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Abstract

Estimating the difficulty of multiple-choice
questions would be great help for educators
who must spend substantial time creating and
piloting stimuli for their tests, and for learners
who want to practice. Supervised approaches to
difficulty estimation have yielded to date mixed
results. In this contribution we leverage an as-
pect of generative large models which might
be seen as a weakness when answering ques-
tions, namely their uncertainty. Specifically,
we exploit model uncertainty towards explor-
ing correlations between two different metrics
of uncertainty, and the actual student response
distribution. While we observe some present
but weak correlations, we also discover that
the models’ behaviour is different in the case
of correct vs wrong answers, and that correla-
tions differ substantially according to the dif-
ferent question types which are included in our
fine-grained, previously unused dataset of 451
questions from a Biopsychology course. In dis-
cussing our findings, we also suggest potential
avenues to further leverage model uncertainty
as an additional proxy for item difficulty.

1 Introduction

Designing high-quality assessment methods, such
as multiple-choice questions (MCQs), is both time-
consuming and expensive, especially when field-
testing is involved. This proves to be challenging
not only due to the creation of the examination ma-
terial, but also to estimating item difficulty. While
it might be sensible for an exam to contain an ap-
propriate balance of MCQs of low/middle/high dif-
ficulty, estimating such difficulty (measured by the
proportion of respondents choosing the correct an-
swer) is a complex task.

Traditionally, difficulty is estimated using expert
intuitions in the creation of the stimuli, alongside
pilot tests involving human subjects. Both aspects
are rather time and energy consuming, so it is not
surprising that especially with the massive recent

Figure 1: Exploring the potential of model uncertainty
as a proxy for student selection rate in Multiple-Choice
Questions. Model uncertainty is operationalised using
1st Token Probability and Choice Order Sensitivity.

advances in automatic language processing, there
have been multiple efforts to address this task au-
tomatically (Xue et al., 2020; Ni et al., 2021; Ro-
goz and Ionescu, 2024). As evidence of this, the
shared task organised within the latest edition of
the Building Educational Applications with Natu-
ral Language Processing workshop (Yaneva et al.,
2024) revolved specifically around MCQ difficulty
estimation, and attracted the participation of more
than fifteen teams.

More in general, MCQs are all but unexplored in
the modern language technology landscape. One
of the main areas in which they have gathered at-
tention is that of the evaluation of various aspects
of Large Language Models (LLMs): MCQ datasets
are used to assess various abilities of LLMs related
to facts, knowledge, and factuality (Srivastava et al.,
2023; Liu et al., 2023; Lin et al., 2022, e.g.,) for ex-
ample, or reasoning strategies (Wang et al., 2022).
In addition to mixed results in terms of accuracy, re-
cent work has shown that LLMs answers to MCQs
are particularly susceptible to the order in which
the options are presented, with the first option often
being favoured significantly (Wang et al., 2023),
and to the prompt’s formulation (Singhal et al.,
2023), so that the effectiveness of using MCQs for
evaluating LLMs is under question (Li et al., 2024).

We do bring such observations into the present
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work, but rather than looking at MCQs as a tool to
evaluate the abilities of LLMs, we look at the fea-
sibility of using LLMs as a tool to help with MCQ
difficulty estimation. To this end, we take a novel
angle compared to previous difficulty estimation
studies where models are trained to predict item
difficulty (Xue et al., 2020; Ni et al., 2021; Rogoz
and Ionescu, 2024), and instead leverage model
uncertainty. Specifically, we test whether and how
different uncertainty metrics, and different LLMs,
can be exploited towards the prediction of MCQs’
difficulty. In practice, we opt for a setting where
we can also unpack the problem from a qualita-
tive viewpoint of the questions themselves. This
translates into choosing a smaller but fine-grained
dataset of manually crafted MCQs which has not
been published before (hence LLMs have not been
exposed to this dataset in training), and which is
equipped with aggregated student choices. This
allows us to run a more in-depth analysis of how
model choices correlate with student choices across
the subtypes of questions included in the dataset.

Our results suggest that model uncertainty can
serve as proxy for MCQ difficulty to some extent,
and that the type of MCQ question, and whether it
is answered correctly or not, are relevant factors.

Our Contribution In contrast to previous work,
we explore a fundamentally different approach to
MCQ item difficulty estimation. Specifically, we
explore whether model uncertainty signals show
correlation with student performance, with a spe-
cial focus on choice order sensitivity, a model un-
certainty metric unique to MCQs. Rather than
testing LLMs’ capabilities using very large MCQ
datasets as monolithic collections, we study stu-
dents’ and LLMs’ behaviours at a finer-grained
level, finding different degrees of correlations ac-
cording to different aspects of the questions. View-
ing LLMs as "simulated classroom environments"
as we suggest in this work, paired with advance-
ments in model interpretability metrics, contributes
to devising novel approaches to the use of language
technology for educational applications.1

2 Related Work

Our work is positioned at the intersection of two re-
search areas concerned with MCQs. The first is fo-
cused on the task of MCQ item difficulty estimation

1All code is publicly available:
https://github.com/LeonidasZotos/
Uncertainty-as-Proxy-for-Difficulty.

using computational methods, the second focuses
on understanding how LLMs answer MCQs.

2.1 Item Difficulty Estimation

Previous approaches to MCQ item difficulty estima-
tion have often focused on the training of models to
complete the task. Overall, these approaches have
seen limited success, showcasing the challenging
nature of the task, as it has also been observed
in the recent Building Educational Applications
2024 Shared Task (Yaneva et al., 2024). Here, the
difficulty estimation task was cast as a regression
problem, and the best team out of the seventeen
that participated in the shared task performed only
marginally better than a simple baseline. In con-
trast to the present work, the shared task focused
on highly homogeneous data which did not include
student selection rates for all choices, but rather
only for the correct answer.

A common approach to predicting item difficulty
(and also response time) is using supervision, ei-
ther training a model from scratch or fine-tuning a
pre-trained model. Xue et al. (2020), attempt to pre-
dict item difficulty and response time by training
an ELMo model (Peters et al., 2018), leveraging
18, 000 MCQs from a high-stakes medical exam
database. On the same dataset, Yaneva et al. (2021)
used unsupervised clustering techniques to observe
that nuanced features, such as the number of am-
biguous medical terms, helped explain response
process complexity beyond superficial item charac-
teristics like word count.2

Relying on a large dataset and a variety of
features, "DeepQR" is a supervised model that
predicts the quality of MCQs based on human-
provided quality ratings (Ni et al., 2021). To
strengthen the performance of the system, the au-
thors supplement the MCQ with additional features
by employing an automatic extraction of explicitly-
defined features (e.g., readability, length of com-
ponents) and semantic features. While performing
better than simpler models the authors compare
DeepQR to, this system relies on possibly less eco-
logically labelled data: judgements on item diffi-
culty are collected by explicitly asking participants
to provide a difficulty rating; in the present work
we instead derive difficulty from the observed dis-

2At time of writing, the proceedings of the BEA shared
task on item difficulty estimation are not yet available, so that
we do not know specifically which approaches were tested;
it is however known that simple baselines were overall only
marginally beaten (Yaneva et al., 2024).

https://github.com/LeonidasZotos/Uncertainty-as-Proxy-for-Difficulty
https://github.com/LeonidasZotos/Uncertainty-as-Proxy-for-Difficulty
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tribution of answers to the questions.
Most recently, Raina and Gales (2024) have

adapted reading comprehension systems for diffi-
culty ranking of MCQs. By comparing this strategy
to zero-shot prompting, the authors conclude that
the latter is superior in assessing item difficulty. Al-
though their work bears some resemblance with our
study, we shift the focus towards factual knowledge
questions, instead of reading comprehension.

Lastly, a study by Loginova et al. (2021) is per-
haps most similar to our research. The authors
explore using model certainty as a proxy for dif-
ficulty. However, their work involves presenting
questions in pairs, with the task of selecting the
more difficult one. Additionally, their focus is on
language comprehension, which differs from our
emphasis on factual knowledge assessment. Fur-
thermore, while their focus is on Encoder-Only
models, ours is on Decoder-Only models, which in-
corporate greater amounts of factual knowledge as
a byproduct of their language modeling objective
(Zhao et al., 2023).

The present work fundamentally differs from
these previous studies by exploring the usefulness
of model certainty for item difficulty estimation.

2.2 LLM Bias in the MCQ Task
In recent literature, Large Language Models under-
taking the MCQ task have consistently been found
to have a bias towards specific options through a
combination of positional, e.g., preferring the 3rd
choice (Pezeshkpour and Hruschka, 2023) or token-
preferential effects, e.g., bias towards generating
"A" (Zheng et al., 2024). At the same time, it has
also been observed that this effect correlates with
model correctness: for items where the choice or-
der has little effect, models are more likely to be
correct (Pezeshkpour and Hruschka, 2023). This is
is line with the work of Plaut et al. (2024) which
finds that lower maximum softmax probabilities
correlate with incorrect answers to MCQs.

Two main methods have been used to mitigate
the choice order effect. The first strategy, named
"PriDe", is a method that debiases a model’s predic-
tions by estimating and correcting for the model’s
prior bias towards certain option IDs (e.g., ID of
"A"); this is done by permuting option contents
on a subset of test samples and then applying the
estimated prior to debias the remaining samples
(Zheng et al., 2024). The second strategy, proposed
by Wang et al. (2024) suggests that this effect can
be simply mitigated by focusing on the textual out-

put, rather than the 1st token probabilities. While
both of these strategies highlight — and focus on re-
ducing — the choice order effect, we leverage this
finding and explore if the magnitude of this effect
can be useful in determining the item’s difficulty.

Lastly, some recent research has investigated
the extent to which LLMs reflect human response
biases in their responses to opinion surveys with
different perturbations such as choice order, acqui-
escence, and opinion floating (Tjuatja et al., 2024).
Findings show that LLMs are sensitive to perturba-
tions that do not however elicit significant changes
in humans, and are overall not great proxies for
human behaviour. In our work we explore their
proxy potential when dealing with factual MCQs
with single correct answers rather than subjective
aspects.

3 Methodology

Figure 1 captures the central design of our study:
we explore if model uncertainty can serve as a
proxy for MCQ difficulty. Difficulty is obtained
through student response distribution; Section 3.1
describes the dataset we use, focusing on stu-
dent performance. Model uncertainty is obtained
through the different metrics that we describe in
Section 3.2. In Section 3.3 we explain our require-
ments and choices regarding models and prompting
used in our experiments.

3.1 Student Performance Dataset

For this study, a set of MCQs and student perfor-
mance data, such as the proportion of students se-
lecting each choice, is required. Unfortunately,
such a dataset is not publicly available. Therefore,
this study utilises data from the "Biopsychology"
course at the Social Sciences Faculty of the Uni-
versity of Groningen, covering content from the
classic textbook "Biological Psychology" by Kalat
(2016).

The dataset comprises 451 MCQs. For each
question, there are three possible answer choices,
and the dataset records the fraction of students
who selected each of those three options. The data
was collected from eight examinations with an av-
erage of 268 examinees (Standard Deviation of
185). Moreover, the questions were designed by
the course instructor and have not been previously
published, minimising the risk of data contamina-
tion.

An important aspect of this dataset is its vari-
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ety in terms of formulation types, as shown in Ta-
ble 1. The questions follow four main formulations:
"Fill the gap" (14.9%), "Fill two gaps" (3.1%),
"Wh-question" (50.3%), and "Sentence Comple-
tion" (31.7%). For brevity, we will refer to these as
question types 1 through 4 respectively.

In terms of performance, on average, 70.3% of
the students selected the correct answer. Having
ordered the false choices, henceforth distractors,
by the proportion of students selecting each, dis-
tractor 2 and 3 were selected by 20.9% and 8.8%
of students respectively, as shown in Figure 2.

Figure 2: Average selection rate per choice. Distractors
are ordered by their selection rate.

3.2 Measuring Model Uncertainty
Our study’s central goal is to find whether item dif-
ficulty (measured by the proportion of students cor-
rectly answering the MCQ) correlates with model
uncertainty (Figure 1). We use two different tech-
niques to capture model uncertainty: 1st Token
Probability and Choice Order Sensitivity. More-
over, we calculate the entropy of the 1st token prob-
abilities for each choice, a metric that quantifies
model uncertainty overall for a given question.

1st Token Probability The first technique to
measure model uncertainty is by inspecting the
probability of the 1st token to be generated (e.g.,
probability of generating token "B"), in comparison
to the probabilities of the alternatives (e.g., proba-
bility of generating token "A" or "C"). As the 1st
token probabilities can be influenced by the order
of the choices, we create six different orderings
of the questions to cover all possible permutations

and let the model answer each MCQ six times; we
take as probability of each choice the average over
all possible choice orderings.

Furthermore, as there might be multiple tokens
representing the same answer (e.g., "A", " A", "a ")
and models attribute higher likelihood for a specific
token, the token representing each choice with the
highest probability is selected. Lastly, the three
extracted mean probabilities of all orderings are
normalised in the range of 0− 1 such that they can
be more easily compared to student response rates.

Choice Order Sensitivity Pezeshkpour and Hr-
uschka (2023) observed that choice order sensitiv-
ity correlates with error rate. In other words, when
LLMs consistently select a choice regardless of its
position, that choice is more likely to be correct.
Based on this observation and on results we obtain
along the same lines3, we leverage this correlation
to measure model uncertainty. Specifically, for
all six possible orderings, the probability of each
choice being selected is measured. It is worth not-
ing that this probability is not based on the token
probabilities but rather on the eventual choice.

Choice Entropy The previously presented "1st
Token Probability" and "Order Sensitivity" met-
rics measure the model’s uncertainty per-choice
and can be evaluated as proxies for the proportion
of students selecting each choice of the MCQ. To
expand on these metrics and with a focus on the
model’s certainty for all question choices, we con-
sider the entropy of the 1st token probabilities of
the three answer choices. Equation 1 describes
this measure, where Hmodel(Q) is the entropy for
question Q and P (Q)c represents the probability
of choice c being generated averaged across all
possible choice presentation orders.

Hmodel(Q) = −
2∑

c=0

P (Q)c · lnP (Q)c (1)

In this study, the equivalent measure for the stu-
dent performance is considered, whereby the pro-
portion of students selecting each choice is consid-
ered in the place of P (Q)c.

3.3 Choice of Models and Prompting
The current work focuses on Decoder-Only models,
as these models are generally larger compared to
Encoder-Only or Encoder-Decoder models and are

3We report details in Appendix B.
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Type Question Choices

Fill the gap In explaining colour perception, the ... theory applies to what
happens in the brain.

a⃝ retinex
b⃝ trichromatic
c⃝ opponent process

Fill two gaps Homeostasis is to ... as allostasis is to ...
a⃝ constant; variable
b⃝ constant; decreasing
c⃝ variable; constant

Wh-question

While discussing their upcoming bio exam, John says that
a neuron that has a larger number of dendritic branches
can produce a stronger action potential. Mary replies that
she thinks that a larger number of dendritic branches only
increases the neuron’s ability to receive signals from other
neurons. Which of these statements is correct?

a⃝ Only Mary’s statement is correct
b⃝ Only John’s statement is correct
c⃝ Both statements are correct

Sentence
Completion The central nervous system consists of the ...

a⃝ brain and spinal cord
b⃝ subcortical structures of the brain
c⃝ the brainstem and cerebellum

Table 1: Examples of different question formulations present in the dataset. Correct answer in green.

considered to have incorporated greater amounts of
factual knowledge as a byproduct of their language
modelling objective (Zhao et al., 2023). However,
the free-text generation capability of Decoder-Only
models is not optimal for MCQ answer generation.
To adapt them for this task, and following the work
of Plaut et al. (2024), the current work also uses two
prompt phrasings that instruct the model to respond
with only one letter corresponding to the correct
answer. Appendix A reports the two instruction
phrasings and their effect on the results. We ran
this additional analysis as prompt formatting has
been shown to potentially have a significant effect
on the obtained results (Sclar et al., 2023). Apart
from Mistral-7b, where correlations are slightly
stronger with phrasing 1, no substantial differences
are observed; we thus report all analyses based on
phrasing 1 only, as also done in (Plaut et al., 2024).

As described in Section 3.2, to evaluate the un-
certainty of the models’ answers the internal logit
probabilities of the 1st token to be generated are
used. As access to model internals is needed,
we focus on open-sourced models of different ca-
pabilities and parameter sizes. Additionally, we
constrict our choice to instruction-tuned models
and use 4-bit quantisation for increased efficiency.
The four models eventually used in this research
are Llama3-8b-Instruct4, Llama3-70b-Instruct5, Yi-
34b-Chat6, Mistral-7b-Instruct7, covering a good

4https://huggingface.co/unsloth/
llama-3-8b-Instruct-bnb-4bit

5https://huggingface.co/unsloth/
llama-3-70b-Instruct-bnb-4bit

6https://huggingface.co/unsloth/
yi-34b-chat-bnb-4bit

7https://huggingface.co/unsloth/

range of sizes. For brevity, we henceforth omit
the "instruct"/"chat" label when referring to the
selected models.

4 Results

For all subsequent analyses, we use instruction
phrasing 1 (see Section 3.3 and Appendix A). We
analyse the relationship between the performance
of the selected models and students through three
incremental lenses, working at the per-question and
per-choice levels. However, before discussing these
analyses, it is useful to first examine the overall
performance of the models on the dataset. Table 2
summarises the proportion of correctly answered
questions (based on 1st token probabilities) per
question type, as defined earlier. As will be shown
later, drawing a distinction between question types
is imperative in studying the relationship between
model certainty and student performance.

As expected, the largest model among those we
tested, Llama3-70b, achieved the best performance
by answering nearly 90% of the questions correctly.
For all models, questions of Type 2 ("Fill two
gaps") proved to be the most challenging, which
is understandable given the more complex linguis-
tic task they present for LLMs. Moreover, since
these models were pre-trained on fill-mask tasks, it
is unsurprising that they performed best on ques-
tion Types 1 and 4 ("Fill the gap" and "Sentence
Completion," respectively), with the exception of
Mistral-7b. Looking at the student performance, no
substantial differences are observed between the
question types, and the only question type where

mistral-7b-instruct-v0.2-bnb-4bit
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model performance is worse is indeed Type 2.8

Model Question Type
1

(n=59)
2

(n=20)
3

(n=227)
4

(n=145)
All

(n=451)

Mistral-7b 0.797 0.750 0.652 0.848 0.738
Llama3-8b 0.814 0.600 0.709 0.834 0.758
Yi-34b 0.915 0.750 0.793 0.903 0.843
Llama3-70b 0.966 0.750 0.868 0.938 0.898

Student Rate 0.693 0.752 0.691 0.717 0.703

Table 2: Model and student performance on the dataset
used in this study. Model performance is based on the
choices determined by the highest 1st token probability,
while student performance is measured by the propor-
tion of students selecting the correct answer choice. Best
performance per column is bolded.

4.1 Question-Level: Correlation of Entropy

We begin the analysis by examining the relation-
ship between student performance and model cer-
tainty, as measured by the "Choice Entropy" metric
defined previously. For each question, this met-
ric quantifies how dispersed the model’s proba-
bility distribution is across the three possible an-
swer choices. Similarly, for student performance, it
quantifies how divided the student population was
on that particular question.

Figure 3 illustrates the correlation between the
choice entropy of students and models. We further
categorise the questions into two subsets: all ques-
tions, and those correctly answered by each model.
This additional analysis allows us to evaluate if
model correctness influences how closely model
certainty correlates with student selection rates.
From the figure, we can observe differences in
correlation across the question types. For exam-
ple, with the Llama3-8b model, the correlation for
Type 2 is much stronger than for Type 3, especially
when considering the subset of correctly answered
questions. Mistral-7b, instead, shows weaker cor-
relation throughout. Overall, the significant cor-
relations found can be considered to be weak to
moderate. While this analysis suggests that there
is indeed some correlation between the model cer-
tainty dispersion and the student selection rates for
a particular question, we need to further study it by
looking into how closely the distributions of choice
proportions between models and students align.

8The limited number of examples in this category does not
allow for strong statements, but we observe this behaviour.

Figure 3: Spearman Correlation (implemented using the
SciPy package (Virtanen et al., 2020)) between student
and model choice entropy. Asterisks signify significant
correlation, using a significance level of α = 0.05.

4.2 Question-Level: Chi-Squared of Rates

To quantify the alignment between model cer-
tainty dispersion and the student selection rates,
we perform a Chi-Squared test for each question.
However, since the Chi-Squared test requires each
choice to have a non-zero student proportion, we
remove ten questions where at least one choice
had a 0% student selection rate.9 This results in a
dataset of 441 questions for this analysis. Lastly,
this analysis is conducted using both model uncer-
tainty metrics (1st Token Probability and Choice
Order Sensitivity) as described in Section 3.2.

Figure 4 illustrates the Chi-Squared value aver-
aged for the entire set. Overall, the measurements
are high, signifying that the student and model
metrics originate from statistically significantly dif-
ferent distributions, which is expected. However,
while all model distributions differ from the stu-
dent distribution, certain models and question types
have distributions that align more closely with stu-
dent performance. Specifically, Type 1 seems to
consistently have model distributions that are closer
to student performance compared to Types 3 or 4
across all models, findings which are in line with
the results previously presented in Section 4.1.

It is interesting to note that focusing on the sub-
set of correctly answered questions yields overall
lower chi-squared values, particularly for the two

9Among the removed questions, three belong to Type 1,
two to Type 3, and five to Type 4.
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Figure 4: Average Chi-Squared value between the student proportions and model uncertainties distributions. All
Chi-Squared Values indicate a statistically significant difference between the distributions, using a significance level
of a = 0.05, indicating that the student and model metrics originate from significantly different distributions.

Llama models. It is hypothesised that this differ-
ence arises from the removal of confidently incor-
rectly answered questions, which would have had
the largest impact on the statistic. However, further
analysis should be conducted to investigate this.

It is noteworthy that we observe a resemblance
between the general pattern of the 1st token proba-
bilities and the choice order sensitivities. Table 3
confirms this, showing strong correlation between
the two methods of model uncertainty estimation,
with the exception of LLama3-70b. This exception
is not very surprising and stems from the model’s
insensitivity to the order bias.10

Model Correlation Per Choice

Correct Answer Distractor 1 Distractor 2
Llama3-8b 0.979 0.754 0.743
Llama3-70b 0.633 0.425 0.530
Yi-34b 0.934 0.854 0.874
Mistral-7b 0.896 0.824 0.814

Table 3: Spearman correlation between 1st Token Prob-
ability and Choice Order Sensitivity over the complete
dataset. All correlations are found to be significant, us-
ing a significance level of a = 0.05.

4.3 Choice-Level: Correlation of Rates

For a finer-grained analysis, we study the correla-
tion between the student selection rate per choice

10Further details on this are provided in Appendix B.

and the two model uncertainty metrics.

First, we focus on the entire dataset, containing
both correctly and incorrectly answered questions,
as shown in Figure 5. We observe that the correla-
tions are weak (ρ < 0.5), but statistically signifi-
cant. The findings are largely consistent with the
results of previous analyses (cf. Figure 3), with the
correlation often being weakest for question Type 4,
especially when compared to question Type 2.

Furthermore, in most cases, the correlation is
stronger for the correct answer choice compared
to distractors 1 and 2. However, there does not
seem to be consistent difference between the three
choices, especially between distractors 1 and 2.

We further focus on the subset of correctly an-
swered questions. Again, we do not observe con-
sistent difference between the three choices. Ad-
ditionally, in line with the previous analysis, the
correlation for the questions of Type 2 significantly
increases by only studying the subset of correctly
answered questions, with the exception of the re-
sults of Mistral-7b. It is not immediately clear
why Type 2 overall shows stronger correlation. We
hypothesise that this is because "fill two blanks"
questions are the most challenging for the tested
models (cf. Table 2), so it is expected for the mod-
els to have lower certainty scores on those ques-
tions, which might be more likely to correlate with
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Figure 5: Spearman Correlation between model uncertainty metrics and student selection rates, per choice, using
the complete dataset. Asterisks signify that the correlation is significant, using a significance level of α = 0.05.

lower student selection rates 11.

5 Discussion and Conclusion

In this study, we investigated whether model un-
certainty bears potential to be used for the MCQ
item difficulty estimation task. Through the use of
a fine-grained dataset, two model uncertainty met-
rics and three sets of analyses at different levels,
we find that there is generally a weak correlation
between model uncertainty and item difficulty. We
further find that this correlation is higher for certain
question types, particularly "fill the blank" and "fill
two blanks" questions. As is to be expected, we
also find that the observed correlations are model-
dependent, with both the weakest (Mistral-7b) and
the strongest (Llama3-70b) models showing lower
correlation between model uncertainty and student
selection rate compared to the other models. Lastly,
studying the correlation per-choice, instead of per-
question, did not reveal any consistent trends.

Shifting the focus to the bigger picture, through
this research, we demonstrate that it can be ben-
eficial to consider non-supervised learning ap-
proaches to tackle the task of MCQ item difficulty
estimation. We especially focused on the evalu-
ation of model certainty as a proxy for item dif-

11As also mentioned earlier, the limited number of examples
in this category does not allow for strong statements, but we
observe this behaviour.

ficulty, but alternative approaches should also be
explored. As an example, future research can focus
on the impersonation ability of LLMs, by evalu-
ating whether system instructions (e.g., "Answer
this question as if you were a student that only
studied half the book") can offer useful insights for
difficulty estimation.

Limitations

The main limitation of the current study is its find-
ings’ generalisability to other datasets. Specifically,
as newly developed LLMs perform increasingly
well in factual knowledge benchmarks (Zhao et al.,
2023), it is expected that the model certainty met-
rics explored in this study will align less with stu-
dent performance data (as already observed with
the Llama3-70b model). Similarly, the current
approach will likely also not generalise for e.g.,
primary-school exams, where the factual knowl-
edge being evaluated is often trivial for an LLM.

Furthermore, in this study we observed that the
question type is a significant factor to consider.
However, within the currently defined question
types, there exists high variability in some cate-
gories. This is mostly true for the Wh-questions,
where there is a subtype of "Which statement is
correct?" questions (e.g., "Which statement is true
with regard to brain development?"). In total, there



11312

Figure 6: Spearman Correlation between model uncertainty metrics and student selection rates, per choice, using
the subset of correctly answered questions. Asterisks signify that the correlation is significant, using a significance
level of α = 0.05.

were 68 questions of this type, but preliminary re-
search did not suggest that this question type differs
significantly from other Wh-questions.

Generally, MCQs bear other characteristics that
can also have a confounding effect. For example,
we can consider the lexical (e.g., use of technical
terminology) and semantic (e.g., topic) variability.
However, it is not directly evident how to study this,
as there is often no clear demarcation line between
what constitutes, for example, a technical and a
non-technical term.

Lastly Tjuatja et al. (2024) have found that mod-
els which have undergone reinforcement learning
from human feedback (RLHF) reflect even more
poorly human-like behaviour. While this might be
more relevant in their study than in ours, since they
focus on opinions rather than factual knowledge, it
might be the case that RLHF does affect correlation
with human behaviour in our study, too.

Ethics Statement

In this study, we used a dataset of multiple-choice
questions from the "Biopsychology" course at the
Social Sciences Faculty of the University of Gronin-
gen. The data was aggregated across multiple stu-
dents and anonymised, ensuring that individual stu-
dent performance cannot be traced. Because of its
format as provided to us, no further ethics approval

was required from our institution to work with this
dataset.

Acknowledgements

We would like to thank the Ubbo Emnius Foun-
dation for the M20 Fund and the Jantina Tammes
School for Digital Society, Technology and Artifi-
cial Intelligence for facilitating this research. We
are also grateful for the contribution of Dr. Mark
Nieuwenstein from the University of Groningen
who provided us with the Biopsychology question
set from his course. We are also thankful to the
reviewers for taking the time to read and comment
our paper.

References
James W. Kalat. 2016. Biological psychology. Cengage

Learning.

Wangyue Li, Liangzhi Li, Tong Xiang, Xiao Liu, Wei
Deng, and Noa Garcia. 2024. Can multiple-choice
questions really be useful in detecting the abilities of
llms? In Proceedings of the 2024 Joint International
Conference on Computational Linguistics, Language
Resources and Evaluation (LREC-COLING 2024),
pages 2819–2834.

Stephanie Lin, Jacob Hilton, and Owain Evans. 2022.
TruthfulQA: Measuring how models mimic human

https://doi.org/10.18653/v1/2022.acl-long.229


11313

falsehoods. In Proceedings of the 60th Annual Meet-
ing of the Association for Computational Linguistics
(Volume 1: Long Papers), pages 3214–3252, Dublin,
Ireland. Association for Computational Linguistics.

Junling Liu, Peilin Zhou, Yining Hua, Dading Chong,
Zhongyu Tian, Andrew Liu, Helin Wang, Chenyu
You, Zhenhua Guo, LEI ZHU, and Michael Lingzhi
Li. 2023. Benchmarking large language models on
cmexam - a comprehensive chinese medical exam
dataset. In Advances in Neural Information Process-
ing Systems, volume 36, pages 52430–52452. Curran
Associates, Inc.

Ekaterina Loginova, Luca Benedetto, Dries Benoit, and
Paolo Cremonesi. 2021. Towards the application
of calibrated transformers to the unsupervised es-
timation of question difficulty from text. In Pro-
ceedings of the International Conference on Recent
Advances in Natural Language Processing (RANLP
2021), pages 846–855, Held Online. INCOMA Ltd.

Lin Ni, Qiming Bao, Xiaoxuan Li, Qianqian Qi, Paul
Denny, Jim Warren, Michael Witbrock, and Jiamou
Liu. 2021. Deepqr: Neural-based quality ratings for
learnersourced multiple-choice questions. Preprint,
arXiv:2111.10058.

Matthew E. Peters, Mark Neumann, Mohit Iyyer, Matt
Gardner, Christopher Clark, Kenton Lee, and Luke
Zettlemoyer. 2018. Deep contextualized word repre-
sentations. In Proceedings of the 2018 Conference of
the North American Chapter of the Association for
Computational Linguistics: Human Language Tech-
nologies, Volume 1 (Long Papers), pages 2227–2237,
New Orleans, Louisiana. Association for Computa-
tional Linguistics.

Pouya Pezeshkpour and Estevam Hruschka. 2023.
Large language models sensitivity to the order of
options in multiple-choice questions. Preprint,
arXiv:2308.11483.

Benjamin Plaut, Khanh Nguyen, and Tu Trinh. 2024.
Softmax probabilities (mostly) predict large language
model correctness on multiple-choice q&a. Preprint,
arXiv:2402.13213.

Vatsal Raina and Mark Gales. 2024. Question difficulty
ranking for multiple-choice reading comprehension.
Preprint, arXiv:2404.10704.

Ana-Cristina Rogoz and Radu Tudor Ionescu. 2024.
Unibucllm: Harnessing llms for automated predic-
tion of item difficulty and response time for multiple-
choice questions. Preprint, arXiv:2404.13343.

Melanie Sclar, Yejin Choi, Yulia Tsvetkov, and Alane
Suhr. 2023. Quantifying language models’ sensitiv-
ity to spurious features in prompt design or: How i
learned to start worrying about prompt formatting.
Preprint, arXiv:2310.11324.

Karan Singhal, Tao Tu, Juraj Gottweis, Rory Sayres,
Ellery Wulczyn, Le Hou, Kevin Clark, Stephen
Pfohl, Heather Cole-Lewis, Darlene Neal, et al.

2023. Towards expert-level medical question an-
swering with large language models. arXiv preprint
arXiv:2305.09617.

Aarohi Srivastava, Denis Kleyjo, and Ziyi Wu. 2023.
Beyond the imitation game: Quantifying and extrap-
olating the capabilities of language models. Transac-
tions on Machine Learning Research, (5).

Lindia Tjuatja, Valerie Chen, Sherry Tongshuang Wu,
Ameet Talwalkar, and Graham Neubig. 2024. Do
llms exhibit human-like response biases? a case study
in survey design. Preprint, arXiv:2311.04076.

Pauli Virtanen, Ralf Gommers, Travis E. Oliphant, Matt
Haberland, Tyler Reddy, David Cournapeau, Ev-
geni Burovski, Pearu Peterson, Warren Weckesser,
Jonathan Bright, Stéfan J. van der Walt, Matthew
Brett, Joshua Wilson, K. Jarrod Millman, Nikolay
Mayorov, Andrew R. J. Nelson, Eric Jones, Robert
Kern, Eric Larson, C J Carey, İlhan Polat, Yu Feng,
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A Effect of Instruction Phrasing

We study the effect of the instruction phrasing on
the two model uncertainty metrics. As can be seen
in Figure 7, a difference can be observed between
the two instruction phrasings only for Mistral-7b.
We further investigate whether this difference trans-
lates to considerable differences in the correlation
between student and model selection rates. As
can be seen in Table 5, the correlation is generally
slightly stronger using instruction-phrasing 1 only
for Mistral-7b. For consistency, we use instruction
phrasing 1 for all analyses presented in the Results
section, as was also used by Plaut et al.(2024).

B Choice Order Sensitivity and Model
Correctness

As seen in subsection 4.2, the two model uncer-
tainty metrics strongly correlate, with the exception
of the results from LLama3-70b. To further study
this effect, we analyse the impact of choice order
on the models’ decisions.

Table 6 shows, for each model, the proportion
of times the model selected the same choice across
all six possible choice orderings. As can be seen,
Llama3-70b is least affected by choice order (not
being affected by order for 90% of all questions),
and Yi-34b is the most affected (not being affected
by order for 49.4% of all questions)

At the same time, by comparing the correctly
and incorrectly answered questions subsets, we can
also observe that the choice order effect is signif-
icantly smaller for correctly answered questions,
showcasing that this metric is indeed a good proxy
for model uncertainty.
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Instruction Phrasing Full Prompt

Phrasing 1

Below is a multiple-choice question. Choose the letter which best
answers the question. Keep your response as brief as possible; just
state the letter corresponding to your answer with no explanation.
Question:
[Question Text]
Response:

Phrasing 2

You will be presented with a multiple-choice question. Select the
option letter that you believe provides the best answer to the question.
Keep your response concise by simply stating the letter of your
chosen answer without providing any additional explanation.
Question:
[Question Text]
Response:

Table 4: Instruction phrasings used for prompt sensitivity evaluation.

Figure 7: Effect of instruction phrasing on the two model uncertainty metrics for the selected models.

Option 1st Token Probability Choice Order Sensitivity

Phrasing 1 Phrasing 2 Phrasing 1 Phrasing 2
Correct Answer 0.229 0.192 0.252 0.199

Distractor 1 0.188 0.113 0.190 0.116
Distractor 2 0.134 0.102 0.132 0.092

Table 5: Effect of instruction phrasing on the observed correlation between model uncertainty and student selection
rate per choice using Mistral-7b and the complete dataset.
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Model Prob. of Same Choice Regardless of Order

All Questions Correctly Answered Incorrectly Answered
Llama3-8b 0.647 0.751 0.321
Llama3-70b 0.900 0.938 0.565

Yi-34b 0.494 0.568 0.099
Mistral-7b 0.523 0.631 0.220

Table 6: Probability of selecting the same choice for all possible choice orders.
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