).
For input length, we only consider prompt instead
of instruction, which in essentially the same for
both of us (about 100 tokens). These differences
lead to a significant reduction in overall costs for
our method. Theoretically, according to the prices
given by OpenAI3, our LLM-related expanses for
generating amount to only 14% of those incurred by
theirs. Despite this substantial efficiency gain, our
method maintains competitive performance, with
an average accuracy decrease of less than 1%. The
efficiency gains make our method more practical
and scalable for real-world applications where com-
putational resources and time are often limited.

5 Analysis

5.1 w/ Hybridization vs. w/o Hybridization

To analyze the effectiveness of introducing tree hy-
bridization, we report the results of using only the

3According to the prices given on the official website of
OpenAI, the cost of output is three times that of input.

LLM-generated subtrees as additional augmented
data, without generating more data via hybridiza-
tion, as shown in Table 2. We find that removing
hybridization consistently decreases performance
across all domains. This demonstrates that our
tree hybridization method effectively utilizes newly
LLM-generated data and the existing treebank to
produce more diverse parsing trees. We provide a
further analysis in Analysis 5.8 and Appendix A.3.

5.2 w/ Generation vs. w/o Generation

We also observe that compared to the baseline
(Kitaev and Klein, 2018), the results of “w/o Hy-
bridization” still show some improvement. This in-
dicates that our method of generating subtrees via
LLM can effectively provide additional guidance
for cross-domain constituency parsing by introduc-
ing words in the target domain. Notably, since
the LLM generating directly utilizes the structures
from the source-domian, it will not bring new struc-
tures. To investigate the effectiveness of genera-
tion further, we report the results of performing
hybridization on the source-domain treebank with-
out LLM generating, as is shown in Table 2. We
find that removing LLM generation results in degra-
dation to performance consistent with baseline.

5.3 Substitution vs. Hybridization

We compare our method with the substitution
method. Concretely, we set the probability p of
selecting subtrees generated from hybridization to
0, so that only subtrees generated from LLM can be
used as alternatives during each replacement. As is
shown in Table 2, our method outperformed it by
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Method Dialogue Forum Law Literature Review Average

Kitaev and Klein (2018) 86.30 87.04 92.06 86.26 84.34 87.20

Our method w/ gpt-3.5-turbo 87.45 87.50 92.86 87.16 85.44 88.08
Our method w/ LLaMa-3-70B 87.38 87.48 92.75 87.09 85.34 88.01
Our method w/ QWEN-2-72B 87.33 87.47 92.71 87.05 85.33 87.98

Table 3: Results of different LLMs on the five target domains.
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Figure 6: Results of different iteration numbers in hy-
bridization stage on the Dialogue domain.

0.41 points averaged on five domains. The result
demonstrates that hybridization can generate more
complex structures with diversity for cross-domain
constituency parsing, aiding the parser in learning
more accurate and domain-specific information.

5.4 Impact of Different Data Selection
Strategies

To investigate the effect of data selection strategy,
we use three data selection strategies from different
perspectives: token, grammar rule, and confidence.
Moreover, we combine the two best-performing
strategies, resulting a better performance. As is
shown in Table 2, we find that when only one se-
lection strategy is used, the token-based and rule-
based selection strategy shows the most improve-
ment, which ensures the style of the target domain
and the correctness of syntactic constituency pars-
ing tree structures, respectively. Combining two
strategies can make complementary contributions,
resulting in the optimal selection strategy.

5.5 The Iteration of Hybridization

We investigate the effect of each iteration of hy-
bridization on the Dialogue domain. As shown in
Figure 6, during the first three iterations, the perfor-
mance exhibits a continuous improvement. How-
ever, it declines with continued iterations. For fur-
ther investigation, we analyze the semantic correct-
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Figure 7: Statistic and semantic correctness over itera-
tions on the Dialogue domain.

ness of data produced by hybridization as iterations
increase. Specifically, we randomly sample 1K hy-
brid data generated in each iteration and use GPT-2
to compute the average perplexity. As shown in
Figure 7, the perplexity increases over iterations, in-
dicating the decline of semantic correctness. Since
both the quality and quantity of the data are key
factors affecting performance, the performance im-
proves at first due to the increase in data quantity,
but subsequently declines as data quality signifi-
cantly diminishes. We also provide some examples
from different iterations in Appendix A.5.

5.6 Results on Other LLMs

In addition to closed-source LLMs, we also verify
the effectiveness of our method with two popular
open-sourced LLMs (LLaMA-3-70B and QWEN-
2-72B). As indicated in Table 3, the results show
consistently and substantial improvements with
these LLMs, indicating the effectiveness of using
our method with open-sourced LLMs.

5.7 Results on the Other Dataset

We also report our results on the English Web Tree-
bank (EWT) (Silveira et al., 2014), containing data
from five genres of web media: Yahoo! answers,
emails, newsgroups, reviews, and weblogs. As is
shown in Table 4, our results show substantial im-
provements using our method on the five domains
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Method Answers Email Newsgroup Reviews Weblog

Kitaev and Klein (2018) 88.47 87.55 90.57 89.27 91.08
Our method 89.14 87.89 91.26 90.19 91.96

Table 4: Results on the EWT dataset.
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Figure 8: The ratio of overlapping subtree structures
between train set and test set on the Dialogue domain.

of the EWT treebank, which further verify the ef-
fectiveness of our method.

5.8 Structures Generated via Hybridization

To further investigate the impact of hybridization,
we examine whether it can produce more diverse
structures that align with the target domain. Specif-
ically, we compare the proportion of overlapping
subtree structures between the training set and the
test set before and after adding augmented data pro-
duced via tree hybridization. As shown in Figure 8,
with our tree hybridization method, the overlap ra-
tio of subtree structures with heights ranging from
3 to 6 increases consistently. This indicates that
our tree hybridization approach can generate new
structures that meet the target domain, and as the
height of subtree structure increases, the overlap
ratio also increases continuously.

6 Conclusion

In this paper, we introduce a lightweight data aug-
mentation method for cross-domain constituency
parsing with LLM generation and tree hybridiza-
tion. First, we guide the LLM to generate high-
quality target-domain constituency subtrees by pro-
viding grammar rules and words in the target-
domain as instructions. Then, we propose a tree
hybridization method to further produce a large
number of diverse instances by fully leveraging
both target-domain LLM-generated subtrees and
the existing source-domain treebank. Experimental

results demonstrate that our method consistently
improves performance across five target domains
while maintaining high efficiency.

7 Limitations

There remain unexplored experiments of interest,
such as investigating the differences between zero-
shot and few-shot approaches in LLM generation,
which we plan to address in future studies.
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Models Constituency Lexicalized

Our method 87.17 87.45

Table 5: Results of using constituency tree VS lexical-
ized tree on the Dialogue domain.

A Appendix

A.1 Constituency Tree vs. Lexicalized Tree

To prove the effectiveness of using the lexical-
ized tree compared to the constituency tree in our
method, we perform our tree hybridization method
based on the constituency tree on the Dialogue do-
main, as shown in Table 5. The result demonstrates
that using the lexicalized tree, which enhances the
constraints of replacement, significantly guarantees
the semantic correctness of augmented data.

A.2 Equivalence between Source-domain
Data and Augmented Target-domain Data

Evaluating the equivalence between augmented
target-domain data and source-domain data is
crucial for assessing data augmentation methods.
Specifically, we establish a baseline using a parser
trained on the full set of labled source-domain
data. We then determine how much source-domain
data, in combination with 8,000 target-domain data
via hybridization, is necessary to match this base-
line performance. The results on the Dialogue
domain indicate that using 25,000 source-domain
data alongside 8,000 augmented target-domain data
achieves results comparable to the baseline (trained
on 40,000 source-domain data). This suggests that
the effectiveness of 8,000 augmented target-domain
data is equivalent to approximately 15,000 source-
domain data (computed as 40,000 - 25,000).

A.3 Improvements on Constituency Labels

To provide a more in-depth analysis, we investigate
the recall and precision of the 6 most common types
of constituents before and after data augmentation
on the Dialogue domain. As is shown in Table
6 and Table 7, the recall and precision improves
consistently across different types of constituents,
indicating the effectiveness and robustness of our
data augmentation method.

A.4 Additional Cross-domain Baseline

We also compare our method with Shi et al.
(2021a), which proposes a substructure substitution

method for data augmentation. To adapt their meth-
ods which designed for few-shot learning scenarios
to our zero-shot learning scenarios, we maintain
the same settings as in their paper, sampling 50
sentences from MCTB for training and use the re-
maining 950 sentences for testing. As indicated in
Table 8, our results significantly surpass theirs on
the five target domains.

A.5 Examples from Different Iterations
To further investigate the quality of augmented data
produced in different iterations of tree hybridiza-
tion, we also provide examples from the first, third,
and fifth iteration on the Dialogue domain. As is
shown in the Table 9, the sentences become longer
and more complex over the iterations, while at the
same time becoming less coherent or containing
some ambiguities. It is like the famous linguistic
example, “Colorless green ideas sleep furiously” by
Noam Chomsky, which illustrates a sentence that
is grammatically correct but semantically nonsensi-
cal, making it difficult to understand. We speculate
that such issues will become more prevalent as iter-
ations progress.



11247

Models S NP VP PP ADVP SBAR

Kitaev and Klein (2018) 89.55 89.55 78.40 88.11 80.40 89.17
Our method 89.86 90.49 80.65 89.07 83.74 90.16

Table 6: The recall of different types of constituents before and after augmentation on the Dialogue domain.

Models S NP VP PP ADVP SBAR

Kitaev and Klein (2018) 85.27 92.31 85.26 89.83 87.42 89.35
Our method 85.91 92.90 85.36 92.59 87.96 89.98

Table 7: The precision of different types of constituents before and after augmentation on the Dialogue domain.

Method Dialogue Forum Law Literature Review Average

Kitaev and Klein (2018) 86.22 86.96 92.08 86.35 84.43 87.21

Shi et al. (2021a) 86.64 87.17 92.36 86.55 84.74 87.49
Our method 87.37 87.46 92.86 87.20 85.50 88.08

Table 8: Results of Shi et al. (2021a) and our method in the few-shot learning scenarios.

Iter Sentence

1

1. The popcorn of this tastes quite delicious.
2. It is a very talented artist.
3. It causes a surprisingly difficult problem.
4. Her movie plays quite well in concerts.
5. Excited students in the classroom attend the event.

3

1.A depth in science is incredibly impressive.
2. A painting in Rome inspired her own success.
3. The ideas on creativity build a very modern house.
4. Helpful books sold the total supply of the stuff last year and again this year.
5. Interested students in university hold my favorite book in library.

5

1. Students developing the software hang an expensive painting in museum.
2. I all of the cities finally put the fantastic book in library.
3. The wizards have appeared in four nba finals, and sadly it had the scripts!
4. He published a always fascinating book on a rainy afternoon.
5. Smarter doctors question me all of their diseases about math.

Table 9: Exampls from different iteration. The semantic nonsense in the sentences is highlight.
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