
Proceedings of the 31st International Conference on Computational Linguistics, pages 11290–11303
January 19–24, 2025. ©2025 Association for Computational Linguistics

11290

Efficient Data Labeling by Hierarchical Crowdsourcing with Large
Language Models

Haodi Zhang1,4, Junyu Yang1, Jinyin Nie1, Peirou Liang1, Kaishun Wu4,
Defu Lian3, Rui Mao1, Yuanfeng Song2*

1Shenzhen University, 2WeBank Co., Ltd, 3University of Science and Technology of China
4The Hong Kong University of Science and Technology (Guangzhou)

Abstract

Large language models (LLMs) have received
lots of attention for their impressive perfor-
mance in in-context dialogues and their po-
tential to revolutionize service industries with
a new business model, Model-as-a-Service
(MaaS). Automated data labeling is a natu-
ral and promising service. However, labeling
data with LLMs faces two main challenges: 1)
the labels from LLMs may contain uncertainty,
and 2) using LLMs for data labeling tasks can
be prohibitively expensive, as the scales of
datasets are usually tremendous. In this paper,
we propose a hierarchical framework named
LMCrowd that leverages multiple LLMs for
efficient data labeling under budget constraints.
The proposed LMCrowd framework first ag-
gregates labels from multiple freely available
LLMs, and then employs a large, paid MaaS
LLM for relabeling selected instances. Fur-
thermore, we formalize the core process as an
optimization problem, aiming to select the opti-
mal set of instances for relabeling by the MaaS
LLM, given the current belief state. Exten-
sive experimental evaluations across various
real-world datasets demonstrate that our frame-
work outperforms human labelers and GPT-4
in terms of both accuracy and efficiency.

1 Introduction

As machine learning models continue to grow in
size and complexity, high-quality data has become
an increasingly important factor for achieving good
performances. However, as the scale of these mod-
els continue to grow at a rapid pace, the availability
of high-quality training data could become a po-
tential bottleneck (Lipton, 2018). This has led to
a growing need for alternative approaches to data
labeling that can keep pace with the demands of
modern machine learning. One commonly-used
method for labeling data is through crowd-based
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annotation (Li et al., 2016), which involves out-
sourcing the task to a large group of human anno-
tators. However, this approach faces several chal-
lenges, including a shortage of qualified annotators
(Sheng et al., 2008), the potential for errors and bi-
ases (Chapman et al., 2020; Kotamraju and Blanco,
2021; Zhang et al., 2023), and the high costs of
managing a large workforce (Mason and Watts,
2009). These limitations have spurred interest in
automated approaches to data labeling, which can
leverage the power of machine learning methods
and tools to provide faster, more accurate results.

With the recent advancements in large language
models (LLMs, e.g., GPT-4 (OpenAI, 2023)), au-
tomated data labeling using LLMs has emerged
as a promising alternative to human annotators.
These LLMs have shown remarkable performance
in various natural language processing (NLP) tasks,
including question answering, sentiment analysis,
and text classification (Brown et al., 2020). Au-
tomated data labeling with LLMs not only saves
time and reduces cost but also ensures scalability in
large datasets. Despite the advantages of leveraging
LLMs to data labeling, two main challenges arise.
Firstly, the labels generated by LLMs may con-
tain noise, commonly referred to as hallucination,
due to inherent errors in the models’ predictions
(Karimi et al., 2021). This could adversely impact
the quality of the labeled data, potentially leading
to incorrect training of downstream NLP models.
Secondly, although using LLMs for data labeling
costs less than hiring human labelers, it can still be
significant, particularly for larger datasets. These
constraints hinder the feasibility of automated la-
beling with LLMs, especially for smaller organiza-
tions or research teams with tight budgets.

To address these challenges, we propose LM-
Crowd, a novel framework that efficiently utilizes
multiple LLMs for automated data labeling under
limited budget constraints. LMCrowd is designed
by the following three observations. First, open-
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source LLMs that can be easily deployed on local
devices, while free of charge, are often not suffi-
ciently powerful or accurate to accomplish high-
quality data annotation tasks compared to their
larger, paid MaaS counterparts like GPT-4. Sec-
ondly, while paid MaaS LLMs offer superior perfor-
mance, their utilization for labeling entire datasets
can be prohibitively expensive. For instance, the
usage rate of ChatGPT (Radford et al., 2019a) ser-
vice is approximately $0.06 per 1K tokens. For a
dataset of the scale similar with QQP (one of the
datasets in GLUE benchmark (Wang et al., 2018)),
it would cost around $9600 to label all the data
instances using this service. If the problem is more
difficult and requires a longer prompt, the costs
would further escalate. Lastly, real-world labeling
queries are often correlated with one another. By
leveraging the correlations among labeling tasks to
avoid sending every single task to LLMs for anno-
tation, LMCrowd accomplishes efficient automated
data annotation while minimizing the number of
calls to costly MaaS LLMs. Specifically, the LM-
Crowd framework first utilizes multiple freely avail-
able LLMs to initialize labeling for unlabeled data
and employs classical crowdsourcing aggregation
algorithms to aggregate the initial label distribu-
tions. Subsequently, a selection-collection-update
process is conducted, utilizing MaaS LLMs to pro-
vide feedback and update labels iteratively until the
budget constraints are met. We formulate the selec-
tion of the set of tasks as an optimization problem,
prove its NP-hardness, and provide an approximate
algorithm that efficiently solves the problem.

To sum up, the main contribution of this paper
is threefold.

• We propose a hierarchical framework that har-
nesses the capabilities of multiple LLMs to
efficiently label data under limited budget con-
straints. This approach synergistically com-
bines the advantages of freely available LLMs,
which can independently annotate the entire
dataset, and paid MaaS LLMs, which can se-
lectively relabel data instances while operat-
ing within a specified budget constraint.

• We establish the core optimization challenge
of identifying an appropriate set of tasks for
the MaaS LLMs given the current information
entropy distribution. We prove that the compu-
tation of the exact optimal solution is NP-hard,
and subsequently propose an approximate al-
gorithm that solves the problem efficiently.

• We perform comprehensive experiment to con-
firm that LMCrowd framework achieves high
labelling quality with up to 80% cost savings
compared to relying solely on MaaS label-
ing, and exponential cost savings compared to
manual labeling efforts.

2 Preliminary: Data Model
We approach a general dataset as a set of discrete
multiple-choice tasks, where each task presents a
question of the form “which label/labels should
be annotated to the data instance?”, given a label
space L. This multiple-choice task can always be
decomposed into several correlated binary queries,
such as “should the instance be labeled as l?” for
each label l in L. For the rest of this paper, we refer
to such a binary labeling task simply as a task and a
dataset as a set of tasks, denoted by T . For instance,
in a sentiment analysis dataset, a task t ∈ T would
present the sentence ‘She loves this story’, which
can be labeled as true or false. Free LLMs can
utilize the task directly as input for labeling, while
MaaS LLMs may require further relabeling.

Similar to existing related works (Cheng et al.,
2008; Lai et al., 2021; Zhang et al., 2018, 2023),
we address the problem of analyzing n labeling
queries by treating each task as a Bernoulli random
variable. The correlations among labeling queries
are captured precisely by their joint distribution,
covering 2n possible truth-value interpretations. In
a deterministic world, these interpretations are mu-
tually exclusive, each representing a potential data
state. Throughout the remainder of this paper, we
refer to these interpretations as profiles of labels.
The probability of a specific profile r, denoted by
P (r), indicates the likelihood that r represents the
true deterministic state of the labels. The set of
all profiles is denoted by R. If a given task t is
considered true in a particular profile r, then we
refer to r as a model of t, which is denoted as r ⊃ t.
Since each profile r in a labeling task set T is an
interpretation that covers all labeling queries in T ,
we can equivalent express r ̸⊃ t as r ⊃ ¬t for any
task t ∈ T . It is noteworthy that different profiles
are mutually exclusive, and the labeling queries in
T may not be independent.

Intuitively, a distribution on the profile spaceR
represents a belief state of the data. Our approach
seeks to leverage model-sourced response to up-
date the belief state and enhance data quality. In
our method, named LMCrowd, we use Shannon’s
Information Entropy, the same mathematical metric
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as in many existing works (Cheng et al., 2008; Lai
et al., 2021; Zhang et al., 2018, 2023), for assessing
the quality of query sets.

Definition 1 (labeled data quality) Given a set of
labeling task T and its corresponding profile space
R, the evaluation of quality of T , represented by
Q(T ) as a utility function, is formulated by the
negative value of Shannon Entropy,

P (r) =
∏
fi∈r

P (fi)

Q(T ) = −H(R) =
∑
r∈R

P (r) logP (r)
(1)

where
∑

r∈R P (r) = 1 and fi represents the case
where the i-th data in r is ground-truth.

The Q value presented above serves as a utility
function for evaluating the quality of a model-
sourced result set.

The information entropy mentioned above serves
as a measure of uncertainty of random variables.
When dealing with a set of unlabeled data instances,
the information entropy tends to be high due to the
uniform distribution of labels, unless additional
information is provided. The aim of our proposal
is to effectively reduce this uncertainty, in other
words, to improve the quality of the dataset, by
leveraging various types of language models.

3 Our Method: LMCrowd

This segment provides a comprehensive presenta-
tion of our proposed framework, LMCrowd, which
comprises three fundamental components: label
aggregator, relabeling task selector and label distri-
bution updater, as illustrated in Figure 1.

3.1 LLMs as a Crowd for Data Annotation

3.1.1 Labeling by LLMs
Labeling tasks are delegated to LLMs and answers
collected are utilized to update the distribution and
enhence the quality of data. Consider a labeling
task set T = {t1, t2, . . . , tn} and a subset T ′ ⊆ T
that is dispatched to a particular LLM m for la-
beling. The crowdsourced results for T ′ are repre-
sented by A(T ′) = {a(t)|t ∈ T ′}, where a(t) can
be either true or false , respectively. For a task
t ∈ T\T ′, no results are obtained from m, as it is
not assigned to label or relabel. In the following,
we call such a subset T ′ sent to LLMs a query set.
The result set A(T ′) is actually a partial profile of
the labeling tasks, consisting of the assignments for
the labeling tasks in T ′. Therefore, we can extend

the modeling relation and denote A(T ′) ⊃ t if the
task t is interpreted as true in the collected answer
A(T ′). However, unlike a profile, a result set does
not constitute a comprehensive mapping across T ..
Thus, A(T ′) ̸⊃ t does not imply A(T ′) ⊃ ¬t. For
instance, consider the following query set and re-
sult set,

T = {t1, . . . , tn}
T ′ = {t1, t2}

A(T ′) = {a(t1) = true, a(t2) = false}
(2)

Obviously, A(T ′) ̸⊃ t3, but A(T ′) ̸⊃ ¬t3, since
t3 can not be derived from the result set A(T ′).
For a result answer A(T ′) and a profile r, their
assignments for those tasks in T ′ could be different.
Definition 2 (consistent set and inconsistent set)
For a profile r and a result answer A(T ′), their
consistent and inconsistent sets are respectively,

cons(r, A(T ′)) = {t | t ∈ T ′ ∧ (r ⊃ t ⇔ A(T ′) ⊃ t)}
incons(r, A(T ′)) = {t | t ∈ T ′ ∧ (r ⊃ t ⇔ A(T ′) ⊃ ¬t)}

(3)

Consider a query set T ′ comprising of k labeling
queries, there are |{true, false}T ′ | = 2k different
result sets, and we denote the space of all possible
result sets as A(T ′).

Definition 3 (result set entropy) Given a set of
tasks T and a query set T ′ ⊆ T , we define the
entropy of the resulting sets H(A(T ′)) is

H(A(T ′)) = −
∑

A(T ′)∈A(T ′)

P (A(T ′)) logP (A(T ′)) (4)

It is worth noting that for the labeling queries
that are not in T ′, the answer set A(T ′) fails
to provide any information about them. There-
fore, their assignments are not included in either
cons(r, A(T ′)) or incons(r, A(T ′)). For each
query t in T ′, the collected label at can be correct
or incorrect. The probability that at aligns with the
ground truth is equivalent with the accuracy rate of
the LLM mt who completes the labeling task t, de-
noted as Prmt . Conversely, the probability that at
is a wrong answer is 1− Prmt . The accuracy rate
Prmt of model mt can be estimated by a validation
set of the data.

P (A(T ′)) =
∑
r∈R

(
P (r) ·

∏
t∈cons(r,A(T ′))

Prmt ·∏
t∈incons(r,A(T ′))

(1− Prmt)
) (5)

As aforementioned, after dispatching the cho-
sen query set T ′, the outcome set for T ′ becomes
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Figure 1: LMCrowd framework utilizes Free LLMs to initialize labeling for unmarked data and employs classical
crowdsourcing aggregation algorithms to aggregate initial label distribution on the left. On the right, a selection-
collection-update cycle is implemented, utilizing MaaS LLMs to inspect tasks based on our proposed algorithm,
provide feedback, and update labels until the budget constrains are met.

a stochastic variable on {true, false}T ′
. The ex-

pected quality of the data can only be calculated
before crowdsourcing the result set from the LLMs.
Definition 4 (expected quality) Given a data set
T and a query set T ′, the anticipated data quality
after the MaaS LLM relabels T ′ is

EQ(T |T ′) =
∑

A(T ′)∈A(T ′)

P (A(T ′))Q(T |A(T ′)) (6)

where the Q(T |A(T ′)) is the conditional data qual-
ity following receipt of a specific result set A(T ′).
We will introduce the computation of Q(T |A(T ′))
in the next section.

We exploit the utility of free LLMs as crowd
annotators to independently label the dataset. The
label aggregator then merges these labels using a
certain aggregation strategy. Despite the limitations
of free LLMs’ reasoning power, the aggregated re-
sult still contains significant noise. Hence, after
aggregation, we utilize MaaS LLMs to verify se-
lected labeled data, boosting data quality further.

3.2 Relabeling by MaaS LLMs
The use of MaaS LLMs entails a recurrent sequence
of relabeling task selection, answer collection and
label distribution update, which we shall hence-
forth refer to as a round (Figure 1). Because the
relabeling task selection requires to calculate the
expected data quality enhancement, we introduce
the label distribution update first.

3.2.1 Label Distribution Update
The relabeling queries and crowdsourced answers
are still inherently uncertain, and merging the la-
bels from MaaS LLMs with the profiles can be
interpreted as as conditioning the posterior profile
probability based on the relabeling results. In this
scenario, Bayesian theorem can be effectively ap-
plied. It is worth noting that even when r and A(T ′)

agree on all the labeling queries and T ′ = T , i.e.,
the answers collected from the crowd are identical
to the profile r, P (r) and P (A(T ′)) may still dif-
fer. Suppose that the relabeling results for a query
set T ′ have already collected from MaaS LLMs,
denoted as A(T ′), they are then used to update the
label distribution, namely the probability of each
profile r ∈ R from P (r) to P (r|A(T ′)),

P (r|A(T ′)) =
P (r) · P (A(T ′)|r)

P (A(T ′))
(7)

where the probability P (A(T ′)|r)

P (A(T ′)|r) =
∏

t∈cons(r,A(T ′))

Prmt ·∏
t∈incons(r,A(T ′))

(1− Prmt)
(8)

The data will update based on the relabeling results
from LLMs.

Lemma 1 (label distribution update) For a rela-
beling task set T ′, the collected result set from
MaaS LLM m is A(T ′), the accuracy rate of m
is Prm, the label profile distribution is update by
Equation 9.

It is worth noting that LMCrowd framework
supports using multiple MaaS LLMs, and the se-
lected relabeling tasks can be distributed to differ-
ent MaaS instances. If only one MaaS LLM m is
used for relabeling, the accuracy rate Prmt = Prm
for each task t ∈ T .

3.2.2 Optimal Task Selection for MaaS
The objective of the relabeling task selection is as
follows.

Definition 5 (optimal relabeling task selection)
Given a task set T , along with possible profilesR
that possess a joint distribution of probability and
a LLM with diverse private accuracy Prm, our
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P (r|A(T ′)) =
P (r) · P (A(T ′)|o)

P (A(T ′))
=

P (r) ·
∏

t∈cons(r,A(T ′))
Prmt ·

∏
t∈incons(r,A(T ′))

(1− Prmt)∑
r′∈R

(
P (r′) ·

∏
t∈cons(r′,A(T ′))

Prmt ·
∏

t∈incons(r′,A(T ′))
(1− Prmt)

) (9)

objective is to optimize the expected data quality
EQ(T |T ′) by choosing a size-k query set (T ′)∗ to
pose to the LLMs,

(T ′)∗ = argmax
T ′⊆T,|T ′|=k

EQ(T |T ′) (10)

Before discussing the task selection strategies,
we would like to define the quality improvement
after we get answers from LLMs. We denote the
expected quality improvement as ∆EQ(T |T ′) =
EQ(T |A(T ′))−Q(T ). Now, we formally present
the core theoretical outcome of this study.

Theorem 1 The optimal selection of the relabeling
tasks for MaaS LLM is to select the task set that
maximizes the result set space entropy value,

(T ′)∗ = argmax
T ′⊆T,|T ′|=k

∆EQ(T |T ′) = argmax
T ′⊆T,|T ′|=k

H(A(T ′))

(11)

Notice that (T ′)∗ is not necessarily the set of top-
k queries with the highest entropy values, namely,
the following query set:

argmax
T ′⊆T,|T ′|=k

H(T ′) = −
∑
t∈T ′

P (t) logP (t)

is not necessarily equivalent with (T ′)∗. The op-
timization problem outlined above, when solved
using Algorithm 1, also referred to as Exact, is
NP-hard.

Theorem 2 Selecting the optimal query set of size
k from a data set of size n is NP-hard.

The proof is available in the Appendix A.1.

3.2.3 Approximation
Owing to the NP-hard complexity of the selection,
the optimal solution cannot be obtained within poly-
nomial time unless NP=P. Nevertheless, it has
been demonstrated that conditional entropy is a
submodular function (Krause and Guestrin, 2005).
The challenge of selecting a k-element subset max-
imizing a monotone submodular function can be
estimated with a performance bound of (1− 1/e)
through the iterative chosen of the variable with the
highest uncertainty relative to the already selected
elements (Nemhauser et al., 1978).

Theorem 3 By posing uncertain labeling queries,
the quality of the data is expected to improve mono-
tonically.

The proof is available in the Appendix A.2. In gen-
eral, we introduce an iterative approach for select-
ing the k tasks, outlined in Algorithm 2, referred
to as the approximation algorithm (Approx. for
short), which produces a (1− 1

e )-approximate so-
lution. The local quality improvement of adding t
to the query set T ′ is represented as

gT
′
(t) = H(A(T ′ ∪ {t}))−H(A(T ′)) (12)

Hence, the selection of the relabeling task set
can be accomplished by incrementally select the
local optimal relabel tasks,

t∗ = argmax
t∈T\T ′

gT
′
(t) (13)

until |T ′| = k. In general, we propose three dif-
ferent task-selection algorithms in Task Selector:
Exact, Approx. and Random. More details about
the algorithm are available in the Appendix A.3.

4 Experimental Setup

4.1 Language Models
We select basic, general-purpose LLMs instead of
those fine-tuned for specific tasks, and choose bet-
ter open-source LLMs which are easy to deploy to
ensure the accuracy of the initial markup model.
Each model’s accuracy can be measured using a
test subset with ground truths. We use four open
source universal LLMs: LlaMa2-7B, FLAN-T5-
base, Zephyr-7B, and Qwen-7B from Hugging
Face1 and the best paid MaaS LLM at present Chat-
GPT (GPT-4 API) from OpenAI2. For each LLM,
we used a 4-shot prompt to leverage the in-context
learning capabilities of the model.

4.2 Label Agrregator
Our LMCrowd method is designed to be versa-
tile enough to incorporate any “machine-only” fu-
sion model that produces probabilistic results. To
demonstrate its flexibility, we test it with eight dif-
ferent label aggregation methods: BWA (Li et al.,
2019a), CRH (Li et al., 2014), DS (Dawid and
Skene, 1979), EBCC (Li et al., 2019b), GLAD
(Whitehill et al., 2009), BCC (Kim and Ghahra-
mani, 2012), MV (Kittur et al., 2008), and ZC

1https://huggingface.co/
2https://platform.openai.com/

https://huggingface.co/
https://platform.openai.com/
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(Demartini et al., 2012). Further details about these
baselines can be found in the Appendix A.5. In LM-
Crowd, the results collected from the free LLMs are
merged with MV (Kittur et al., 2008) aggregation
algorithm. Similar to the previous experiments, we
employ the approximate selection algorithm and
maintain a relabeled task set size of 2.

4.3 Baselines
We compare LMCrowd with two other data la-
beling strategies: manual labeling only (Human),
GPT-4 labeling only (GPT-4). For manual anno-
tation, in order to simulate a realistic scenario, we
follow the charging standard of Google Cloud3 and
hire 3 university students and 6 graduate students
to annotate the dataset.

4.4 Dataset
We perform a series of experiments on three
datasets to assess the performance of our LMCrowd
method. RTE (Wang et al., 2018) is a binary dataset
of text implication tasks: entailment or not entail-
ment. BoolQ (Clark et al., 2019) is a dataset for
reading comprehension consisting of questions that
require a yes or no answer. We sample up 1.5K
cases from BoolQ for labeling. In COPA (Gordon
et al., 2011), each question consists of one premise
and two alternatives, where the task is to choose
the alternative that is more causally related to the
premise. Table 2 in Appendix A.4 shows the perfor-
mance of different LLMs on these three datasets.

4.5 Tariff Analysis
We conducted a comparison of the cost breakdown
between using MaaS GPT-4 and crowdsourced la-
bels. The comparison details are presented in Ta-
ble 1. Since we selected LLMs with the desired
accuracy, we prioritized ease of deployment, so we
disregarded the overhead of LLM selection. Addi-
tionally, to facilitate the comparison, we ignored
the selection cost of GPT-4 prompts and the se-
lection cost of crowdsourcing workers, and only
considered the markup cost on the API or crowd-
sourcing platform. In the all subsequent experi-
ment, we followed the same procedure. Tokens are
the average number of tokens per piece of data in
the data set. For manual labeling, each BoolQ ques-
tion costs an average of $0.303, each RTE question
costs an average of $0.111 and each COPA ques-
tion costs an average of $0.110. For GPT-4 using

3https://cloud.google.com/ai-platform/
data-labeling/pricing?hl=en

Table 1: Tariff($) comparison of per GPT-4 and Crowd-
worker labeling

Dataset Tokens Human($) GPT-4 ($)
BoolQ 117.4 0.303 1.767e− 2
RTE 43.0 0.111 0.651e− 2
COPA 41.6 0.110 0.63e− 2

4-shot prompt, the cost is tokens× 6× 10−5 × 5,
where 6×10−5 is the cost GPT-4 charged per token
and 5 is the 4-shot.

5 Experimental Results

5.1 Primary Performance Analysis
Figure 2 presents an analysis of accuracy across
various labeling strategies as budget increases. Our
experimental results represent the maximum ac-
curacy achieved using a combination of different
labeling aggregator, task selector, and size of the
relabeled task set. Specifically, for our main experi-
ment, we employ the Approx. algorithm and adopt
the MV (Kittur et al., 2008) aggregation strategy,
while setting the size of the relabeled task set to
2. From the figure, it is evident that LMCrowd
labeling outperforms single-source labeling with
GPT-4 under a limited budget, and achieves signif-
icantly greater accuracy than human labeling. Of
note, when aggregating the labeling results of four
open-source models, LMCrowd yields an impres-
sive peak accuracy of 87% on the COPA dataset.
Additionally, on the remaining two datasets, LM-
Crowd attains accuracies exceeding 70%. As the
budget allows for full coverage of GPT-4 costs,
LMCrowd approaches and even exceeds GPT-4’s
fully-labeled accuracy, reaching 0.96 versus 0.95
on COPA in Figure 2(a). Importantly, LMCrowd’s
use of large models for labeling incurs significantly
less expense than manual labeling while maintain-
ing superior accuracy, resulting in a notable re-
duction in costs. Overall, LMCrowd delivers a
substantial savings of up to 80% relative to fully
GPT-4 labeling, and an exponential cost-savings
compared to Human labeling.

5.2 Hyperparameter Study
In accordance with our theoretical framework, it is
imperative to carefully select the number of tasks,
denoted as k, for LLMs to check. The selection of
k requires thoughtful consideration, as highlighted
in Figure 3. Larger values of k result in more check-
ing tasks in each iteration, resulting in reduced in-
teraction costs with LLMs under the same budget.
As the budget increases, the rate of increase in ac-
curacy decreases. When k is exceptionally small,

https://cloud.google.com/ai-platform/data-labeling/pricing?hl=en
https://cloud.google.com/ai-platform/data-labeling/pricing?hl=en
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Figure 2: Accuracy Comparison with Baselines
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Figure 3: Hyperparameter study on different relabeling task set sizes

the improvement brought by each checking task
in each iteration becomes imperceptible. Once the
budget allows for full coverage of GPT-4 cost, the
difference in accuracy between different k values
is at most 2%.

5.3 Ablation Study

Different Aggregators As shown in Figure 2, we
utilize the Approx. selection algorithm and main-
tain a task set size of 2, similar to previous exper-
iments. Figure 4 shows that the MV aggregation
method consistently outperforms the other seven
alternatives across all three datasets, with a stable
upward trend until reaching a plateau at full GPT-4
budget allocation. As the budget increases, the per-
formance gap narrows, indicating overall improve-
ment. However, the CRH method underperforms
in our framework.
Different Selection Methods Besides, we demon-
strate a comparison of 3 task-selection algorithms
in Relabeling Task Selector. To evaluate the perfor-
mance of these algorithms, we present the results
in Figure 5 which illustrate the changes in accu-
racy for different values of k (2, 3, and 4) in COPA
dataset. Since according to Section 3.2.3, when k
is 1, Approx. and Exact choose the same task. Our
results show that when k is 2, 3, or 4, the Exact
and Approx. lines in the graph surpass Random,
with Approx. approaching Exact, especially when
k is 4. Therefore, when larger values of k make
brute-force selection of tasks an NP-hard problem,

we can opt for the Approx. method to approxi-
mately optimize the solution. Overall, our research
provides meaningful perspectives into the perfor-
mance of different task-selection algorithms and
their suitability for different values of k.

6 Related Work

LLMs have revolutionized NLP and exhibit re-
markable emergent capabilities without explicit
programming (Wei et al., 2022). Furthermore,
LLMs are capable of learning multiple NLP tasks
simultaneously, achieving excellent performance
on various tasks (Radford et al., 2019b). Given
their impressive abilities, LLMs can be leveraged
as effective crowdworkers for data labeling tasks,
improving labeling quality within a limited budget
through our proposed methodology.

Crowdsourcing can enhance data labeling qual-
ity through two primary methods. The first ap-
proach involves assigning tasks to multiple work-
ers and integrating and deducing the correct re-
sult, but it is challenging due to the removal of
false or irrelevant information from numerous re-
sponses. Label reasoning and incentive mecha-
nisms (MacCartney et al., 2008; Gururangan et al.,
2018) have been studied to address this issue. Re-
sult aggregation algorithms such as majority voting
(Nitzan and Paroush, 1982), weighted voting (Tao
et al., 2019), statistical knowledge like Naive Bayes
(Zhang et al., 2023), and result collaboration via
secondary crowdsourcing are typically used. The
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Figure 4: Ablation Study on different label aggregation methods
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Figure 5: Ablation Study on different relabeling task selectors in COPA

second approach involves cleaning the data with
the highest noise rate based on the data noise rate
to improve overall dataset quality (Ambati, 2012).
The key challenge is to quickly access the most un-
certain instance labels and verify them with experts.
LMCrowd, our proposed approach, integrates both
methods by assigning tasks to different LLMs as
regular workers and combining and deducing their
results, with LLMs used as experts for verification.

Selection strategies, such as active learning, help
minimize the labeled data needed for machine
learning tasks. For example, in (Settles and Craven,
2008), the Query by Committee (QBC) method
identifies the most informative points, while a
similarity-based method finds the most representa-
tive ones. Additionally, (Fang et al., 2014) intro-
duces an active learning approach in crowdsourc-
ing that selects the most informative examples and
queries their labels from experts. We aggregate
responses from multiple LLMs using label aggre-
gation algorithms, calculate entropy from the initial
labeled dataset’s predicted probability distribution,
and select the sample with the highest entropy for
labeling, thereby reducing costs. There are studies
focused on accurately labeling datasets while reduc-
ing costs. With the growing adoption of machine
learning as a service (MLaaS) APIs, efficiently uti-
lizing these services is crucial. FrugalMCT (Chen
et al., 2022) optimally selects combinations of APIs
based on data and budget constraints to achieve
accuracy and cost trade-offs. However, the ser-

vice industry is transitioning to Model-as-a-Service
(MaaS). Our goal is to achieve accuracy and cost
trade-offs by leveraging open-source LLMs while
minimizing the use of paid APIs. In (Wang et al.,
2021), GPT-3 serves as a data annotator, with log-
its from the API used as confidence scores, se-
lecting the worst for manual labeling. Labeling
costs with paid or partially automated models can
be extremely high for supervised training datasets.
We propose LMCrowd, which uses open-source
models to initially label all data and selects items
with the greatest impact for further verification by
MaaS LLMs. LMCrowd can continuously label
data faster than human clerks and at a much lower
cost than using only MaaS LLMs, while maintain-
ing accuracy.

7 Conclusion

We present a novel framework for efficient data
labeling with LLMs under limited resources. We
address the challenges of noisy labels and high
costs associated with the task. By combining mul-
tiple free LLMs and MaaS LLMs, LMCrowds
achieves improved labeling accuracy while min-
imizing expenses. Experimental evaluations across
real-world datasets demonstrate the superiority of
our approach over strong baselines. Our research
pioneers the optimization of LLMs’ usage with
resource limitations, providing valuable insights
into improving the quality and cost-effectiveness
of data labeling processes.
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Limitations

We present a novel approach to hierarchical crowd-
sourcing and efficient data annotation leveraging
a powerful large language model (LLM) called
LMCrowd. This methodology ensures precise an-
notation within resource constraints. By comparing
direct manual tagging with direct GPT-4 tagging,
we have demonstrated that LMCrowd consistently
outperforms baseline methods when budget consid-
erations are prioritized. However, our research is
limited to three foundational NLP datasets—RTE,
BoolQ, and COPA, and a restricted range of generic
LLMs. We acknowledge the need to expand our
investigation to include a wider range of datasets
and LLMs across diverse domains. Future endeav-
ors can focus on evaluating the adaptability of our
approach in various fields and exploring alternative
large-scale LLMs architectures. Such endeavors
promise to enhance the scope and effectiveness of
automated data labeling methodologies.
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A Appendix

A.1 Proof of Theorem 2
Proof A.1 Selecting the optimal query set to enhance the desired query quality constitutes a pivotal
optimization challenge. One approach involves exhaustively identifying all potential task sets, subsequently
computing the spatial entropy of each resulting set, and ultimately selecting the task set with the highest
entropy. Evidently, the time complexity of this method is exponential due to the necessity of considering all
feasible subsets, making the problem NP-hard. To formally demonstrate this, the problem can be reduced
to a recognized NP-hard problem, such as the set coverage problem. This problem involves identifying a
subset of S from a set U of M elements and a set S of N subsets. The goal is to include all elements of U
with the smallest possible size.To reduce this problem to the set covering problem, each data point in the
dataset is treated as an element in set U. All data points in the dataset are then considered as a large set S,
where each subset represents a potential subset. By calculating the entropy of the result set space for each
subset, where each data point in the subset is treated as an element in set U, the entropy of the result set
space for the subset represents its size. The ultimate goal is to identify a subset that maximizes the entropy
of the result set space, which is equivalent to finding a subset in the set coverage problem with minimal
size. Given that the set covering problem is NP-hard, determining the optimal set of queries as stated
in Theorem 2 is also NP-hard. This inferential approach fosters a deeper comprehension to address the
optimization problem and provides guidance for subsequent algorithmic design.

A.2 Proof of Theorem 3
Proof A.2 Given a task set T and a query t ̸∈ T such that 0 < P (t|T ) < 1 the quality gain gT

′
(t) =

H(AST ′
) − H(AST ) = H(AT ′

mt
|T ), where T ′ = T ∪ t. As each individual task is approached and

addressed independently, we have H(AT ′
mt
|T ) = H(AT ′

mt
). Since f ̸∈ T and the query t is an uncertain

task, i.e. 0 < P (t|T ) < 1, we have,

0 <P (AT ′
mt

= True)

= Prmt · P (t|T ) + (1− Prmt) · P (¬tj |T ) < 1.
(14)

It is noteworthy that H(AT ′
mt

) attains a positive value. Consequently, posing a query t will lead to an
enhanced quality of the data.
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A.3 Selection Methods
We propose three distinct task-selection algorithms for the relabeling task selector utilized in LMCrowd.

Algorithm 1 Exact Relabeling-Task Selection

Input: Task set T , k and budget B
Output: Task set T ′

1: Initialize T ′ ← ∅
2: Initialize max← 0
3: for each k elements subset T ∗ of T do
4: Set gT

∗
(t)← H(A(T ∗))−H(A(T ))

5: if gT ∗
(t) > max then

6: Set max← gT
∗
(t)

7: Set T ′ ← T ∗

8: end if
9: end for

10: return T ′

Algorithm 2 Approx. Relabeling-Task Selection

Input: Task set T , k and budget B
Output: Task set T ′

1: Initialize T ′ ← ∅
2: repeat
3: select t = argmax

t∈T
H(A(T ′ ∪ {t}))−H(A(T ′))

4: if H(A(T ′ ∪ {t}))−H(A(T ′)) ≤ 0 then
5: break
6: else
7: Set T ′ ← T ′ ∪ {t}
8: Set T ← T \ {t}
9: end if

10: until |T ′| = min(k,B)
11: return T ′

Exact For Algorithm 1, the selection of the optimal query set containing the top-k queries with the
highest entropy values involves a comprehensive examination of all possible subsets to determine it.

Approx. To tackle the inherent NP-hardness of Exact, we employ the algorithm as an approximate
solution. As outlined in Algorithm 2, our approach involves selecting the task that can yield the maximum
increase in entropy value at each step, and adding it to the subset T ′ until either T ′ contains k elements or
the budget has been fully utilized.

Random In each new task of the aggregate, randomly select k queries to check.
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A.4 Details of the LLMs Used in Our Method
• LlaMa2-7B4: LlaMa2-7B, released by Meta, is a language model with 7 million parameters. Trained

on extensive text datasets, LlaMa2-7B possesses robust natural language processing capabilities. It is
versatile and can be utilized across various tasks, such as question answering, text summarization,
and text generation.

• FLAN-T5-base5: This language model, developed by Google, operates on the T5 architecture and
comes pre-trained. Trained on a substantial corpus of text data, it possesses versatile capabilities
suitable for numerous NLP tasks. These tasks encompass, but are not confined to, question answering,
text summarization, and text generation.

• Zephyr-7B6: This formidable language model boasts 700 million parameters and comprises a
complex network of deep neural networks. Trained extensively on vast datasets, it exhibits proficiency
in comprehending, generating, and reasoning with natural language. Its versatility makes it apt for
tackling a myriad of text processing tasks.

• Qwen-7B7: This language model, equipped with up to 700 million parameters, is designed to deliver
swift and effective natural language processing solutions. It undergoes pre-training on extensive
corpora and further refinement through fine-tuning across various language understanding tasks.
With its broad spectrum of capabilities, including text generation, language comprehension, and
sentiment analysis, it holds significant potential for diverse applications.

Table 2: LLM Performance (Accurary)

LLMs BoolQ ($) COPA($) RTE ($)
Zephyr-7B 0.7993 0.7775 0.7920
Qwen-7B 0.8120 0.7775 0.7277
LlaMa2-7B 0.8193 0.6725 0.7144
FLAN-T5-base 0.7280 0.7800 0.8229
GPT-3.5 0.787 0.8458 0.8462
GPT-4 0.892 0.9525 0.9317

4https://huggingface.co/meta-llama/Llama-2-7b
5https://huggingface.co/google/flan-t5-base
6https://huggingface.co/HuggingFaceH4/zephyr-7b-beta
7https://huggingface.co/spaces/Qwen/Qwen-7B-Chat-Demo
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A.5 Details of the Aggregation Methods
Our LMCrowd method is engineered with flexibility in mind, capable of seamlessly integrating any
"machine-only" fusion model generating probabilistic outcomes. To showcase its adaptability, we subject
it to scrutiny with eight distinct label aggregation methods.

• EBCC (Expectation-Based Crowd Counting) (Li et al., 2019b): EBCC addresses the counting
problem by considering the relationships among participants and using the expectation maximization
algorithm to derive results. While effective, it requires prior knowledge and can be computationally
intensive due to the iterative nature of expectation maximization.

• BCC (Bayesian Crowd Counting) (Kim and Ghahramani, 2012): BCC also targets counting problems
and employs Bayesian inference to estimate worker abilities and answer distributions, using these
estimates to deduce counting results. The computational cost can vary, depending on the complexity
of the Bayesian model used.

• BWA (Bayesian Worker Aggregation) (Li et al., 2019a): BWA utilizes Bayesian inference to estimate
participant abilities and answer distributions, which are then used for answer aggregation. Its
computational cost is moderate, as it relies on inference techniques that can scale with the number of
participants.

• CRH (Crowd-based Relational Hierarchical mode) (Li et al., 2014): CRH focuses on relational data
and uses participant relationships to deduce answers through a hierarchical model. While it can
provide nuanced results, the hierarchical structure may lead to higher computational costs compared
to simpler models.

• GLAD (Generative model for Labeling Aggregation with Diagnostics) (Whitehill et al., 2009):
GLAD is based on participant ability and answer accuracy, employing a generative model to estimate
both. This method can be computationally demanding due to the need for complex estimations.

• ZC (Demartini et al., 2012): This method utilizes deep learning techniques to integrate answer
aggregation and participant ability prediction to form an end-to-end system. ZenCrowd employs
a neural network-based model that automatically learns the abilities of the participants and the
distribution of the answers, and aggregates the answers. While powerful, the use of neural networks
can result in significant computational costs, especially during training.

• DS (Dawid-Skene) (Dawid and Skene, 1979): DS derives answers by considering individual abilities
and biases. It first predicts these parameters and then computes a weighted average of answers. The
computational cost is generally lower than that of GLAD, but it can still be significant due to the
initial prediction phase.

• MV (Majority Voting) (Kittur et al., 2008): MV operates on the principle of majority voting, where
all participant answers are counted, and the most frequent answer is taken as the final result. This
method is computationally inexpensive, making it a popular choice for many applications.
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