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Abstract

The recent emergence of various large language
models, which can be fine-tuned with minimal
instruction data, has demonstrated impressive
performance across various tasks. However, a
phenomenon of forgetting occurs during life-
long fine-tuning because training on new tasks
interferes with the previously acquired knowl-
edge. To mitigate catastrophic forgetting, con-
ventional data replay methods achieve high per-
formance, but at the cost of compromising data
privacy and security. This paper introduces a
dataless distribution replay approach for life-
long fine-tuning. Concretely, the distribution
distillation is applied to replay the output dis-
tribution of the linear layers at previous task
stages. The optimal solution for this distri-
bution replay can be directly computed using
the retained inner product matrix of the input
data, thereby eliminating the need for previ-
ous data. Additionally, Singular Value Decom-
position (SVD) and module accumulation are
employed to further enhance the performance
of dataless distribution replay method. Finally,
the evaluation is conducted in a lifelong fine-
tuning scenario involving multiple tasks. The
experimental results and analysis show that the
proposed method achieves significant improve-
ments compared to several strong lifelong fine-
tuning methods.

1 Introduction

The recent development of large language models,
capable of being fine-tuned with minimal instruc-
tional data, has shown remarkable performance
across a wide range of tasks. In practical scenar-
ios, due to the difficulty in obtaining all relevant
data at once and the high cost of resources, it is
necessary to perform lifelong fine-tuning across
multiple tasks (Zhuang et al., 2020), rather than
training the model on all the data at once. How-
ever, a phenomenon known as catastrophic forget-
ting (Kirkpatrick et al., 2017) occurs during life-

long fine-tuning because training on new tasks in-
terferes with the previously acquired knowledge.
Lifelong fine-tuning, also known as continual or
incremental fine-tuning, enables a large language
model to adapt to new tasks while preserving its
knowledge of previous tasks. The Low-Rank Adap-
tation (LoRA) (Hu et al., 2021), characterized by
its efficiency and lightweight nature, has become
widely applied in fine-tuning a general large lan-
guage model into a task-specific model. The ex-
periment in this article is conducted by fine-tuning
with LoRA.

Recently, diverse methods have been proposed to
overcome the challenge of catastrophic forgetting.
Regularization-based methods (Barone et al., 2017;
Gu et al., 2022), which train the model on new tasks
while minimizing changes to the original param-
eters, are widely employed. These methods may
encounter issues related to either under-constraint
or over-constraint. In addition, several studies at-
tempt to freeze the parameters that are relevant to
previous tasks and utilize the remaining parameters
to train new tasks (Zhuang et al., 2020; Gu et al.,
2022). Nevertheless, this method might compro-
mise critical information from previous tasks and
struggle to achieve ideal results in lifelong fine-
tuning across multiple tasks. Other approaches
advance lifelong fine-tuning by implementing data
replay training (Lopez-Paz and Ranzato, 2017; Gar-
cia et al., 2021). These strategies require either the
retention of old data or the creation of synthetic
data to preserve previously acquired knowledge.
However, in practical settings, the use of histori-
cal or synthetic data for lifelong fine-tuning poses
challenges related to data quality and privacy.

This paper introduces a dataless distribution re-
play approach for lifelong fine-tuning in LoRA.
Unlike data replay methods, this newly designed
strategy does not require previous data for training
while maintaining the high performance of replay
algorithms. Specifically, distribution distillation is
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Figure 1: The main architecture of the proposed method. Fisrt, LoRA fine-tuning is conducted on the task D1 and
the LoRA module is integrated into the base model. The red dashed arrows indicate the integration of the LoRA
module. Subsequently, the inner product matrix XXT is calculated for each linear layer’s input data X , which is
related to distribution distillation. These matrices are then compressed and saved. After that, a new LoRA module is
employed to train task D2 and distribution distillation is performed to replay the output distribution of the linear
layers at previous task stages. Similarly, subsequent task stages can utilize the inner product matrices saved at earlier
stages to perform distribution distillation.

employed to replay the output distribution of the
linear layers at previous task stages. The optimal
solution for this distribution replay can be directly
computed using the retained inner product matrix
of the input data, thereby eliminating the need for
previous data. Distribution replay can also reduce
the model’s overfitting to the current task, which
enhances the model’s generalization ability for un-
seen tasks. Additionally, SVD compression is used
to reduce the size of the large inner product matrix
related to the distribution replay, which maintains
the advantage of lightweight file storage in LoRA
fine-tuning. Moreover, to further enhance the per-
formance of lifelong fine-tuning in LoRA, the accu-
mulated LoRA modules are combined with the dis-
tribution replay method. The accumulated LoRA
modules achieve excellent fine-tuning performance
in non-lifelong fine-tuning scenarios (Meng et al.,
2024). At each task stage, the previous LoRA mod-
ule, which is no longer active in training, is inte-
grated into the base model. Subsequently, at the
new task stage, SVD compression and distribution
distillation are performed. The main architecture
of the proposed approach is illustrated in Figure 1

This paper’s contribution can be summarized as
follows:

• To mitigate catastrophic forgetting and en-
hance the model’s zero-shot capabilities for

unseen tasks, the dataless distribution distilla-
tion approach is utilized to replay the output
distribution of the linear layers at previous
task stages. This approach does not require
training on previous data and helps to reduce
the model’s overfitting to the current task.

• To further optimize the lifelong fine-tuning
approach, SVD compression is employed to
maintain the advantage of lightweight file stor-
age in LoRA fine-tuning. In addition, the
accumulated LoRA modules are utilized to
enhance the effectiveness of the distribution
distillation method.

• This paper conducts extensive experiments in
the lifelong fine-tuning scenario of multiple
tasks and publicly available datasets. Across
multiple metrics and various task orders, the
method proposed in this paper achieves signifi-
cant improvements on the continual tasks com-
pared to several strong lifelong fine-tuning
methods. In addition, the proposed method
demonstrates a distinct advantage in zero-shot
capabilities for unseen tasks.

2 Related Work

Recently, numerous researchers have developed
various methods to overcome the challenge of catas-
trophic forgetting.
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Regularization-based methods. These ap-
proaches are designed to minimize fluctuations
in the original parameters while learning new
task data (Barone et al., 2017; Gu et al., 2022).
Kirkpatrick et al. (2017) use the Fisher information
matrix to assess the importance weights of
different parameters. Cha et al. (2020) incorporate
regularization terms into the classifier to promote
wide local minima, thereby maximizing the
entropy of the classifier’s output distribution.
Memory aware synapses (MAS) (Aljundi et al.,
2018) determines the importance of parameters
based on the gradients of model’s output. However,
these methods may face issues of insufficient or
excessive constraints.

Structure-based methods. These methods
Rücklé et al. (2020); Zhuang et al. (2020) assign
specific parameters for different tasks or expand
the network’s parameters to accommodate new
tasks. Huang et al. (2023) construct plug-and-play
modules with additional parameters tailored for
training new data. Madotto et al. (2020) utilize
a residual adapter-based approach to construct
new parameters. Furthermore, Dabre et al. (2020)
suggest initializing newly added parameters with
pseudo-data. However, these approaches can
cause the model to become increasingly bloated
in the context of multi-stage lifelong fine-tuning.
Another approach (Zhuang et al., 2020) involves
freezing the main parameters of the model and
fine-tuning only a subset. Gu et al. (2022) utilize
the Hessian matrix to identify high-forgetting
risk regions for parameter fixing and define the
variation regions for new tasks. However, these
methods may encounter challenges due to either
excessive or insufficient parameter freezing.

Data-replay-based methods. These methods
need to store data from previous stages (de Mas-
son D’Autume et al., 2019; Wang et al., 2020)
or generate synthetic data (Kanwatchara et al.,
2021), which is used in the new stage. To miti-
gate the increased loss of previous tasks, the Gradi-
ent Episodic Memory (GEM) (Lopez-Paz and Ran-
zato, 2017) retrieves historical data from memory
to compute gradients. Garcia et al. (2021) propose
a method that involves dictionary replacement to
generate pseudo-data. Another study (Yin et al.,
2020) attempts to achieve knowledge distillation
by synthesizing data.

Although data replay methods demonstrate su-
perior performance among lifelong fine-tuning ap-

proaches, they raise concerns regarding privacy and
security. In this paper, distribution distillation is
utilized to effectively replay the output distribution
of the linear layers at previous task stages. This ap-
proach does not require previous data for training
and demonstrates a distinct advantage in zero-shot
capabilities for unseen tasks compared to data re-
play methods.

3 Method

In the setting of lifelong fine-tuning, a model f with
parameters θ is sequentially trained on a stream
of tasks D = {D1, . . . , DN}. The output of the
model f on the task Dt is denoted as f(Dt, θt),
where θt represents the model parameters at the
t-th stage. To mitigate the issue of catastrophic
forgetting in lifelong fine-tuning, a dataless distri-
bution replay method is proposed, which involves
three main steps: Accumulation of LoRA Mod-
ules, Distribution Distillation, Matrix Compression.
Accumulation of LoRA Modules and Matrix Com-
pression aim to further optimize the performance
of Distribution Distillation.

3.1 Preliminaries
3.1.1 LoRA Fine-Tuning
Training with LoRA involves freezing the param-
eters of the base model and constructing a train-
able LoRA module. The optimization for the en-
tire model is completed through the training of the
LoRA module ∆W . The modified forward prop-
agation in linear layer W , related to LoRA mod-
ule, is XTW +XT∆W , where X ∈ Rn denotes
the input data of linear layers W , ∆W = AB,
A ∈ Rn×r, B ∈ Rr×m, and r << n,m. Here n
and m respectively denote the dimensions of the in-
put and output of the linear layer in the base model.
The rank r of the parameter matrix can be selected
to be relatively low, resulting in a LoRA module
that is substantially smaller than the base model.

3.1.2 Null Space
To mitigate the issue of forgetting, Wang et al.
(2021) proposed the definition of the null space.
In the definition of null space, only the linear lay-
ers W in the model f are trained. If the update
value ∆W ∗ for the parameters W lies in the null
space of X , i.e.,

XT∆W ∗ = 0 (1)

where X denotes the input to the linear layers W .
If the update value of all linear layers lies in the null
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space, then f(Dt, θt) = f(Dt, θt+1), where θt+1

represents the model parameters at the (t + 1)-th
stage, as can be readily demonstrated. When only
the parameters of the linear layers in the model are
updated and the outputs from these linear layers
remain identical to those before the update, the
output of the entire model remains unchanged. The
null space ensures that the model maintains stable
outputs on previous tasks while being trained on
new tasks.

3.2 Accumulation of LoRA Modules
Initially, a LoRA module is utilized to train task
D1, where each LoRA module ∆W1 comprises
initializing A1 and B1 matrices. Then, this LoRA
module ∆W1 is no longer active in training and
is integrated into the linear layers W0 of the base
model, resulting in updated linear layers W1 for
the next stage.

W1 = W0 +∆W1 (2)

In the subsequent task, a new LoRA module ∆W2

is constructed. For the next task, the above process
is repeated. At the t-th task stage, the linear layers
Wt of the model are denoted as:

Wt = W0 +∆W1 +∆W2 + ...+∆Wt (3)

3.3 Distribution Distillation
Here, the output distribution of linear layers can
be expressed as XT

i Wi, where Wi represents the
linear layers at the i-th task stage, and Xi denotes
the input of the linear layers Wi. Note that parame-
ters unrelated to the LoRA module are not updated
and thus are not discussed in this paper. At the
t-th task stage, to replay the output distribution of
the linear layers in the previous task stages, the
objective function for distribution distillation can
be formulated as follows:

min
∆Wt

Lt +

t−1∑
i=1

||XT
i (Wt−1 +∆Wt)−XT

i Wi||2

(4)
where the first term represents the loss function
training the task Dt, and the second term repre-
sents the distillation of the output distribution from
the linear layers at previous task stages. ∆Wt de-
notes the LoRA module of the model at the t-th
stage, and Wt−1 denotes the linear layers at the
(t− 1)-th stage, which remain untrained. Direct
application of Equation 4 requires retaining the in-
put to the linear layer for each token. Therefore, the

null space is utilized to implement a distribution
distillation process that does not require training
with input data of previous linear layers. At the t-th
task stage, the model initially undergoes training
on the task Dt. Subsequently, the null space ∆W ∗

t

of input data Xt is explored while distilling the
output distribution of the linear layers at previous
task stages. The ideal null space for input data Xt

at the t-th task stage is as follows:

XT
t ∆Wt

∗ = 0 (5)

Specifically, the null space ∆W ∗
t represents the

update value of parameter Wt and also serves as
the LoRA value of the model. This indicates that
changes in Wt do not affect the output results on
the task Dt. Given that it is too strict to guarantee
the existence of a null space, an approximate null
space is proposed based on the following formula:

min |
∆W ∗

t

|XT
t ∆W ∗

t ||2 (6)

Therefore, the new distribution distillation formula
is designed as follows:

min
∆W ∗

t

||XT
t ∆W ∗

t ||2 +
t−1∑
i=1

||XT
i (Wt +∆W ∗

t )

−XT
i Wi||2 (7)

where the first term in the equation ensures that
the output of the linear layers at the t-th stage re-
mains stable, while the second term achieves the
distillation of the output distribution from the lin-
ear layers at previous task stages. Inspired by the
Regression Mean method (RegMean) (Jin et al.,
2022) 1, this optimization problem can be directly
solved. Furthermore, by combining Equation 3, the
final solution is as follows:

∆W ∗
t = (

t∑
i=1

XiX
T
i )

−1

 t∑
i=1

XiX
T
i

 i∑
j=1

∆Wj


+W0 −Wt

(8)
The derivation process is detailed in Appendix A.
This formula demonstrates that distillation training
and storing the input data Xi ∈ Rn of the linear
layers are unnecessary; instead, the inner product
matrix XiX

T
i ∈ Rn∗n of the input data can be

stored for distribution distillation. In addition, it
1https://github.com/bloomberg/

dataless-model-merging

https://github.com/bloomberg/dataless-model-merging
https://github.com/bloomberg/dataless-model-merging
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should be noted that the size of this matrix is signif-
icantly larger than that of the original LoRA mod-
ule ∆W = AB, where A ∈ Rn∗r, B ∈ Rr∗m and
r << n. In addition, since an input data involves
multiple tokens, the information of the input data
is further protected through cumulative operations.

3.4 Matrix Compression

Here, SVD is employed to compress the matrix
XXT and reduce noise by storing its diagonal val-
ues. The compression of matrix XXT can be rep-
resented as:

UΣV T = XXT (9)

where U and V denote orthogonal matrices, and Σ
denotes a diagonal matrix. For the purpose of com-
pression, only the first k largest singular values are
retained. This truncated diagonal matrix is denoted
by Σk. Uk and Vk are the corresponding subsets
of U and V . The computation to reconstruct the
matrix can be expressed as follows:

XXT ≈ UkΣkVk
T (10)

Since XXT is a symmetric matrix, it is sufficient
to store either Uk or Vk.

Then, during the compression and reconstruction
process, the diagonal values are stored as a vector d.
The complete reconstruction process is as follows:

XXT = Θ(UkΣkVk
T ) + diag(d) (11)

where Θ denotes the operation of setting the diag-
onal values of a matrix to zero, while diag refers
to the process of transforming a vector d into a
diagonal matrix.

4 Experiments

4.1 Dataset and Metric

Datasets. The tasks employed in this study
include sentiment analysis (dataset: AGNews)
(Zhang et al., 2015), news classification (dataset:
Yelp ) (Zhang et al., 2015), and question answering
(dataset: SQuAD) (Rajpurkar et al., 2016). Further-
more, the widely used continual translation task
(dataset: German-English (De-En) translation ) (Gu
et al., 2022)—is incorporated into the experiments
of this paper. For the size of each dataset, the sam-
pling strategy outlined in de Masson D’Autume
et al. (2019) is adopted. The specific sizes of the
datasets are shown in Appendix B.

Metric. For the four tasks mentioned, the sacre-
BLEU (Post, 2018) score for the translation task
and the Exact Match (EM) score for the remaining
tasks were recorded. Additionally, it is important
to note that model performance varies across dif-
ferent task stages. For instance, the evaluation
results of the first task at the second stage differ
from those obtained at the third stage. Therefore,
to standardize the evaluation results, a strategy
commonly adopted in previous studies (Lopez-Paz
and Ranzato, 2017) is utilized to assess the per-
formance of lifelong fine-tuning algorithms. The
strategy in Lopez-Paz and Ranzato (2017) includes
three metrics: AS: The average performance of
the model across all tasks at the final stage; FWT:
The model’s generalization ability on unseen tasks;
BWT: The influence of learning subsequent tasks
on earlier tasks. These metrics are detailed in Ap-
pendix C.

4.2 Implementation Details
The training framework in this paper uses the Hug-
ging Face Transformers library. For LoRA, the
PEFT library in the Hugging Face API 2is utilized.
The rank of LoRA is set to 8 and the scaling factor
is set to 16. The LoRA to the self-attention’s query
and value matrices is applied for training large lan-
guage model, and the LoRA dropout rate is set to
0.1. For the number k of singular values retained in
SVD, considering both the size of the compressed
file and the model’s performance, k=100 is set,
where the original dimensions of the inner product
matrix are 2048 × 2048. More details on model
training are provided in Appendix D

Base Model. To maintain consistency with previ-
ous work (Scialom et al., 2022), the T0-3B model
(Sanh et al., 2022) is employed as base model. The
T0 model is a multi-task large model that under-
goes pre-training across a broader range of NLP
tasks, exhibiting enhanced universality and gener-
alization capabilities3.

Baselines. All the comparison methods are im-
plemented using LoRA.

Sequential LoRA Fine-tuning (SLFT). The
model is sequentially fine-tuned on the same LoRA,
one task after another.

L2 (Barone et al., 2017). This method applies
L2-norm regularization to the parameters of the
previous model.

2https://github.com/huggingface/peft
3https://huggingface.co/bigscience/T0_3B

https://github.com/huggingface/peft
https://huggingface.co/bigscience/T0_3B
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AS FWT BWT
SLFT 56.23 0.00 -17.13
L2 59.43 13.08 -6.52
EWC 58.66 0.00 -13.87
LFR-CM 62.97±0.18 10.47±0.69 -3.37±0.27

RandSam 66.91±0.04 0.71±0.11 -2.71±0.18

LAFT 59.47±0.89 0.41±0.39 -12.36±0.82

LADD 68.22±0.13 19.82±0.92 -0.48±0.10

MTL 68.73±0.06 / /

Table 1: Final results of different algorithms on three
metrics. The algorithms are trained on the default order:
AGNews→De-En→Yelp→SQuAD. Bold indicates the
best results for all methods, excluding MTL, under each
metric, and details on three metrics are in Appendix
C. ± indicates the standard deviation over three runs,
which captures the variability in the comparison results
of several high-performance methods.

Figure 2: Specific scores of LADD and MTL on contin-
ual four tasks (AGNews, De-En, Yelp, SQuAD). The
performance of each task is assessed using the model
obtained at the final stage of the default order.

EWC (Kirkpatrick et al., 2017). This method
involves adding a regularization term to the loss
function, which is calculated based on the Fisher
Information Matrix. This matrix measures the im-
portance of network parameters with respect to the
output of previous tasks.

LFR-CM (Gu et al., 2022). This method identi-
fies high-forgetting risk regions for parameter fix-
ing and defines the variation regions for training a
new task.

RandSam (Scialom et al., 2022). This method
utilizes random sampling of data from previous
tasks to participate in the training of a new task.
As indicated by Scialom et al. (2022), using 1% of
sampled data can effectively preserve the learned
knowledge of the model, so the same sampling rate
is set in the experiments.

MTL (de Masson D’Autume et al., 2019). The
model is trained on all datasets jointly. MTL is
often regarded as the upper bound of lifelong fine-
tuning.

LoRA Accumulation Fine-tuning (LAFT).
This is the method proposed in this paper. The
LoRA from previous tasks is merged with the base
model to form a new base model, then a new LoRA
module is initialized to train a new task.

Distribution Distillation (LADD). In LADD
method, the output distribution of the linear layers
at previous task stages is replayed through distribu-
tion distillation, which further mitigates knowledge
forgetting.

4.3 Main Results

As shown in Table 1, the performance of differ-
ent methods on three metrics is compared, which
is executed on the default order: AGNews→De-
En→Yelp→SQuAD. Given the superior perfor-
mance of the LADD method proposed in this
paper over non-data replay methods, the mean
and standard deviation from three runs for several
high-performance comparative methods (LFR-CM,
RandSam, LAFT, LADD, MTL) are presented to
mitigate randomness. Clearly, the LADD method
outperforms the competitors in all metrics.

AS metric. In the AS metric of Table 1, the
proposed method LAFT demonstrates a clear ad-
vantage over the sequential LoRA fine-tuning ap-
proach (SLFT), achieving an AS value that is 3.24
higher. Additionally, when LAFT employs the dis-
tribution distillation approach, named LADD, to
enhance knowledge preservation, it outperforms all
comparative methods. Compared to the data replay
algorithm RandSam, LADD shows a 1.31 improve-
ment in the AS metric. Furthermore, it is evident
that the LADD method exhibits a distinct advan-
tage in the FWT metric, which is further analyzed
in the subsequent content.

In addition, in comparison with the upper bound
of the lifelong fine-tuning method, MTL, the per-
formance of LADD is only 0.51 lower. Figure 2
details the values of the AS metric. Specifically,
on the Yelp and AG datasets, the LADD method
outperforms the upper bound of the lifelong fine-
tuning method, MTL, by 0.20 and 0.83 points, re-
spectively. The results highlight the advantages of
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order 1 order 2
AS FWT BWT AS FWT BWT

SLFT 60.21 0.35 -8.87 58.95 16.72 -10.35
L2 60.84 23.20 -3.27 59.57 44.42 -6.02
EWC 60.32 0.37 -8.79 58.92 18.26 -10.46
LFR-CM 60.14±0.06 25.97±0.80 -1.12±0.06 58.73±0.38 52.35±0.39 -4.99±0.40

RandSam 64.09±0.24 11.15±1.16 -3.62±0.35 63.80±0.26 31.74±0.81 -4.08±0.16

LAFT 62.82±0.20 6.32±0.90 -5.61±0.17 61.89±0.22 21.70±0.47 -6.97±0.42

LADD 66.63±0.02 30.22±0.62 -0.23±0.04 66.56±0.06 51.15±0.36 -0.48±0.09

MTL 66.70±0.04 / / 66.70±0.04 / /
order 2 order 4

AS FWT BWT AS FWT BWT
SLFT 51.38 2.11 -20.53 56.66 23.52 -13.42
L2 61.39 14.60 -3.47 61.35 30.55 -3.73
EWC 55.53 2.68 -15.09 57.69 23.29 -11.99
LFR-CM 60.60±0.03 20.33±0.57 -2.35±0.11 62.38±0.08 30.54±0.11 -0.64±0.27

RandSam 64.37±0.08 14.47±1.23 -3.39±0.19 61.73±0.42 30.18±0.86 -6.82±0.54

LAFT 59.54±0.24 8.22±0.96 -10.08±0.32 62.50±0.08 26.70±0.98 -6.00±0.11

LADD 66.68±0.05 21.89±0.32 -0.26±0.02 66.47±0.31 31.05±0.06 -0.36±0.22

MTL 66.70±0.04 / / 66.70±0.04 / /

Table 2: Final results on continual four tasks under various task orders. Bold indicates the best results for all
methods, excluding MTL, under each metric. ± indicates the standard deviation over three runs, which captures the
variability in the comparison results of several high-performance methods. Details on task orders are in Appendix K.

the distribution distillation method. This is mainly
attributed to the method’s ability to effectively re-
play the previous output distribution while mini-
mizing its impact on the current task.

FWT metric. In the FWT metric of Table 1,
LADD exhibits exceptional performance. Com-
pared to the second-best algorithm L2, LADD’s
FWT value is 6.74 higher, demonstrating LADD’s
excellent zero-shot capabilities for unseen tasks.
This result is primarily attributed to the mitigation
of overfitting to the current task by distribution
replay. More detailed experiments and analyses
are presented in Appendix E. In addition, a de-
tailed analysis of the BWT metric is provided in
Appendix G.

Results of different task orders. In multi-task
lifelong fine-tuning, the order of tasks can influence
the final model’s performance. Table 2 presents
the results of different algorithms across four task
orders. For more details on task orders, refer to
Appendix K. Given the computational costs, the
dataset for each task was derived by randomly se-
lecting a 10% sample from the original datasets.
Table 2 clearly demonstrates that LADD exhibits
the best performance across three metrics in four
different task orders.

Even when compared with the results from MTL,

the AS value of LADD are remarkably close. Ta-
ble 2 shows that the LADD method achieved an
average AS value of 66.58 across four task orders,
which is only 0.12 lower than the AS value of
MTL. Moreover, compared to the baseline methods,
the LADD method demonstrates greater stability
across various task orders. Detailed experimen-
tal results are presented in Appendix F. These re-
sults indicate that LADD significantly outperforms
comparative methods. Although the advantage of
LADD over the data replay algorithm RandSam
in the AS metric diminishes as the proportion of
replay increases, it maintains a significantly supe-
rior zero-shot capability for unseen tasks. This is
further analyzed in subsequent sections based on
the results from Figure 4. On the other hand, data
replay algorithms may face privacy and security
issues, which may restrict access to previous data.

4.4 Analysis

Ablation study of LoRA accumulation and dis-
tribution distillation. Firstly, Table 3 illustrates
the effect of LoRA accumulation. When combined
with distribution distillation, this accumulation can
further enhance the model’s performance. This can
be attributed to the accumulated LoRA modules’
capability to preserve prior knowledge to some
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extent. Furthermore, Table 3 illustrates the piv-
otal role of distribution distillation. In the AS and
FWT metrics, distribution distillation yields im-
provements of at least 8.32 and 15.17 points, re-
spectively.

LoRA accum Dis dist AS FWT
× × 56.23 0.00
× ✓ 67.54 15.17
✓ × 59.90 0.16
✓ ✓ 68.22 19.82

Table 3: Ablation studies on LoRA accumulation (LoRA
accum) and distribution distillation (Dis dist ) on the
default order.

Effect of the number of singular values on per-
formance. In the distribution distillation approach,
SVD plays an important role. Figure 3a illustrates
how the number of singular values in SVD affects
model’s performance by determining the extent of
matrix compression. When the number of singular
values is set to 10, the model’s prediction scores
across various tasks are zero, which is attributed
to low singular values introducing excessive noise.
When the number of singular values varies from
100 to 800, the model’s performance remains stable.
This stability is primarily due to the adequacy of
a specific number of singular values in preserving
significant information from the original matrix.

(a) Specific results on contin-
ual four tasks.

(b) File size required for stor-
age at each stage.

Figure 3: Impact of different number of singular values
on the default order.

Effect of the number of singular values on
size. Figure 3b illustrates the variations in the size
of the retained matrix with varying numbers of
singular values. Although the final retained files are
relatively larger than the original LoRA files, they
are substantially smaller than the uncompressed
files. Specifically, when the number of singular
values is set to 100, the original matrix can be
compressed by a factor of approximately 20.

Comparison of LADD and data replay meth-

Figure 4: Comparisons of LADD and data replay algo-
rithms with different sampling ratios on task order 1.

ods with different sampling ratios. In non-data
replay algorithms, the advantages of the LADD al-
gorithm are highly evident. Figure 4 further shows
the comparative performance of LADD and replay
algorithms with various sampling ratios under task
order 1. The other three orders are detailed in Ap-
pendix I, and the data size is the same as shown
in Table 2. It is clear that when the sampling ra-
tio reaches 32%, the AS value of LADD is only
0.15 lower than that of the replay algorithm. How-
ever, LADD’s FWT value exceeds that of the replay
method by 9.94. Additionally, replay algorithms
may encounter privacy and security issues in prac-
tical scenarios, potentially rendering previous data
inaccessible. These factors all indicate that the
LADD method offers distinct advantages.

Performance on different base models. Given
the influence of different base models on lifelong
fine-tuning methods, simple experiments were con-
ducted with various base models, including MT0-
XL (3.7B) (Muennighoff et al., 2022) and T0pp
(13B), as detailed in Appendix H. MT0-XL is a
multilingual and multitask model, and T0pp is a
larger-scale model. The results in Table 6 and 7
demonstrate that LLAD surpasses the replay algo-
rithm by 1.18 and 1.26 under MT0-XL and T0pp
models, respectively, indicating the universal appli-
cability of the LADD method.

5 Conclusion

This paper introduces the dataless distribution re-
play method to effectively address the issue of
catastrophic forgetting during multi-task lifelong
fine-tuning in LoRA. Concretely, distribution distil-
lation is employed to replay the output distribution
of the linear layers at previous task stages. The
optimal solution for this distribution replay can be
directly computed, eliminating the need for train-
ing. Simultaneously, SVD compression is used to
reduce the size of large storage files related to dis-
tribution distillation. Moreover, the accumulated
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LoRA modules are combined with the distribution
distillation method, which further enhances the per-
formance of lifelong fine-tuning in LoRA . The ex-
perimental results show that the method proposed
in this paper achieves significant improvements
compared to several strong baselines.

Limitations

the method proposed in this paper is designed to
address the forgetting issue during lifelong fine-
tuning in LoRA. For full-parameter fine-tuning,
this requires further investigation in the future. Fur-
thermore, in the AS metric, the approach proposed
in this paper underperforms compared to data re-
play methods with high sampling ratios and re-
quires additional storage for the compressed inner
product matrix.
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A The derivation process of the
optimization problem

Inspired by Paper (Jin et al., 2022), the optimiza-
tion process for the objective function described in
Equation 7 is as follows:

First, the objective function is denoted as L, and
then compute the gradient of the objective function
L w.r.t ∆Wt

∗. Since L is convex w.r.t. ∆Wt
∗,

the solution for ∆Wt
∗ can be directly obtained by

letting ∂L
∂∆Wt

∗ = 0.

∂L

∂∆Wt
∗ = XtXt

T∆Wt
∗ +

t−1∑
i=1

XiXi
T (Wt

+∆Wt
∗)−

t−1∑
i=1

XiXi
T (Wi) = 0

⇒ XtXt
T (Wt +∆Wt

∗ −Wt) +

t−1∑
i=1

XiXi
T (Wt

+∆Wt
∗)−

t−1∑
i=1

XiXi
T (Wi) = 0

⇒
t∑

i=1

XiXi
T (Wt +∆Wt

∗)−
t∑

i=1

XiXi
T (Wi) = 0

⇒ ∆Wt
∗ = (

t∑
i=1

XiXi
T )−1

t∑
i=1

XiXi
T (Wi)−Wt

(12)
Since Wi = W0 + ∆W1 + ... + ∆Wi, the fol-

lowing result can be derived:

∆Wt
∗ =(

t∑
i=1

XiXi
T )−1

 t∑
i=1

XiXi
T

 i∑
j=1

∆Wj


+W0 −Wt

(13)

B Data Statistics

Here, the specific data sizes for the four datasets are
demonstrated (DE-EN, Yelp, AGNews, SQuAD).

Dataset #Train #valid #Test
DE-EN 90000 4000 4000

Yelp 115000 4000 7600
AGNews 115000 4000 7600
SQuAD 83000 4000 10570

Table 4: The sizes of four datasets.

C The three metrics for continual tasks

The specific definitions of the three metrics are as
follows: Here, Sj

i denotes the performance score
of the model on the task Di at the j-th stage.

• Average Score (AS). It is used to quantify
the final average performance of the model
across all T tasks at the final stage T , which
is defined as follows:

AS =
1

T

T∑
i=1

ST
i (14)
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where ST
i denotes the performance score of

the model on the task Di at the final stage T .

• Forward Transfer (FWT). This metric as-
sesses the model’s generalization ability on
unseen tasks. It measures the average zero-
shot performance Si−1

i for unseen tasks Di at
every stage i− 1.

FWT =
1

T − 1

T∑
i=2

Si−1
i (15)

• Backward Transfer (BWT). This metric is
employed to measure the influence of learning
subsequent tasks on earlier tasks. Except for
the ultimate one, it compares the performance
ST
i at the final stage T with the immediate

online performance Si
i at stage i. It denotes

the extent to which the model has forgotten
previously acquired knowledge.

BWT =
1

T − 1

T−1∑
i=1

(ST
i − S

i
i) (16)

D Training details

the AdamW_Torch optimizer with β1= 0.9 and
β2= 0.999 is utilized, setting the batch size to 8,
and the weight decay to 3e-7. A cosine learning
rate schedule is utilized, with a warmup ratio of
0.1 and a maximum learning rate of 3e-4. All the
systems are trained on 2 A100 GPUs. Following
the previous strategy (Sun et al., 2019), the final
checkpoint for evaluation is used. For continual
matrix compression, two approaches can be used.
The first approach is to reduce the size of the matrix
by first accumulating the previously stored inner
product matrix and the current inner product matrix,
and then performing compression. To improve
performance, the second approach is to compress
the inner product matrix at each stage and save it
separately. The first approach is used in the four
continuous task experiments in this paper.

E The analysis of zero-shot results for
unseen tasks

Table 5 presents the performance of the model on
specific tasks at each sequential stage. In stage 1,
due to the lack of prior tasks, no distribution dis-
tillation occurs. The results indicate that while the
LAFT method provides effective results for the cur-
rent task, AGNews, it fails to achieve satisfactory

stage 1
AGNews (S1

1 ) De-En (S1
2 )

LAFT
w/o Dis dist 93.90 0.00

stage 2
De-En (S2

2 ) Yelp (S2
3 )

LAFT
w/o Dis dist 23.52 0.51
w/ Dis dist 23.27 25.65

stage 3
Yelp (S3

3 ) squad (S3
4 )

LAFT
w/o Dis dist 71.22 0.00
w/ Dis dist 71.05 33.81

Table 5: Specific effects of the distribution distillation
(Dis dist) method on the LAFT method across various
stages of the default order. Si

i represents the perfor-
mance score of the model on task Di at stage i, while
Si+1
i indicates the performance score on the subsequent

task Di+1 at stage i. Therefore, Si+1
i illustrates the

model’s zero-shot capabilities for unseen task.

outcomes for the subsequent task, De-En. This
is attributed to overfitting to the current task, re-
sulting in the loss of the model’s generalization
ability. In stage 2, when the LAFT algorithm does
not perform distribution distillation, it results in
the model losing its generalization ability for un-
seen tasks. However, after performing distribution
distillation, the model exhibits a slight decrease of
0.25 points in performance on the current task, but
demonstrates a significant enhancement of 25.14
points in its generalization ability for unseen tasks.
In stage 3, the benefits of distribution distillation in
enhancing the generalization ability are similarly
evident.

F Statistical results for four task orders

Figure 5 illustrates the mean and standard deviation
of the AS value for different methods across vari-
ous orders, revealing that LADD outperforms the
others in both metrics. Specifically, the standard de-
viation of the AS value is 0.08, which is the lowest
among all methods. These results demonstrate that
LADD maintains high stability while preserving
superior performance across various task orders.

G The analysis of the BWT metric

According to the BWT metric in Table 1, LADD
improves the BWT value by 2.23 points com-
pared to other methods. Since BWT measures the
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Figure 5: The mean and standard deviation of the AS
values of different algorithms under different task or-
ders.

order1
AS

order2
AS

order3
AS

order4
AS

RandSam 66.16 66.28 66.96 65.57
LADD 67.46 67.54 67.47 67.24

Table 6: Results of different algorithms on MT0-XL
model. Bold indicates the better results.

model’s resistance to forgetting, this result indi-
cates that LADD effectively prevents catastrophic
forgetting during lifelong fine-tuning.

H Performance on different base models

In the MT0-XL model experiment (Table 6), the
same dataset and task orders as presented in Table
2 are used to conduct experiments across four task
orders. Since the LADD method outperforms non-
data replay methods, only the data replay method is
employed as a comparative approach. In this exper-
iment, the singular value is set to 400. In addition,
due to resource limitations, the experiments (Table
7) on task Order 1 in the T0pp model are conducted
using the same dataset presented in Table 2. In this
experiment, the singular value is set to 100.

I The performance of the LADD method
and the data replay methods with
different sampling ratios.

Figures 6, 7, and 8 show the performance of LADD
compared to replay algorithms with different sam-
pling ratios across three task orders. In the AS
metric, LADD’s performance is essentially equiva-
lent to that of replay algorithms with high sampling
ratios across these task orders. In the FWT met-

AGNews De-En Yelp SQuAD
RandSam 90.43 20.52 68.47 87.55
LADD 90.30 23.72 70.77 87.24

Table 7: Results of different algorithms on T0pp model.
Bold indicates the better results.

Figure 6: Comparisons of LADD and data replay algo-
rithms on task order 2.

Figure 7: Comparisons of LADD and data replay algo-
rithms on task order 3.

Figure 8: Comparisons of LADD and data replay algo-
rithms on task order 4.

ric, LADD’s performance for order 4 is essentially
equivalent to that of the replay algorithms. How-
ever, for order 2 and order 3, LADD significantly
outperforms all replay algorithms.

J The experiments on more tasks

Here, four tasks (Cola, Mnli, Mrpc, QQP)
from the GLUE dataset are added for continual
learning. The task order is (AGNews→De-
En→Yelp→SQuAD→Cola→Mnli→Mrpc→QQP).
The comparison method we chose is the highest-
ranked RandSam algorithm from previous
comparison methods. Clearly, our method
outperforms the competitor. The experimental
results are presented in Figure 9. For continuous
matrix compression, the inner product matrix at
each stage is compressed and saved separately.
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Figure 9: Performance of Different Algorithms on Sup-
plementary Tasks

The performance of each task is assessed using the
model obtained at the final stage of the order.

K Different task orders

Experiments were conducted using the following
four distinct task orders.
order 1: AGNews→De-En→Yelp→SQuAD.
order 2: De-En→Yelp →AGNews→SQuAD.
order 2: Yelp →SQuAD →De-En→AGNews.
order 4: SQuAD→AGNews→Yelp →De-En.
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