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Abstract

Recent state-of-the-art authorship attribution
methods learn authorship representations of
text in a latent, uninterpretable space, which
hinders their usability in real-world applica-
tions. We propose a novel approach to inter-
preting these learned embeddings by identify-
ing representative points in the latent space and
leveraging large language models to generate
informative natural language descriptions of
the writing style associated with each point.
We evaluate the alignment between our inter-
pretable and latent spaces and demonstrate su-
perior prediction agreement over baseline meth-
ods. Additionally, we conduct a human evalua-
tion to assess the quality of these style descrip-
tions and validate their utility in explaining the
latent space. Finally, we show that human per-
formance on the challenging authorship attribu-
tion task improves by +20% on average when
aided with explanations from our method.

1 Introduction

The task of authorship attribution (AA) involves
identifying the author of a document by extracting
stylistic features and comparing them with those
found in other documents by known authors. Iden-
tifying authorship is especially important due to its
real-world applications, such as its use by forensic
linguists when testifying in criminal and civil trials
(Tiersma and Solan, 2002). Given the sensitivity of
such settings, ensuring that model predictions can
be verified through clear explanations is crucial for
building user trust (Toreini et al., 2020).

Early approaches to authorship attribution fo-
cused on identifying stylistic features in writing
and training classifiers on these features to cap-
ture similarities between documents and authors
(Koppel and Schler, 2004). Although inherently
interpretable, these methods underperform com-
pared to recent state-of-the-art transformer-based
approaches in which documents are matched to
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Figure 1: Our approach for explaining authorship attri-
bution predictions. We identify k clusters with centroids
p1, . . . , pk in the embedding space and associate each
with writing style features. The writing style of a docu-
ment Di is explained by aggregating the style features
of its closest cluster.

authors using vector similarities in a learned la-
tent space (Rivera-Soto et al., 2021; Wegmann
et al., 2022). However, these deep learning-based
methods operate in a black-box fashion, which
poses challenges in explaining their predictions.
While a rich body of literature exists on interpret-
ing deep learning models, research specifically ex-
ploring the explainability of AA models is nascent,
and existing studies on style representations (Weg-
mann et al., 2022; Lyu et al., 2023; Erk and Apid-
ianaki, 2024) do not address their application for
explainability—a research gap we aim to fill.

In this paper, we hypothesize that embedding-
based authorship attribution models learn to map
texts into regions in the latent space that represent
specific writing styles. By locating a document
with respect to these regions in the latent space,
we can identify its style features relevant to the
model’s representation, which can serve as useful
explanations to assist humans in the authorship at-
tribution task. Our proposed approach identifies
these relevant regions and their corresponding writ-
ing style by clustering a set of training documents
in the latent space and assigns each cluster a distri-
bution over style features generated by prompting
large language models (LLMs). The centroids of
these clusters then serve as the basis for a new in-
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terpretable space. Given a new document Di, we
first identify its top k similar clusters, and we then
aggregate a set of style features from these clusters’
style representation to describe its writing style.
This is illustrated in the toy example in Figure 1,
where two clusters are identified in the latent space
(pa and pb), each with its distinct list of style fea-
tures. The style of a document D1 can be explained
by the set of features of its most similar cluster pa.

We conduct automatic and manual evaluations
to test our hypothesis that the clusters’ features can
describe the writing style of unseen documents and
are useful to the authorship attribution task. In our
automatic evaluation, we measure the agreement of
predictions made in our constructed interpretable
space and in the original model’s latent space, and
we compare that against other baselines. Our ap-
proach achieves the highest Pearson correlation of
0.79, surpassing baseline methods that range from
0.2 to 0.4. We also conduct a human evaluation to
verify whether the style features associated with
the identified clusters reflect the writing style of
unseen documents. The results indicate that this is
indeed the case since humans rank these style fea-
tures higher than other non-associated ones in 72%
of the cases. Finally, we measure the usefulness
of our explanations for the authorship attribution
task by asking participants to identify the author
of new documents with and without having access
to our explanations. Our explanations improved
their agreement and increased the annotators’ ac-
curacy in the task by an average of 20%. We make
our code and datasets publicly available to foster
further research on this area1

In summary, our contributions are as follows:

• A novel approach to interpreting the latent
space of embedding-based AA models.

• Experimental evidence demonstrating the va-
lidity of style descriptions generated by our
interpretable space.

• Demonstration of the utility of the inter-
pretable space’s explanations for the AA task.

2 Related Work

Authorship Attribution Early approaches to au-
thorship attribution focused on modeling linguistic
features such as syntactic structure and function

1Resources: https://github.com/MiladAlshomary/
latent-style-interpretation

word frequencies to capture similarities in writ-
ing style (Koppel and Schler, 2004). Recently,
transformer-based models have achieved state-of-
the-art results by fine-tuning on large corpora
to learn embeddings that reflect different writing
styles. For instance, Rivera-Soto et al. (2021) pro-
posed a contrastive objective function that maps
documents written by the same author into vec-
tors situated closer in the embedding space. Their
model is trained on corpora from different domains
to evaluate cross-domain knowledge transfer. Weg-
mann et al. (2022) introduced an approach to en-
sure that the embedding space of an authorship
attribution model represents style rather than con-
tent. Tyo et al. (2022) provide a comprehensive
survey of approaches for the authorship attribution
task. Our explainability framework can be applied
on these embedding-based models to explain their
predictions.

Interpreting Embedding Spaces Despite their
strong performance, transformer-based models
learn latent representations that are not inter-
pretable, making the models less explainable. A
well-established line of research focuses on meth-
ods to interpret the learned embeddings. For ex-
ample, Simhi and Markovitch (2023) proposed an
approach that maps Wikipedia concepts into the
latent space and uses these mapped embeddings as
dimensions of an interpretable space. Few works
have studied the interpretability of style embed-
dings learned for the authorship attribution task.
Wegmann et al. (2022) investigated the presence of
specific style features in the representations learned
(or induced) by their model. Lyu et al. (2023)
showed that it is possible to identify vectors repre-
senting lexical stylistic features (such as complex-
ity and formality) in the latent space of pre-trained
language models. However, these studies do not
extend beyond small-scale analyses to probe em-
beddings for specific style features. The usefulness
of this knowledge for explainable authorship attri-
bution is unexplored.

Explainability Angelov et al. (2021) review
state-of-the-art research on explainability and cate-
gorize it based on different aspects. Among them
is whether these methods provide local or global
explanations. For example, LIME (Ribeiro et al.,
2016) and SHAP (Lundberg and Lee, 2017) aim
to measure the contribution of single features (to-
kens in case of texts) to the final prediction of an
instance. Inferring human-level explanations from

https://github.com/MiladAlshomary/latent-style-interpretation
https://github.com/MiladAlshomary/latent-style-interpretation
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these scores might be easy for simple classification
tasks such as sentiment analysis. This becomes
more complicated when dealing with complex
tasks such as authorship attribution, where predic-
tions might rely on features beyond the level of to-
kens (e.g., syntax or discourse-related features). On
the other hand, concept activation vectors (CAVs)
(Koh et al., 2020; Simhi and Markovitch, 2023)
aim to provide a global explanation for the model’s
behavior by uncovering concept directions in the
model’s internal state. Our approach is along the
lines of the CAVs methods, but instead of starting
from a predefined set of concepts, we first discover
relevant regions in the latent space of the black-box
model and then interpret what they represent.

3 Explaining Authorship Attribution

In this section, we introduce the authorship attribu-
tion task and present our approach.

3.1 Problem Setup

In this study, we frame the authorship attribution
task as follows: Given a collection of n documents
D = {D1, . . . , Dn} written by m different authors
A1, . . . , Am, predict how likely it is for two docu-
ments to be written by the same author. Authorship
attribution methods typically learn a function f(·)
that maps documents into a latent embedding space,
and then they rely on it to predict the author of new
documents at inference time (Rivera-Soto et al.,
2021; Wegmann et al., 2022). But these models are
opaque and not interpretable.

A natural explanation of the underlying mecha-
nism of f(·) is that the models learn to associate
specific style features with regions in the latent
space. An intuitive approach to uncovering this
underlying mechanism — in line with the approach
proposed by Simhi and Markovitch (2023) for in-
terpreting general learned embeddings — would
depart from texts with specific predefined style fea-
tures and aim at identifying their corresponding
latent representations. This approach is limited by
the need for predefined features and the strong as-
sumption that the AA model represents them. In
contrast to this “top-down” method, our approach
to interpreting the latent space can be described as
“bottom-up.” As detailed below, instead of using a
predefined set of features, we automatically locate
salient regions in the latent space that are relevant
to the model’s predictions and map them to an au-
tomatically discovered set of style features. This
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Figure 2: Our approach: Given the training corpus Dtrain

with documents from authors A1, . . . , Am, we generate
style descriptions for each document to construct the
style corpus. We then identify relevant regions in the
latent space p1, . . . , pk by clustering author-level repre-
sentations and aggregate style features to obtain style
representations for each region.

ensures that the latent regions and the style features
are both relevant to the model’s prediction.

3.2 Latent Space Interpretation

We propose a two-step procedure for interpreting
the latent space of AA models. Our approach is
illustrated in Figure 2 and explained below.

Identifying Representative Points Given a train-
ing set Dtrain, containing author-labeled texts, we
first identify k representative points (p1, . . . , pk) in
the latent space that are relevant to the AA model’s
predictions. For this, we first obtain author-level
representations (which we call hereafter author em-
beddings) by averaging the representations of doc-
uments by the same author. Although each author
embedding could be considered as a single repre-
sentative point, one can obtain better style repre-
sentations by grouping similar authors since more
documents will be available in each cluster. There-
fore, we cluster the author embeddings and take
their centroids as our final k representative points.

Mapping to Style Distributions We consider the
k representative points identified in the latent space
as our interpretable space dimensions. This step
aims to map each point and its associated docu-
ments to a corresponding writing style. To this end,
we first automatically construct a set of style fea-
tures describing all the training documents. Then,
we map each point to a distribution over these style
features given its associated documents.
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We build this set of features following Patel et al.
(2023), who used LLMs to describe the writing
style of a document in a zero-shot setting. Con-
cretely, we first generate style descriptions for
each document in the training set by prompting
the LLM. However, the generated descriptions are
quite lengthy, as shown in the examples in Figure 4,
and they present substantial overlaps. Therefore,
as exemplified in the figure, we process the gener-
ated style descriptions as follows: we first prompt
LLMs to shorten each of the descriptions. Second,
we perform automatic feature aggregation to merge
descriptions with similar styles. For this, we con-
struct a pairwise similarity matrix by computing the
Mutual Implication Score (Babakov et al., 2022) be-
tween each pair of descriptions and merge the ones
that are sufficiently similar. Finally, we shorten the
aggregated descriptions further by extracting key
phrases present therein. These constitute the final
set of style features used in our experiments. Im-
plementation details about the LLMs and prompts
used are provided in Section 4.

Using the constructed set of style features, we
generate a distribution over the generated style fea-
tures for each representative point (p1, . . . , pk). To
do this, we compute the frequency of each style
feature (e.g., vivid imagery, rhetorical questions,
etc) in the documents that are associated with the
representative points, normalized by the frequency
of the feature in the entire training set.

Explaining Model Predictions The constructed
interpretable space, where each basis is associated
with a style distribution, can be used for explain-
able AA in two ways. First, to explain how the AA
model encodes the writing style of a single docu-
ment, we first project its latent embedding into the
interpretable space by computing its cosine sim-
ilarity to each of the representative points in the
latent space. We then explain its writing style by
relying on its top N (i.e. the closest) representative
points. Second, to explain why the AA model pre-
dicts that two documents were written by the same
author, we similarly project both documents into
the interpretable space and generate a unified style
description by aggregating the top representative
points from both documents.

4 Experiment Setup

In this section, we present the authorship attribution
dataset and the models used in our experiments.
We also explain the implementation details of our

Statistic Train Dev Test

# Documents 15822 2456 6107
# Authors 4142 635 1586
Avg. documents per Author 3.8 3.8 3.8

Table 1: Statistics for the training, development, and
test splits of the HRS dataset.
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Figure 3: Performance comparison of cluster assign-
ments by number of clusters. Smaller EER and larger
AP indicate better performance. Note that both metrics
naturally favor assignments with more clusters.

approach and the baselines used for comparison.

4.1 Dataset & AA Models
Dataset To evaluate our approach, we uti-
lize an authorship corpus compiled for the pur-
poses of the IARPA HIATUS research program.2

The corpus comprises documents from 5 online
discussion forums spanning different domains:
BoardGameGeek, Global Voices, Instructables, Lit-
erature StackExchange, and all StackExchanges
for STEM topics (physics, computer science, math-
ematics, etc.). Each source contains documents
(posts) tagged with authorship information in their
metadata. Sensitive author metadata (PII infor-
mation) has been removed from the corpus using
the Presido analyzer (Mendels et al., 2018), which
finds and replaces sensitive entities with placehold-
ers (e.g., “PERSON”). The authorship information of
these documents is preserved by assigning random
UUIDs to each author. We refer to this dataset as
the HRS dataset, and we will share it publicly upon
request.3 We use the “cross_genre” portion of the
HRS dataset, which contains documents written

2The corpus was compiled by the Test & Evaluation (T&E)
team of the HIATUS program and distributed to the partici-
pants for training and testing their models.

3https://www.iarpa.gov/research-programs/
hiatus

https://www.iarpa.gov/research-programs/hiatus
https://www.iarpa.gov/research-programs/hiatus
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AA Model EER (↓) AP (↑)

LUAR 0.06 0.49
FT-LUAR 0.02 0.59

Table 2: Performance of the AA models on the HRS
dataset.

Shorten

Descriptions

Extract 

Phrases

The author uses rhetorical questions to engage the reader.

The author uses rhetorical questions to prompt analysis.

The author uses rhetorical questions, parallelism, and metaphorical words, 

prompting analysis and introspection while creating a rhythmic, imaginative...

Vivid imagery and precise diction enhance the narrative.

Aggregate

Features

The author employs rhetorical questions, vivid imagery, and precise diction to 

engage the reader, prompting reflection and critical thinking while fostering a 

conversational, evocative, and thought-provoking tone. Concise phrasing...

The author uses rhetorical questions to prompt analysis.

Vivid imagery and precise diction enhance the narrative.

Rhetorical Questions

Vivid Imagery

Critical Questions

Precise Diction

Figure 4: Refinement steps applied on style description
distilled from llama3-8b.

by the same author across different genres (online
discussion forums). The cross-genre setting makes
authorship attribution more challenging (Rivera-
Soto et al., 2021). Statistics for the number of
documents and authors in each of the training, vali-
dation, and test splits are given in Table 1.

AA Models We use the state-of-the-art author-
ship attribution model LUAR (Rivera-Soto et al.,
2021) and a variant that we built using the SBERT
library (Reimers and Gurevych, 2019). The vari-
ant has LUAR as the backbone, which serves to
generate the initial text embedding, and a dense
layer of 128 dimensions on top to create the final
embedding space. We fine-tuned this model on
the training split of the HRS dataset using pairs of
documents by the same author as positive pairs and
the MultipleNegativesRanking loss as the objective
function. We train the model for one epoch with
a batch size of 48. All other training parameters
are left to their default value per the library. At
test time, the likelihood of two documents being
written by the same author is computed by their
cosine similarity in the learned space.

We evaluate the performance of the two author-
ship attribution models on the test split of the HRS
dataset in terms of Equal Error Rate (EER) (Meng
et al., 2019) and Average Precision (AP). Table 2

style is technical

style is formal

language is emotive

customizable recipe options

tone is wary

Figure 5: Illustration of style features extracted from
the training corpus using our approach. 1470 features
were extracted for our dataset.

presents the results for the two models. Not sur-
prisingly, the FT-LUAR benefits from fine-tuning
on the HRS training split, achieving a better EER
than LUAR (0.02 vs. 0.06). These two models are
the black boxes whose predictions we would like
to explain using our approach.

4.2 Implementation of Our Approach

As described, our approach involves (1) identifying
representative points by clustering similar authors
and (2) automatically constructing a style feature
set to assign each of these representative points
a distribution over these features. The following
describes the implementation details of these steps.

Clustering Similar Authors This step serves to
identify representative points in the latent space.
To find the best clustering, we experiment with
various algorithms and parameter values. We run
each evaluated algorithm on the author embeddings
from the training set, and use the centroids of the
resulting clusters as dimensions of corresponding
interpretable space. Then, to predict how likely
it is for a pair of documents in the development
set to be written by the same author, we project
their latent representations into this evaluated in-
terpretable space and calculate their similarity. Fi-
nally, we compute the EER and AP with respect
to the ground-truth scores. We repeat this process
for each clustering algorithm and set of parame-
ter values. Figure 3 shows the best performance
obtained by each algorithm and the correspond-
ing number of clusters. We select the algorithm
that gives us high-performance gain with a lower
number of clusters. In our approach implementa-
tion, we use DBSCAN as the clustering algorithm
since it gives good performance while maintaining
reasonable number of clusters.



1129

Assigning Writing Styles We implement our
pipeline for extracting style features from the
training documents using the llama3-8b model
(Prompt 1 in Figure 6) for style description gen-
eration and gpt-3.5-turbo for shortening these
descriptions (Prompt 2 in Figure 6). This pro-
cess resulted in 1,470 style features ranging from
generic features (such as “passive voice”), to
corpus-specific ones (such as “mathematical equa-
tions”). We include a sample histogram of the
extracted style features in Figure 5.

Prompt 1: Style Generation with llama3-8b

[TASK]
Please list the writing style attributes of the given
text for each of the morphological , syntactic , semantic ,
and discourse levels.

Each level should start with a paragraph heading then
a list of short sentences describing the style where each
sentence is in the format of "The author is X." or
"The author uses X.
[TEXT]
<document >

Prompt 2: Style Refinement with gpt-3.5-turbo

[TASK]: Please rewrite the following list of writing
style bullet points into a single paragraph.

[TEXT]: <style descriptions >

Figure 6: Prompts used for style description generation
and refinement

4.3 Baselines

As explained in Section 3, a potential top-down
approach to constructing interpretable spaces starts
from a pre-defined set of style features and their
corresponding documents. We implement this ap-
proach and use it as a baseline. We use two exist-
ing sets of style features: xSLUE (Kang and Hovy,
2019) and LISA (Patel et al., 2023).

xSLUE Kang and Hovy (2019) compiled a taxon-
omy of 18 style features that are mostly studied in
literature. A set of texts illustrating each feature is
also provided. Due to the varying number of docu-
ments available for each feature, we downsampled
each set to 100 texts.

LISA Patel et al. (2023) prompted an LLM to
distill style features from Reddit posts, resulting
in a large collection of style features with corre-
sponding texts. We semi-automatically aggregated
similar features and filtered out infrequent ones,
resulting in 57 style features with an average of
377 documents per feature.

Model Method ∆EER ∆AP Pearson r

LUAR

Random 0.18 0.15 0.31
xSLUE 0.18 0.26 0.39
LISA 0.10 0.17 0.57
Ours 0.04 0.14 0.79

FT-LUAR

Random 0.20 0.19 0.38
xSLUE 0.20 0.34 0.29
LISA 0.15 0.24 0.23
Ours 0.04 0.17 0.79

Table 3: Performance degradation of the LUAR and
FT-LUAR models when prediction is performed in the
xSLUE, LISA, random projection, and our interpretable
spaces, measured by Equal Error Rate (∆EER) and Av-
erage Precision (∆AP). Pearson r represents the agree-
ment between the AA model’s predictions in the latent
and interpretable spaces. Lower values of ∆EER and
∆AP is better.

We compute the overlap between the style fea-
tures present in each of these corpora and ours. As
shown in Figure 10 in the appendix, the percentage
of overlap is low, indicating the need for style fea-
ture discovery in the AA model’s training corpora
instead of relying on pre-defined ones.

To construct the interpretable space for each of
these two feature sets, we obtained the AA model’s
representation for the texts that are available for
each style feature and averaged their embeddings
to form the corresponding dimension. This results
in two baseline interpretable spaces: xSLUE with 18
dimensions and LISA with 57 dimensions. In addi-
tion to considering xSLUE and LISA baselines, We
also use a random projection baseline by randomly
selecting points in the latent space and considering
them as another baseline interpretable space.

5 Evaluation

The following presents the automatic and manual
evaluations we perform to evaluate our approach.

5.1 Interpretable Space Alignment

We evaluate the quality of the interpretable space
by assessing how well it is aligned with the original
latent space. We measure the alignment of the two
spaces in terms of performance degradation and
prediction agreement when each space is used for
prediction. Concretely, at test time, we first embed
documents into the latent space and project them
into the evaluated interpretable space. We then pre-
dict AA scores using the cosine similarity of each
pair of documents in each space. Finally, we com-
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Document: 

A small Week end project for kids to enjoy. Not only science it also make 

the kids very happy. All the kids are in study from home now a days, 

so some small projects to explain science. Its a science project 

to explain vacuum actions. Its make kids smile.

Step 1: Materials Required

[....] 

Step 2: Making Hand Pump

1) Cut the medium syringe top in the bottom [...]

For kids draw face on the balloon using permanent marker. And put it 

inside the jar and make the jar vacuum using the pump [..]

Feature 1: Tone is friendly

Feature 2: Style is declarative

Feature 3: Style is transitional

Feature 1: Complex concepts

Feature 2: Style is persuasive

Feature 3: Style is analytical

Representative Features Distractive Features

Figure 7: Example document from the HRS dataset with
top three descriptive and distractive style features and
their scores that are obtained from one of the annotators.

pute the corresponding EER and average precision
scores and measure the performance degradation.
Similar to Simhi and Markovitch (2023), we also
report the correlation in terms of Pearson’s r be-
tween the predictions made in the latent and the
evaluated interpretable space.

Table 3 presents our evaluation results. A first
observation is that our method results in a mini-
mum drop in both evaluation measures compared
to the baselines. For prediction agreement, the
LUAR model with the xSLUE and LISA inter-
pretable spaces outperforms the random baseline,
but this trend does not hold for FT-LUAR. How-
ever, in both LUAR and FT-LUAR, our proposed
interpretable space achieves the best agreement,
with the highest correlation (Pearson’s r of 0.79) to
the original latent space predictions. These positive
results provide empirical support for the relevance
of our clustering-based interpretable space with
respect to the AA model’s predictions.

5.2 Quality of Explanations

Our interpretable space can also serve to describe
the writing style of unseen documents. We evaluate
the quality of the style descriptions for 40 unseen
documents randomly sampled from the test split
of the HRS dataset. For each document, we ex-
tract the top 5 features from its most representative
cluster (interpretable dimension) and 5 other style
features from the least representative one (distrac-
tive features). We then ask human evaluators to

Features Average Median

Representative 2.41 3
Distractive 2.10 2

Table 4: Average and median rating scores for the
representative and distractive features according to the
annotators.

rate each of the ten style features on a 3-Point Lik-
ert scale. They are asked to assign 1 point when
the feature does not apply anywhere in the text, 2
points for features that apply somewhere in the text
but not frequently, and 3 for features that occur
often enough in the text. Ideally, we expect the av-
erage score of representative features to be higher
than the score of the distractive ones for all cases.
Due to a limited budget, we focused our manual
evaluation studies on FT-LUAR as our black-box
authorship attribution model since it performs bet-
ter on the HRS dataset. We hired three annotators
who are native speakers of English and have a job
success rate of more than 90% on the UpWork plat-
form. Solving each instance was estimated to take
around 3 minutes, and we compensated each of our
annotators $35 per hour. We designed the study
interface on the Label Studio platform.4 Figure 7
shows an example instance from the study with the
top 3 style features due to space limitations. Note
that, in the interface, annotators see all the style
features shuffled without knowing their source.

Results We collect 3 ratings from our annotators
for each of the 400 evaluated style features. We
compute the majority rating for each style feature
and exclude the ones with no majority ratings (8%
of representative and 12% of distractive features).
Table 4 presents the average and median scores. We
note that representative style features (average 2.41
and median of 3) are scored higher than distractive
ones (average 2.10 and median of 2).

We additionally computed the percentage of doc-
uments where the representative features achieved
an average rating score higher than the distrac-
tive ones. The percentage is 65% and 72% when
considering the top 3 and 5 evaluated features, re-
spectively. As for the inter-annotator agreement,
Krippendorf’s α score is 0.33, which indicates fair
agreement. Although evaluators found the distrac-
tive features sometimes apply, our results indicate
the representative style features selected for unseen

4https://labelstud.io/

https://labelstud.io/


1131

0

1

2

3

4

5

6

7

8

9

Clear Presentation

S
o

m
e

w
h

a
t

C
o

n
fu

s
in

g

C
o

n
fu

s
in

g

S
o

m
e

w
h

a
t

C
le

a
r

C
le

a
r

U
n

s
u

re

T
o

o
 L

o
n

g

T
o

o
 S

h
o

rt

N
e

ith
e

r

U
n

s
u

re

C
ritic

a
l

M
is

s
in

g

S
o

m
e

M
is

s
in

g

N
o

t

M
is

s
in

g

U
n

s
u

re

H
a

rd
e

r

N
o

d
iffe

re
n

c
e

E
a

s
ie

r

0

2

4

6

8

10

12

Concise Explanation

0

2

4

6

8

10

Missing Information

0

2

4

6

8

10

12

14

Helpful for Task

Figure 8: Histogram of annotators’ answers for questions regarding the quality aspects of our system’s explanations.

documents describe the writing style more defini-
tively. In the next section, we show that these style
features are also helpful in solving the authorship
attribution task.

5.3 Usefulness for Explainability
Study Design We conduct another user study to
assess whether interpretations derived from our ap-
proach can serve as useful explanations for humans
to solve the AA task. We hereby present the design
of the AA task. We show the annotators one query
document along with three candidate documents,
one of which is written by the same author as the
query. The annotators’ task is to identify this can-
didate document under two conditions: with and
without access to our explanations.

To generate the explanation for a document, we
select the top 10 style features from each of the top
three representative interpretable dimensions iden-
tified for this document. We prompt ChatGPT to
rephrase these style features into a single coherent
style description. Due to the high annotation effort
(estimated 12 min per instance), we restricted our
study to a random sample of 40 instances total, 20
for each condition (w/ Expl. and W/o Expl). We
hired four annotators on the UpWork platform and
split them into two groups; each group solves the
same 20 tasks. Additionally, we keep track of the
instances where the prediction of the authorship
attribution model is correct. Besides solving the
AA task, we ask the annotators to answer questions
that serve to assess different quality aspects of the
provided explanations, such as whether the explana-
tions are clear, compact, complete, and helpful for
the task. The questions and the annotation interface
can be found in Appendix C.

Effect of Explanations on Accuracy Table 5
presents the accuracy of our annotators in the AA
task for cases where the AA model correctly pre-

W/o Explanation W/ Explanation

Ann 1 0.71 0.83
Ann 2 0.43 0.83
Ann 3 0.71 0.71
Ann 4 0.43 0.71

Table 5: Accuracy of each annotator in solving the
AA task for instances where the AA model had correct
prediction, broken down for cases with and without
explanations.

dicted the candidate document. We observe that
annotators achieve an accuracy between 0.43 and
0.71 in the setting where no explanations were pro-
vided (W/o Explanation). When they have access to
our explanations (W/ Explanation), the accuracy of
most annotators (3 out of 4) significantly increases.
These results demonstrate the usefulness of our sys-
tem’s explanations for the AA task. For instances
where the AA model made the wrong prediction
(20% of the total evaluated instances), the anno-
tators also failed to identify the correct candidate
in both scenarios (w/ Expl. and w/o Expl.). This
indicates that the explanations provided for these
instances had no effect or misled the annotators’
decision.

Effect of Explanations on Agreement We col-
lect two annotations per instance, so we measure
the inter-annotator agreement using Cohen’s Kappa.
Agreement across all evaluated instances is low
(0.24), hinting at the task’s difficulty. Upon further
inspection, we observed that agreement was very
low (0.03) when no explanations were provided but
increased to 0.45 when the annotators had access
to the explanations. These results show that our
system’s explanations effectively influenced the an-
notators’ decisions, leading to stronger agreement.

Explanation Quality Figure 8 shows the his-
togram of annotators’ answers to our questions
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regarding the quality of provided explanations. Our
system’s explanations were evaluated in most cases
to be relatively clear, compact, and helpful to the
task. However, annotators also considered some
information to be missing from the explanations.

6 Conclusion

State-of-the-art authorship attribution models learn
latent embeddings that capture authors’ writing
styles. Despite their strong performance, these
models are unexplainable, which limits their us-
ability. This work presented a novel approach to
explaining the latent space of authorship attribution
models. Our approach relies on clustering training
documents in the latent space, and automatically
mapping them to distributions over LLM-generated
style attributes. In our automatic and manual evalu-
ation, we demonstrated that this method generates
plausible style descriptions of unseen documents,
which can also be useful in solving the authorship
attribution task.

Limitations

In our experiments, we demonstrate the predictive
power of our interpretable space, the plausibility of
style explanations, and their usefulness for solving
the authorship attribution task. However, there ex-
ist many other aspects of explanation quality that
we did not evaluate (Zhou et al., 2021), like how
faithful are these explanations to the model’s pre-
diction.

Moreover, as explained, our approach is based
on automatically distilling style features using
LLMs. This, however, is prone to noise and consis-
tency issues. In Appendix A.2, we investigate the
consistency of LLMs in generating writing style
descriptions, and show that this becomes more re-
liable when we prompt them multiple times. Due
to the computational costs, in our experiments we
only perform single-round prompting of LLMs to
generate writing style features.

Finally, in our evaluation we focused on analyz-
ing a single authorship attribution model fine-tuned
on our own dataset. This, in a way, is a limitation
of the paper; future research should look into ana-
lyzing a wider spectrum of authorship attribution
models that are trained on different datasets and an-
alyze their different behaviors to gain more reliable
and generalizable insights.

Ethical Statement

We acknowledge that the authorship attribution task
itself raises ethical issues. As mentioned, AA mod-
els can be used as tools to reveal the identity of
individuals who wrote texts online, leading to pri-
vacy concerns. However, our work here aims to
explain their decisions. This can enable users to un-
derstand these models’ behavior and know whether
their predictions are baseless.

In our user studies, we made sure to keep the
identity of our users private and to compensate
them more than the minimum wage in the U.S.
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by averaging the author’s document embeddings
generated by the FT-LUAR model, and apply the
method described in Section 3.2 to obtain style
representations. We then compute pairwise dis-
similarities between authors using cosine similarity
for latent representations and symmetric KL diver-
gence for style and topic representations. Finally,
to obtain correlation scores, we use distance corre-
lation (Székely et al., 2007), which captures both
linear and non-linear relationships, and Pearson
correlation, which captures linear relationships.

Results are shown in Figure 9. Despite the rela-
tively high correlation between authors’ dissimilar-
ity scores in the latent topic space, we observe an
even higher correlation between dissimilarities in
the latent and style representations. This indicates
that authors who are similar in the authorship attri-
bution latent space share, to some degree, similar
writing styles.

A.2 Consistency of Style Assignments

To ensure the generated style descriptions are re-
liable and not spuriously generated, we validate
the consistency of style descriptions produced by
LLMs across different query instances.

Specifically, we prompt llama3-8b with docu-
ments from the same author multiple times and
evaluate the stability of the resulting style distri-
bution. At each time step t ∈ N, we compute the
style distribution vdt ∈ ∆k by counting the number
of times each style occurs and normalizing the oc-
currences to a probability distribution. Then, we
take the unweighted average of all previously gen-
erated distributions as v̄dt = 1

t

∑t
i=1 v

d
i . Denoting

stability at step t as St, we evaluate St for t ≤ 25
as the symmetrized Kullback-Leibler (KL) diver-
gence between the averaged style distributions of

step-adjacent instances:

St =
1

2

(
DKL(v̄

d
t ∥ v̄dt−1) +DKL(v̄

d
t−1 ∥ v̄dt )

)
.

To mitigate potential consistency illusions from
using identical prompt instructions, we manually
generate 20 paraphrased variants of the original
instruction and sample an instruction uniformly at
random for each query. Given the known variability
of LLMs when processing semantically identical
inputs (Jiang et al., 2020; Elazar et al., 2021; Zhou
et al., 2022), observing convergence in style assign-
ments across these varied prompts suggests that
LLMs maintain consistency in generating style de-
scriptions. Detailed prompt examples are provided
in Appendix B.2.

Results are shown in Figure 11. Observe that
stability converges to the minimum value after 20
rounds, demonstrating that LLM-generated styles
are consistent across multiple prompting instances.
These results suggest that author-level style assign-
ments are both representative and consistent.

A.3 Style Overlap
Figure 10 shows the heatmap of style overlap be-
tween various style corpora. The style overlap is
determined by calculating the Mutual Implication
Score for all pairs of style features and considering
two styles from different corpora identical when
the similarity score exceeds a threshold of 0.8. We
notice the low percentage overlap between the other
baseline corpora and ours, which indicates the need
for style feature discovery in the training corpora
of the investigated AA model instead of relying on
a pre-defined set of style features.

B Prompt Instructions

B.1 Style Feature Generation
Here, we include the prompt instructions used to
generate style descriptions and refine the generated



1135

descriptions.

B.2 Style Consistency

Here, we include examples of paraphrased style
generation prompts utilized in assessing the consis-
tency of generated styles.

Prompt 3: Examples of Paraphrased Variants
[TASK]
Generate a list detailing the writing style of the given
text at the following levels:
- Morphological level
- Syntactic level
- Semantic level
- Discourse level

[RULES]
- Begin each level with a heading , followed by a list

of brief sentences describing the style.

[TEXT]: <document >

[TASK]
Assess the writing style of the given text for each of
the following levels:
- Morphological level
- Syntactic level
- Semantic level
- Discourse level

[RULES]
- Each section should start with a heading , followed

by a list of brief sentences describing the style.

[TEXT]: <document >

C Experiment on Usefulness of
Explanations

Besides solving the task of authorship attribution,
the annotators had to answer a set of questions for
each instance where explanations were provided.
These questions meant to assess various quality
aspect of our explanations. Here is the list of ques-
tions:

1. Is the explanation presented in a clear manner
that is easy to follow?

A. Confusing or difficult to understand

B. Somewhat confusing or difficult to un-
derstand

C. Relatively clear and easy to understand

D. Very clear and easy to understand

E. I am not sure

2. Is the explanation simple and compact?

A. Too long

B. Too short

C. Not too long or too short

D. I am not sure

3. Is there any missing information that the ex-
planation fails to mention?

A. Critical information is missing

B. Some information is missing, but not
critical

C. No information is missing

D. I am not sure

4. Is the explanation helpful to the task you are
trying to accomplish?

A. The explanation is distracting

B. The explanation makes little or no dif-
ference to my task

C. The explanation is helpful

D. I am not sure
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